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CONTROL AND COMPUTATION

(Chapter 1.5)



3 Adaptive cruise control



4 Example – position control

▪ robot arm needs to travel fixed distance (angle)

▪ starts at known location, ends at known location

▪ motor turns with constant speed

▪ use open-loop controller
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Example – position control

▪ external disturbances

▪ motor speed not constant

▪ start, end location not exact

▪ measure position of arm and use in control system

motor

Θ

position 1

position 2



6 Example – position control

▪ use potentiometer to measure position

▪ input: desired angle of arm, output: engine on/off
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7 Feedback (closed-loop) control

▪ measure response and compare with reference to minimize error

▪ several common feedback control strategies exist

▪ on-off control

▪ proportional (P) control

▪ proportional control with integral (I) and derivative (D) action
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8 Example – position control

▪ output voltage sensor follows robot arm immediately

▪ time-dependent transfer function of robot arm

▪ static sensitivity given by k

▪ system has ideal or perfect dynamic performance

𝑣𝑜(𝑡) =
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9 Zero-order system

▪ zero-order system represents ideal or perfect dynamic performance

▪ demonstrated with response to step at input

▪ no dynamic error present in zero-order systems

▪ none of the elements in the sensor stores energy
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10 Vehicle climate control system
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11 Vehicle climate control system

▪ on/off controller to regulate temperature

▪ response is not instantaneous 

▪ thermal mass causes delay

▪ consider time delay in controller
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12 Example – temperature measurement

▪ liquid-in-glass thermometer

▪ input – temperature Ti(t) of environment

▪ output – displacement xo of the thermometer fluid

▪ liquid column has inertia (i.e. transfer function is not ideal)
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13 First-order system

▪ first-order system contains one energy storing element

▪ differential equation for first-order system

▪ engineering practice to only consider x(t) and not its derivatives

▪ solve equation to obtain transfer function

▪k – static sensitivity

▪τ – time constant
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14 First-order system

▪                              , with

▪ static input implies all derivatives are zero

▪ static sensitivity (k) is the amount of output per unit input when the input is static (constant)

▪ time constant (τ) determines the lag of the output signal on a change in the input signal

𝑘 =
𝑏0
𝑎0

, 𝜏 =
𝑎1
𝑎0
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Example – liquid-in-glass thermometer

▪ conservation of energy provides relation between 

▪ fluid temperature (Tf) and liquid temperature (Ti)

▪ Vb – volume of bulb [m3]

▪ ρ – mass density of thermometer fluid [kg/m3]

▪ C – specific heat of thermometer fluid [J/(kg°C)]

▪ U – overall heat-transfer coefficient across bulb 

▪ wall [W/(m2°C)]

▪ Ab – heat transfer area of bulb wall [m2] 

𝑉𝑏𝜌𝐶
𝑑𝑇𝑓

𝑑𝑡
+ 𝑈𝐴𝑏𝑇𝑓 = 𝑈𝐴𝑏𝑇𝑖
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Example – liquid-in-glass thermometer

▪ conservation of energy provides relation between 

▪ fluid temperature (Tf) and liquid temperature (Ti)

▪ relation between liquid level (xo) and fluid temperature (Tf)

▪ xo – displacement from reference mark [m]

▪ Kex – differential expansion coefficient of fluid and bulb [m3/(m3°C)]

▪ Vb – volume of bulb [m3]

▪ Ac – cross sectional area of capillary tube [m2]

▪ what are sensitivity (k) and time constant (τ)?

𝑥𝑜 =
𝐾𝑒𝑥𝑉𝑏
𝐴𝑐

𝑇𝑓

𝑉𝑏𝜌𝐶
𝑑𝑇𝑓

𝑑𝑡
+ 𝑈𝐴𝑏𝑇𝑓 = 𝑈𝐴𝑏𝑇𝑖
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Example – liquid-in-glass thermometer

▪ conservation of energy provides relation between 

▪ fluid temperature (Tf) and liquid temperature (Ti)

▪ relation between liquid level (xo) and fluid temperature (Tf)

▪ what are sensitivity (k) and time constant (τ)?

▪ combining equations gives differential equation 

▪ for whole system

𝑥𝑜 =
𝐾𝑒𝑥𝑉𝑏
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ቋ ⇒
𝜌𝐶𝐴𝑐
𝐾𝑒𝑥

𝑑𝑥𝑜
𝑑𝑡

+
𝑈𝐴𝑏𝐴𝑐
𝐾𝑒𝑥𝑉𝑏

𝑥𝑜 = 𝑈𝐴𝑏𝑇𝑖

𝑉𝑏𝜌𝐶
𝑑𝑇𝑓

𝑑𝑡
+ 𝑈𝐴𝑏𝑇𝑓 = 𝑈𝐴𝑏𝑇𝑖

𝑥𝑜 =
𝐾𝑒𝑥𝑉𝑏
𝐴𝑐

𝑇𝑓
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Example – liquid-in-glass thermometer

▪ what are sensitivity (k) and time constant (τ)?

▪ combining equations gives differential equation 

▪ for whole system

▪ general first-order system

▪ sensitivity [m/°C]

▪ time constant [s]
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Example – liquid-in-glass thermometer

▪ what are sensitivity (k) and time constant (τ)?

▪ sensitivity [m/°C]

▪ time constant [s]

▪ sensitivity and time constant related to physical parameters

▪ larger sensitivity (k) requires larger bulb volume (Vb)

▪ larger bulb volume (Vb) increases time constant (τ)

▪ effect partially offset by increased contact area (Ab)

▪ careful selection of parameters is required

𝑘 =
𝐾𝑒𝑥𝑉𝑏
𝐴𝑐

𝜏 =
𝜌𝐶𝑉𝑏
𝑈𝐴𝑏



20 First-order system

▪ transfer function is given in Laplace domain

▪ what is the response in the time domain to an actual signal?

▪ substitute X(s) with model of input signal

▪ apply inverse Laplace transform

▪ systems usually characterized for some common test inputs

▪ step

▪ ramp

▪ sinusoid

▪ common test inputs provide insight in behavior of system when real signal is applied

𝑌(𝑠)

𝑋(𝑠)
=

𝑘

𝜏𝑠 + 1



21 First-order system – response to step

▪ response to step input (ci=1) is given by

▪ two important characteristics

▪ dynamic error

▪ delay

▪ step response has no dynamic error

▪ step response has a delay

𝑦(𝑡) = 𝑘 1 − 𝑒−𝑡/𝜏

step at input response at output

t
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22 First-order system – response to ramp

▪ response to ramp R(t) input given by

▪ dynamic error

▪ delay

𝑦(𝑡) = ቐ
1 + 𝜏𝑒−𝑡/𝜏 𝑘𝑅(𝑡)

1 + 𝜏𝑒−𝑡/𝜏 − 𝜏 𝑘𝑅(𝑡)

𝑡 < 0
𝑡 ≥ 0

τ

x(t), y(t)/k
x

y/k

t

R(t)τ

R(t)τ

𝑒𝑑 = 𝑅(𝑡)𝜏

𝑡𝑑 = 𝜏



23 First-order system – response to sinusoid

▪ transfer function in Laplace domain

▪ response to input x(t) = Ai sin(ωt) given by y(t) = Ao sin(ωt + φ) 

▪ amplitude ratio

▪ phase angle

▪ “ideal” (zero-order) sensor has 

▪ approached when ωτ is small

𝑌(𝑠)

𝑋(𝑠)
=

𝑘

𝜏𝑠 + 1

𝐴𝑜
𝐴𝑖

=
𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
=

𝑘

𝜏2𝜔2 + 1

𝜙 = ∠
𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
= arctan −𝜔𝜏

𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
= 𝑘 ∠ 0°

1

ω

|Y(s) / kX(s)|

ωc = 1/τ

-3dB

ω

φ

-45°

-90°



24 First-order system – response to sinusoid

▪ response in time domain is given by

▪ dynamic error

▪ delay

𝑘𝐴𝑖𝜏𝜔𝑒
−𝑡/𝜏

1 + 𝜔2𝜏2
+

𝑘𝐴𝑖

1 + 𝜔2𝜏2
sin 𝜔𝑡 + arctan −𝜔𝑡

𝑒𝑑 = 1 −
1

1 + 𝜔2𝜏2

𝑡𝑑 =
arctan 𝜔𝜏

𝜔



25 First-order system – response to sum of sinusoids

▪ signal processing can remove

▪ amplitude attenuation

▪ phase shift

▪ if the input would be a pure sine wave...

▪ a more realistic signal may look like

▪ signal is measured with first-order sensor with τ = 2s, and static sensitivity k

▪ what is y(t)?

▪ system is linear, therefore use superposition to find y(t)

𝑥(𝑡) = 1 sin 2𝑡 + 0.3 sin 20𝑡

ቤ
𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
𝜔=2

=
𝑘

𝜔2𝜏2 + 1
∠arctan( − 𝜔𝜏)

𝑘

16 + 1
∠ − 76.0° = 0.24𝑘 ∠ − 76.0°

ቤ
𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
𝜔=20

=
0.3𝑘

1600 + 1
∠ − 88.6° = 0.007𝑘 ∠ − 88.6°



26 First-order system – response to sum of sinusoids

▪ output equal to

▪ observations

▪ measurement of the input signal is severely distorted (high-frequency component almost invisible)

▪ high-frequency component (20 rad/s) is too small compared to low frequency component

𝑦(𝑡) = 0.24𝑘 sin 2𝑡 − 76.0° + 0.007𝑘 sin 20𝑡 − 88.6°

x(t)

y(t)



27 First-order system – response to sum of sinusoids

▪ use a different sensor with τ = 0.002s

▪ comparing output y(t) to input x(t)

▪ observation

▪ output correctly follows the input

▪amplitude almost equal (except for static sensitivity k)

▪almost no phase shift

▪ selection of correct sensor parameters is very important

𝑦(𝑡) = 1.0𝑘 sin 2𝑡 − 0.23° + 0.3𝑘 sin 20𝑡 − 2.3°

𝑥(𝑡) = 1 sin 2𝑡 + 0.3 sin 20𝑡



28 Example – liquid-in-glass thermometer

▪ time constant τ determined by immersing thermometer in a bath; it takes 28s to reach 
63% of final reading

▪ what is the delay when measuring the temperature of a bath that is periodically 
changing 2 times per minute?

▪ time constant τ follows from the assignment

▪ delay when input varies cyclically is given by

▪ angular frequency of temperature to measure

Ti(t)

Tf

xo=0

xo

𝜏 = 28𝑠

𝑡𝑑 =
arctan 𝜔𝜏

𝜔

𝜔 = 2𝜋
2 𝑐𝑦𝑐𝑙𝑒𝑠

60𝑠
= 0.209𝑟𝑎𝑑/𝑠



29 Example – liquid-in-glass thermometer

▪ time constant τ determined by immersing thermometer in a bath; it takes 28s to reach 
63% of final reading

▪ what is the delay when measuring the temperature of a bath that is periodically 
changing 2 times per minute?

▪ delay is equal to

𝑡𝑑 =
arctan

0.209𝑟𝑎𝑑
1𝑠

× 28𝑠

0.209𝑟𝑎𝑑/𝑠
= 6.7𝑠

Ti(t)

Tf

xo=0

xo



30 Vehicle climate control system

▪ feedback controller to regulate temperature

▪ create time-dependent model for each component
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𝑘𝑡𝑘𝑑𝑘𝑎

𝜏𝑠 + 1
𝑠2

𝜔𝑛
2 +

2𝜁𝑠
𝜔𝑛

+ 1

System model

▪ system may consist of many different components each with their own transfer function

▪ combination of transfer functions of all components gives transfer function of system

𝑘𝑡
𝜏𝑠 + 1

𝑘𝑑
𝑠2

𝜔𝑛
2 +

2𝜁𝑠
𝜔𝑛

+ 1 𝑘𝑎

component 1 component 2 component 3

input output

system

input output



32 Vehicle climate control system

source: http://www.mathworks.nl/help/simulink/examples/vehicle-electrical-and-climate-control-systems.html
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