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RESISTIVE STRAIN SENSORS

(Chapter 5.8)
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Applications of resistive strain sensors TU/e
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Applications of resistive strain sensors TU/e
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Strain, force, pressure sensors
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capacitive accelerometer
inductive accelerometer
piezoresistive accelerometer
capacitive pressure sensor

piezoresistive sensor

resistive effect in strain gauge plays an important role in many sensors for

different quantities

TU/e



I Strain gauge TU/e

= resistance of a wire

P l_ m [
_'Da_nezra

= changing temperature affects resistance (thermoresistive effect)
= changing dimensions affects resistance (piezoresistive effect)

= strain gauges use piezoresistive effect to sense mechanical stress
= sensor based on strain gauges convert mechanical energy to electrical energy

®» thermoresistive effect is an error source




Force TU/e

= force leads to deformation of object

= measuring deformation provides opportunity to sense mechanical force, which in turn is related to
= torque
" pressure

acceleration
" mass




B Stress and strain TU/e

force leads to deformation of object

...................
el

deformation depends on force per area which is called stress (0)

o=—
a

deformation also depends on
= material properties
= |ength or volume of object

deformation per unit length (or volume) is called strain (g)



B Stress and strain TU/e

= object deform under force and
restores to original state when
force is removed (elasticity)

= materials resist deformation (rigidity)

= change in length due to force F given by Hooke’s law

F dl
o=—=FEe=FE— +
a [ stress, rupture
= E—Young’'s modulus, which depends on o =Fla L
: felastic limit
= material g

= temperature
= g —strain (unit deformation, dimensionless)
= strain and stress are proportional in elastic zone

elastic  strain, €
zone



Strain gauge

= resistance of a wire

R = pi
a
= stretching wire longitudinally changes resistance
dr _dp Al _Aa
R p [ a
= use -Aa since area decreases when wire is stretched (+Al)
= change in length due to force F given by Hooke’s law
F dl

o=—=FEs=E—
a [

= E-Young’s modulus, which depends on
= material
= temperature
= g —strain (unit deformation, dimensionless)
= strain and stress are proportional in elastic zone

t- At TU/e

Zone

—_— e i
P I"": T
) | | T
| + Al
stress, rupture
o = Fl/a
felastic limit
elastic  strain, €



Strain gauge - At t TU/e

. o 2 i
» R T
= |ongitudinal stress changes ¢ | M
= |ength of wire (l)
= thickness of wire (t) | + Al

= Poisson ratio gives relation between change in length and thickness
dt/t

VZ—T/Z

= Poisson ratio of perfectly compressible material: 0.0 (e.g. cork)

= deformation in one direction does not change other direction
= Poisson ratio of incompressible material: 0.5 (e.g. rubber)

= volume of this material is constant when stress is applied



Strain gauge - At t TU/e

. o 2 i
» R T
= |ongitudinal stress changes ¢ | M
= |ength of wire (l)
= thickness of wire (t) | + Al

= Poisson ratio gives relation between change in length and thickness
dt/t

VZ—T/Z

= Poisson ratio of metals: 0<v < 0.5
= volume of metal changes when deformed
= cross-sectional area changes when metals are deformed
= using same approach as used for volume we can show

B t\2 da 2dt
“‘"'(i) M } da di
o= _Jy—
a [

dt/t dt dl

VETagr T TV



Strain gauge - At t TU/e

. lm;iF
» R T
= |ongitudinal stress changes ¢ | M
= |ength of wire (l)
= thickness of wire (t) | + Al

= Poisson ratio gives relation between change in length and thickness
dt/t

VZ—T/Z

= Poisson ratio of metals: 0<v < 0.5
= volume of metal changes when deformed
= consider a circular wire with diameter t (and thus radius: t/2)
= change in volume per unit volume is then equal to

£\ 2 AV dl  2dt
V=n (—) oo gt Zat
2 v oLt dv  di dl  dl
Sy T vy
dt/t dt dl
V= = — = —y—

dl/l : U



Strain gauge - At t TU/e

. o 2 i
» R T
= |ongitudinal stress changes ¢ | M
= |ength of wire (l)
= thickness of wire (t) | + Al

= Poisson ratio gives relation between change in length and thickness
dt/t

VZ—T/Z

= Poisson ratio of metals: 0<v < 0.5
= volume of metal changes when deformed
= because of volume change
= amplitude of vibrations in metal lattice changes
= results in change of specific resistivity (for metals)
dp dVv
g
= C—Bridgman’s constant



Strain gauge t-Att TU/e

e —— L AE
L [ TT
= |ongitudinal stress changes ¢ | M
= |ength of wire (l)
= thickness of wire (t) | + Al
= stretching wire longitudinally changes resistance
dR dp dl da
R »p l a
= using results found so far we find
drR _dp N dl da
R p L a }zdR_CdV_I_ dl da
R B V l a dR dl
d_pz d_V }:>—=—[C(1—2v)+1+2v]
P |4 R [
v _dl L da_, d
Vo YT T T
dR dl

= (G -—gauge factor R I



Strain gauge - At t TU/e

= change in resistance related ¢ M
to change in length

dR dl
== | + Al

R [
= remember Hooke’s law (relates stress O to strain )

F dl
g=—=Ee=E—
a l
= change in resistance related to force (per unit area) and strain
dR F

L —Ge=(—
R TV

= strain gauge can be used to sensor force and its derived quantities
= gauge factor is constant for metals, hence
dR
0
= typically x < 0.002



Strain gauge TU/e

example — strain gauge attached to aluminum strut
= strain gauge withR=350Qand G=2.1

= aluminum strut has E =73 GPa

= outer diameter of the strut: D =50 mm

110

= inner diameter of the strut: d =47.5 mm
what is the change in resistance when the strut supports a load of 1000 kg?
= area supporting the force

. n(D? —d?) n((50mm)? — (47.5mm)?)

Z Z = 191mm?
= change in resistance
AR = RGe = RG F (350Q)(2.1) JB0ON = 0.50
T e = REGE T (191 -10-6m?) - (73 - 10°Pa) _

= change in resistance is less than 0.15% of the initial resistance



Construction TU/e

= bonded strain gauges
= wires cemented onto a backing or
= thin film resistor deposited on a substrate
= resistor forms a long, meandering wire force

= strain gauge connected to test object

(-




Interface circuit TU/e

= strain gauge in resistive divider
= stress applied to gauge (resistive change X’)
= what is the output voltage v_? (assume k = R,/R, = 1)

R, Ro(1+ x) 1+ x
v, = V. = 0 V. = V
0 R1+R2 r kR0+R0(1+x) r k+1 r

= for strain gauges holds that x << k (typically x < 0.002)

1+x = 1 V4 X v
Vo P k1) " T k1" T+

= maximal sensitivity when k =

X
Vo +§Vr

™~ offset voltage R=kR,

E i
L~
‘d' .
PR
o* Pid
.
Pid .
.
d" ﬂ"
. .
—" "’
i ‘4‘
.
.-

non-linearity

R2=Ro(1+X) Vo

___________

-------
.l



Interface circuit

= strain gauge in resistive divider

= stress applied to gauge (resistive change X’)
= two problems when measuring output voltage

= non-linearity

in response

= offset voltage present

[Vo/ VA

‘ 0.5
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0,496 |

0,434 -

0,492 -

)

AN offset voltage

//ZVO when ignoring non-linearity
N ——

\VO measured (includes non-linearity)

RlszO
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Interface circuit TU/e

= remove offset voltage by placing strain gauge in bridge
= stress applied to gauge (resistive change X’)
= what is the output voltage v_? (assume k =R,/R, = R,/R,= 1)

R R Ry Ro(1 1 1+4x
vO:(R 4 —_ 3 >Vr= O_ 0( +X) Vr: - Vr=
1t Ry Ry+R3 2Ry Ry(2+x) 2 2+x

" intermezzo: two sources of non-linearity non-linearity

= strain gauge itself does not adhere to R = Ry(1+x)
= interface circuit causes non-linear resistance — voltage relation

RT 2R

—0 Vo 0—

RS 'S Rs=Ro(1+X)




Interface circuit

remove offset voltage by placing strain gauge in bridge
stress applied to gauge (resistive change X’)
what is the output voltage v_? (assume k =R,/R, = R,/R,= 1)

R, R; ) R, Ry(1+x) 1 1+4x - x
v, = — v, = (2% 0 —(Z— = ( v ~—-=V
° <R1 +Ry Ry +R3) 7" <2R0 Ry(2 + x)> VT <2 2+ x) =1 " 1"
compare output voltage bridge and divider non-linearity
1 X

Vo, divider ~ E V. + E V.

bridge removes offset
bridge reduces sensitivity

RT 2R

—0 Vo 0—

RS 'S Rs=Ro(1+X)

TU/e



Interface circuit

increase sensitivity by adding extra strain gauge to bridge
stress applied to gauge (resistive change X’)
what is the output voltage v_? (assume k = R,/R, = R,/R,= 1)

oo R Rs \, _ R, _R0(1+x)V=(— Ve %,
" \R{+R, R,+R;) 7" \Ry2+x) R,2+x)) " \2 T

non-linearity
compare output voltage to single sensor solution
—X —X
Vo,sin gle = 777 ZxVT ~ TVT
extra sensor increases sensitivity
/ '
P 0

.........
......

TU/e



Interface circuit

remove non-linearity by adding applying opposing signal to gauge
stress applied to gauge (resistive change X’)
what is the output voltage v_? (assume k = R,/R, = R,/R,= 1)

- R4_ _ R3 Vo= RO _ R0(1+x) V= RO _R0(1+X) v _—XV
° \R{+R, R,+R;) " \2R, Ry(1—-x)+R,(1+x)) " \2R, 2R, TT o T

sensitivity equal to previous arrangement

non-linearity removed

active gauge (tension)

(compression)

TU/e



Different configurations TU/e

R e ——— V, —OVo0—
v, = ( V. = _ZVr R4§ \§\R3—R0(1+X)
non-linearity
_ ' e
vO = Vr ~ — E I/T' ....................
non-linearity
increased active gauge (tension)
sensitivity ‘
"""""""" . RiZ S Ro=Ro(1-X)
, V, —0 Vo 0—
y R4 § \§\R3:R0(1+X)
Vo == Vr active gauge

(compression)



Interface circuit TU/e

= add more strain gauges to increase sensitivity
= stress applied to gauge (resistive change X’)
= what is the output voltage v,?

R4 R3 v Ro(l — X) Ro(l + X)
0 R, + R R, + R r — — r
1 4 2 3 Ro(l + X) + Ro(l X) R (1 x) + R (1 + X)
0 0

1—-x 1+x —2x
— — VrzTVr:_er

2 2

active gauge (tension)

Ri=Ro(1+)S,  SRzRo(1-X)

——0Vo0—

active é;uge R4=Ro(1-X) g\ \g\RB:RO(l"'X)

(compression)




Example — electronic two armed balance




Example — electronic two armed balance TU/e

= solution: place to two load cells in bridge circuit mass M

= specification I 11
= D=50.0mm,d=47.5mm
= E=73.0GPa=73.0-109 Pa
= G=2.1,R0=350Q
= R1=R2=3500Q0
= Vr=10V

= what is the output voltage vo when load of 1000 kg is placed on R4 and a load of
2000 kg on R3?

\

(-

V, C’) L OV,0—

Ri=Ro(1X)S “ZR3=Ro(1+x1)




Example — electronic two armed balance TU/e

= step 1: compute output voltage of bridge circuit

i Ry,  Rs Vo= Ro(1 + x3) B Ro(1+ x4) v
° Rl + R4 RZ + R3 r RO + Ro(l + xz) RO + Ro(l + xl) r

(1+x, 1+x - 1+x)2+x;) (A+x)2+xy) .
_(2+x2_2+x1>r_<(2+x1)(2+x2)_(2+x1)(2+x2)>r

_ X2 — X1 v
T RAx)DR+xy) T




Example — electronic two armed balance

= step 2: compute change in resistance due to load of 1000 kg

dR = RGe = RG & = RG—
I B

= area on which load is applied

4 n(D* —d*) m((50.0mm)? — (47.5mm)?)

4

= change in resistance

dR = 350Q-2.1-

dR

~ 3500

4

9800N

(191.4 - 10-5m2)(73.0 - 10%Pa)

+100% ~ 0.15%

= 191.4mm?

= 0.50Q

R4:Ro(1+X2)§\

"SRs=Ro(1+xy)

TU/e



Example — electronic two armed balance

= step 3: compute change in x, due to load of 1000 kg

R, = Ry(1 + x,) = 350.5Q = 350Q(1 + x,)

& x, = 0.0014

= step 4: compute change in x1 due to load of 2000 kg
= relation between change in R and weight is linear

=>X1 = ZXZ

R4:Ro(1+X2)§\

"SRs=Ro(1+xy)

TU/e



Example — electronic two armed balance TU/e

= step 5: compute output voltage of circuit for given loads

_ X2 — X1 v xz — sz _xZ

T QR+x)R2+xy) " T V= V.
(2 +x X7 (24 2x,)(2 + x,) (24 2x,)(2 + x,)

= when ignoring non-linearity (assume x, << 2)

—x, —0.0014
vo ® V= — 10V = —3.5mV

Vo

= taking non-linearity into account

v, = —3.5mV

Ri=Ro(1X)S “ZR3=Ro(1+x1)




ERROR SOURCES

(Chapter 4.8)

TU/e



Strain gauge TU/e

= resistance of a wire

P l_ m [
_'Da_nezra

= changing temperature affects resistance (thermoresistive effect)
= changing dimensions affects resistance (piezoresistive effect)

= strain gauges use piezoresistive effect to sense mechanical stress
= sensor based on strain gauges convert mechanical energy to electrical energy

®» thermoresistive effect is an error source




Interface circuit TU/e

= strain gauge in bridge circuit

= stress applied to active gauge (resistive change ‘x’)

= temperature change applied to strain gauge (resistive change ‘y’)
= what is the output voltage v_? (assume k =R,/R, = R,/R,= 1)

([ Ra R3 R, Ro(1+x+1y) 1 14+x+y
Vo= \R TR, R,+R)" = - =\ 53/ "
1+ Ry Ry + I3 2Ry Ry +Ry(1+x+y) 2 2+x+y
—x—y —x—y
44+2x+2y " 4 7

= change in temperature leads to temperature error

active gauge

—O Vo O—

R4 § \§\R3:Ro(1+x"‘)’)




Interface circuit TU/e

= add passive strain gauge (only ‘y’ applied)

= stress applied to active gauge (resistive change ‘x’)

= temperature change applied to strain gauge (resistive change ‘y’)
= what is the output voltage v_? (assume k = R,/R, = 1)

R R
p, = 4 3 v _ R, Ro(1+x+y) . 1 14+x+y .
Ri+R; R, +R; r r

2R, Ro(1+y)+Ry(1+x+7y) 2 2+x+2y
- * y~Zy
44 2x+4y T 40T

» dummy gauge removes temperature error

dummy gauge active gauge
‘ Ry R2=Ro(1+y)




Interface circuit (summary) TU/e

= error sources (discussed)
= non-linearity in strain gauge
= non-linearity due to interface circuit
= temperature dependency

= additional error sources
= |ead-wire resistance

= |oading effect

dummy gauge active gauge
‘ R R2>=Ro(1+y)




Loading effect and lead-wire resistance TU/e

= sensor circuit (bridge) connected to
= measurement device (with resistance R )
= using two wires (with resistance R,; and R ,)
= what is the measured voltage v ? (assume k=R,/R,=1)

active gauge (tension)

/ hd T
“>< active gauge

compression)

. .
v e

----------
—

ng RZ_RO(l X)

ViO W
Ré SRs=R(1+X)




Loading effect and lead-wire resistance TU/e

= what is the measured voltage v ? (assume k=R,/R,=1)
= step 1: Thevenin equivalent circuit (of bridge) R R

wl
= open circuit voltage 4’\/\?\/—0—’\/\/\/——0

Vo =W




Loading effect and lead-wire resistance

= what is the measured voltage v_? (assume k = R,/R, = 1)

= step 1: Thevenin equivalent circuit (of bridge)

= open circuit voltage

—X
o=

= output resistance (assume V., short circuit)

.3

RiS §R3:R0(1+x)

Y R2=Ro(1-X)

equivalent to

VoD

TU/e

RiRy

R,R3 Ry | Ro(1—x?)

R. =
° R{+R,

R,+R; 2 2



Loading effect and lead-wire resistance TU/e

= what is the measured voltage v ? (assume k=R,/R,=1)
= step 2: output voltage of resistor divider R R

wl
—AM—AM—T—o
V,,, = Rm (%
™ Ry+Ryi + Ry +Ryp ° Vo@ ng Tvm
R \—x RWZ
m y O AVAVAY e ©

%(2—x2)+RW1+Rm+RW2 2

- J T reduced sensitivity
m

— |4
Ro(A— x%) + 2R,1 + 2R, + 2R,,»

N\

non-linearity
= two errors in measured voltage

= non-linearity
= reduced sensitivity



Loading effect and lead-wire resistance

= what is the measured voltage v ? (assume k=R,/R,=1)

V[V, o

-0l

02

_0'3 -

-0.4F

-0.5

-0B

0,7

-0.8

-0.9
0

= two errors in measured voltage

= non-linearity

R,=R,

ideal output voltage v,

Yo

Wm |

p.

R Rwl

—AM—oA—

—o0

VoD R 2R, TVm

o—AAA—

'R,;=R,,=0.02R,

= reduced sensitivity

1
0.5 1

1.5

= measured output
voltage v,

——o0

TU/e



SUMMARY

(on all resistive sensors and interface circuits seen so far)

TU/e



Resistive sensors TU/e

= resistance of resistive sensor R = R,f(x)
= f(x) — fractional change in resistance (with f(0) = 1)

V' N

= resistance of linear resistive sensor R = Ry(1 + x) resistance
= range of x depends on type of sensor

= [-1, 0] - linear potentiometer

= [1, 10] — RTDs

= [0.00001, 0.002] — strain gauges

'

input signai

= requirements on signal conditioners for resistive sensors
electric voltage or current must be applied
= supply and output voltage/current are limited by error sources
= several error sources need to be considered when using sensor



Resistive sensors conductor (wolfram) TU/e

120

® error sources

80 |

= inherent non-linearity in sensor

1 Le
= resistance depends on temperature °0
and strain 40 _
R [ m | 20- //
= —_ = —_ e
Pa ™ ne’ra | 7
0 [ T T — Tt r 1t r T r 1 7T T T °C
u Strain Or temperature iS Signal 0 400 800 1200 1600 2000 2400 2800 3200 3600
= other is error source — 1 Conttols
) 1 KA Company
= self-heating effect AN R
e Inconsl
= current passed through sensor X Inconel
causes heat production > .
Forcelain
. Insulator
: —— Flatinum
& M i
— |2 = - Wires
Pp=1°R B
AT P, I°R =N
= = = &l ;
| R 55 \ﬁ‘w Alumine
] ]




Resistive sensors TU/e

= error sources R1
= |oading effect (R;=R
g (R1=Ry) Vr
1+x 1 b
VO_Z_I_xVTNEVr +§ T R2—R0(1+X) VO

= measurement adds load R, o

= measured voltage v,

= (use Thévenin circuit, R_,v,)

R
Um = = Vo Rl §
R, + R, V.(*F
with rC.) =
RoRy(1 + = + \§\
R, =R,//R, = —2 o(1+x) R, Ro(l X) Vm § R
Ry + Ry(1 + x)
- R, (2+ x)R,,
Vi = =
m Ro(L+2) ° 2+ 0Rp +Ro(1 +2) °
R+ =07 (2+x)
= Uy, = Vo
2+x)+ d+x)



Resistive sensors TU/e

= error sources
= |oading effect (R;=R,)

absolute error

2+ x)k o — (2+x)k—(2+x)k—(1+x)v
) Q+x)k+1+x)° “°| Q+xk+1+x) of —(1+x)
v, B v, 1R+ 0k+ (1 +x)
relative error
= larger k means smaller error (closer to open circuit)
= |ead-wire resistance
AR/, ideal output interface circuit
lower sensitipity SENSor M Q
R=Ry(1+x) +
. Vr
offset 7 » /g R, R § C—)
real output A
( UpY —A\N o




Interface circuits TU/e

ng §R2 R §
V, CD - oV,0— V, CD —o
R4§ \§\R3:R0(1+X) R22R0(1+X)\§\ Vo
o
vV, - VoV 1o
L e . .
1 =0.1,k=10
| k=0.1

] L 1 1 1 1 1 L L L 1 1 1 L 1 1 1 L 1
0 0001 0002 0003 0.004 0005 0.006 0.007 0008 0009 001 Dn 0.001 0.002 0003 0004 0005 0.006 0.007 0008 0.009 001

X X

= sensitivity is equal, but DC offset makes response look “flat”



