
Sensing, Computing, Actuating

Lecture 8 - Thermistors

Exercise 1: Silicon resistive detector
The transfer function of a specific silicon-based temperature sensors for the range -60◦C till +150◦C
is equal to:

RT = R25

(
273.15K + T

298.15K

)2.3

, with T the temperature in ◦C.

(a) What is the temperature coefficient of resistance (TCR) of this sensor at 25◦C?

Answer: TCR is defined as:

dRT /dT

RT

It holds:
dRT

dT
= 2.3

1

298.15K
R25

(
273.15K + T

298.15K

)1.3

At 25◦C holds:

dRT

dT

∣∣∣∣
T=25◦C

=
2.3

298.15K
R25

(
298.15K

298.15K

)1.3

= (0.0077R25)/K

Therefore it holds:

TCR(25◦C) =
dRT /dT

RT

∣∣∣∣
T=25◦C

=
dR/dT

R25
· 100% = 0.77%/K

(b) The silicon-based temperature sensor has a non-linear response (in terms of the resistance RT ). A
resistor is connected in parallel to the sensor to linearise the response (see Figure 1). Assume that
R25 = 1000 Ω holds for the sensor. What value should R1 have to ensure that the transfer function
of the circuit does not show any error at both ends of the range of the sensor?

R1

RT

Figure 1: Linearisation of a silicon resistive detector.

Answer:

The replacement resistance of two resistors is equal to:

Ro =
R1RT

R1 +RT
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The goal is to choose R1 such that Ro forms a straight line through the two end points and the
middle of the range. The sensor has a PTC characteristic. Hence, the linear approximation will
look as follows:

(This linear approximation is exactly opposite to the version shown during the lecture since the
sensor used in the lecture showed an NTC behavior.)

It should now hold:
T1 − T2 = T2 − T3

Ro1 −Ro2 = Ro2 −Ro3

This implies:
R1RT1

R1 +RT1
− R1RT2

R1 +RT2
=

R1RT2

R1 +RT2
− R1RT3

R1 +RT3

⇒ R1 =
RT2(RT1 +RT3)− 2RT1RT3

RT1 +RT3 − 2RT2

It holds:
T1 = −60◦C ⇒ RT1 = 462Ω

T2 = −60 + (60 + 150)/2 = 45◦C ⇒ RT2 = 1161Ω

T3 = +150◦C ⇒ RT3 = 2237Ω

Substituting these values gives:

R1 = 2826Ω

(c) What is the sensitivity of the sensor circuit (dR/dT ) shown in Figure 1 at a temperature of 25◦C?

Answer: The replacement resistance of the two resistors is equal to:

Ro =
R1RT

R1 +RT

Use the quotient rule to compute the derivative:

d

dx

j(x)

h(x)
=
j′(x)h(x)− j(x)h′(x)

(h(x))
2

The sensitivity is thus equal to:

dRo

dT
=
R1(R1 +RT )−R1RT

(R1 +RT )
2

dRT

dT

⇒ dRo

dT
=

(R1)2

(R1 +RT )
2

dRT

dT
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From question (a) we know that at T=25◦C holds:

dRT

dT

∣∣∣∣
T=25◦C

=
2.3

298.15K
R25

(
298.15K

298.15K

)1.3

= (0.0077R25)/K

The sensitivity of the circuit is therefore equal to:

dRo

dT
=

(R1)2

(R1 +R25)
2 (0.0077R25)/K

At T=25◦C holds (see question b):
R25 = 1000Ω

R1 = 2826Ω

The sensitivity of the circuit is thus equal to:

dRo

dT
= 4.2Ω/K

In comparison with the sensitivity of the sensor in isolation (7.7Ω/K) this is a reduction of 45%.
The non-linearity of the circuit is however much better compared to the sensor in isolation.

Exercise 2: NTC thermistor
You want to perform a number of measurement with an NTC thermistor RT = R0e

B(1/T−1/T0) for
which it holds that RT = 10 kΩ at 25◦C. The dissipation constant δ of this sensor is equal to 0.14
mW/K in non-moving air at 25◦C. In addition, it holds for this resistance that its ratio between the
resistance at 25◦C and 125◦C is equal to: R25/R125 = 19.8.

(a) The voltage drop VT across the thermistor depends on the current IT through the thermistor and
the value of its resistance RT . When the current through the sensor is limited, there exists an almost
linear relation between VT and IT . When the current increases, the self-heating effect will result in
an increasingly smaller voltage drop across the sensor. At a certain moment, the voltage drop over
the sensor will even start to decrease when the current is increased even further. Show that the
temperature of the sensor is equal to the following equation when the maximal voltage drop over the
sensor occurs:

Tmax =
B −

√
B2 − 4BTa

2

, with Ta the environmental temperature and Tmax the temperature of the thermistor.

Answer: The relation between the current through the sensor and the voltage drop across the
sensor looks as follows:
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(The temperature Tmax is the temperature which the sensor reaches at the point iin which the
voltage drop across VT the sensor is maximal. Note that this is not the maximal temperature
which the sensor can reach. This temperature is much higher. If you increase the current I
further, the self-heating effect will continue to increase and therefore also T .)

The power dissipation of this sensor in steady-state is equal to:

PD = I2TRT = δ∆T = δ (T − Ta) =
V 2
T

RT

It holds for the thermistor:

RT = R0e
B(1/T−1/T0)

Substituting this in the equation for the power dissipation gives:

V 2
T = δ (T − Ta)R0e

B(1/T−1/T0)

The temperature at which the voltage drop is maximal (derivative V 2
T to T equal to 0):

dV 2
T

dT
= 0

⇒ dV 2
T

dT
= δR0e

B(1/T−1/T0) − Bδ (T − Ta)R0e
B(1/T−1/T0)

T 2
= 0

⇒ δRT −
Bδ (T − Ta)RT

T 2
= 0

Dividing by δRT gives:

⇒ 1− B

T 2
(T − Ta) = 0

⇒ T 2 −BT +BTa = 0

⇒ T =
B ±

√
B2 − 4BTa

2
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The equation for T has two solutions. The solution corresponding to the temperature with the
maximal voltage drop is given by:

⇒ T = Tmax =
B −

√
B2 − 4BTa

2

(Note that the temperature at which the maximal voltage drop occurs does not depend on the
resistance. This temperature depends only on the characteristic temperature of the device and
the environmental temperature. So if you keep the voltage drop at its maximum (e.g., using
some control circuit) then you can derive the environmental temperature from the voltage drop).

(b) What is the maximal voltage drop VT across the sensor if the sensor is placed in an environment with
non-moving air with a temperature of 35◦C?

Answer: As a first step you have to determine the characteristic temperature B of the sensor:

BT1/T2
=

ln (R2/R1)

(1/T2 − 1/T1)

⇒ B25/125 =
ln (1/19.8)

(1/(273K + 125K)− 1/(273K + 25K))
= 3541K

The temperature of the thermistor at which the maximal voltage drop occurs is then equal to:

Tmax =
B −

√
B2 − 4BTa

2
=

(3451K)−
√

(3451K)2 − 4(3451K)(273 + 35K)

2
= 341K

The resistance of the thermistor at this temperature is equal to:

RT = R0e
B(1/T−1/T0) = (10kΩ)e(3541K)(1/(341K)−1/(273K+25K)) = 2235Ω

The dissipated power in the thermistor is given by:

PD = I2TRT = δ (Tmax − Ta)

⇒ IT =

√
δ (Tmax − Ta)

RT

⇔ IT =

√
(0.14mW/K) (341K − (273K + 35K))

2235Ω
= 1.4mA

The maximal voltage drop is thus equal to:

VT = ITRT = (1.4mA)(2235Ω) = 3.2V

(c) You want to use the thermistor for a certain application around the set-point T0 = 25◦C. It is
therefore important that the response of the sensor is linearised around this point. To achieve this
goal you will use the circuit shown below. Determine the value of the resistors R1 and R2 such that
the equivalent resistance (transfer function) of the circuit shown an inflection point (“kantelpunt” in
Dutch) at T0 and a sensitivity of -4 Ω/◦C.
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R1

R2

RT

Figure 2: NTC linearisation.

Answer: The resistance of the circuit is equal to:

R = (R1 +RT )//R2 =
(R1 +RT )R2

R1 +RT +R2

The resistors R1 and R2 have a fixed ratio with respect to the resistance of the thermistor at its
reference temperature. Hence, we can write R1 = aR0 and R2 = bR0.

R =
(aR0 +RT )bR0

aR0 +RT + bR0

The question now is to determine values for a and b, such that the transfer function of the circuit
matches with the following figure. The inflection point of this transfer function is positioned at
T0 and the transfer function has a sensitivity (slope) at this point of m (= -4 Ω/◦C).

Since it is required that the transfer function shows an inflection point at T0, it must hold that
the second derivative of R to T is equal to 0 in this point (T0). The first derivative is equal to:

dR

dT
= bR0

(aR0 +RT + bR0)
(
−B/T 2

)
RT − (aR0 +RT )

(
−B/T 2

)
RT

(aR0 +RT + bR0)
2

⇔ dR

dT
= b2R2

0

(
−B/T 2

)
RT

(aR0 +RT + bR0)
2

The second derivative is thus equal to:

d2R

dT
= b2R2

0

RT
B2

T 4

((
2T
B + 1

)
(aR0 +RT + bR0)− 2RT

)
(aR0 +RT + bR0)

3

The requirement is:

d2R

dT

∣∣∣∣
T=T0

= 0

This requirement is fulfilled when:
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(
2T0
B

+ 1

)
(aR0 +RT + bR0)− 2RT = 0

At T = T0 it holds that RT = R0. The requirement can thus be written as:(
2T0
B

+ 1

)
(aR0 +R0 + bR0)− 2R0 = 0

Dividing by R0 results in: (
2T0
B

+ 1

)
(a+ 1 + b)− 2 = 0

Re-writing this expression gives:

a+ b =
B − 2T0
B + 2T0

The sensitivity of the circuit in the inflection point T0 should be equal to m = -4Ω/◦C. To satisfy
this requirement it must hold:

dR

dR

∣∣∣∣
T=T0

= m

We computed the first derivative of R to T before. This results in:

dR

dT
= b2R2

0

(
−B/T 2

)
R0

(aR0 +R0 + bR0)
2 = m

Dividing the numerator and denominator by R2
0 gives:

⇔ b2
(
−B/T 2

)
R0

(a+ 1 + b)
2 = m

It holds:

a+ b =
B − 2T0
B + 2T0

Substituting this gives:

b2
(
−B/T 2

)
R0(

1 + B−2T0

B+2T0

)2 = m

Solving this equation yields:

b =
2T0

B + 2T0

√
−mB
R0

It must therefore hold for a:

a =
B − 2T0
B + 2T0

− b

Substituting B = 3541, T0 = 273K + 25K and R0 = 10 kΩ results in:

a = 0.54, b = 0.17

It must therefore hold:
R1 = 5.4kΩ, R2 = 1.7kΩ
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(d) Many electrical circuits (e.g. op-amps, integrated circuits) have a positive temperature coefficient.
An NTC thermistor is a cheap component to compensate this temperature dependency. To realize
this temperature compensation, you can use the circuit shown below. The resistor RC = (1kΩ)(1 +
0.004(T − 273K)) models the circuit with a positive temperature coefficient. What value should R1

have such that the total change in the resistance of the circuit around a temperature T = T0 = 25◦C
becomes independent of a small change in the temperature?

Rc

RT
R1

Figure 3: Temperature compensation using an NTC thermistor.

Answer: The equivalent resistance of the circuit is equal to:

R = R1//RT +Rc =
R1RT

R1 +RT
+Rc

It must hold:

dR

dT

∣∣∣∣
T=T0

= 0

(see question 1(c)):

⇒ dR

dT
=

(R1)2

(R1 +RT )
2

dRT

dT
+
dRc

dT
= 0

⇔ (R1)2

(R1 +RT )
2

−B
T 2

RT + 4Ω/K = 0

At T = T0 it holds that RT = R0.

⇒ (R1)2

(R1 +R0)
2

−B
T 2
0

R0 + 4Ω/K = 0

Solving this equation yields:

R1 =
2R0T0√
BR0 − 2T0

Substituting B = 3541, T0 = 273K + 25K and R0 = 10 kΩ yields:

R1 = 1.2kΩ

The graph shown below shows Rc and R for a small temperature change around T0.
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This figure clearly shows that the temperature dependency of the circuit is much less compared
to a solution in which no temperature compensation is used.

9 / 9


