
SDF3: SDF For Free∗

Sander Stuijk, Marc Geilen and Twan Basten
Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands.

{s.stuijk,m.c.w.geilen,a.a.basten}@tue.nl

Abstract. SDF3 is a tool for generating random Synchronous
DataFlow Graphs (SDFGs), if desirable with certain guaranteed
properties like strongly connectedness. It includes an extensive li-
brary of SDFG analysis and transformation algorithms as well as
functionality to visualize them. The tool can create SDFG bench-
marks that mimic DSP or multimedia applications.

1. Introduction

DSP and multimedia applications are applications in
which a set of operations or cooperating tasks is executed
periodically. These applications are often mapped to paral-
lel platforms which enables parallel execution and pipelin-
ing of the operations or the tasks. Often, cyclic data depen-
dencies exist spanning operation or task execution in dif-
ferent periods. Synchronous DataFlow Graphs (SDFGs)
[6] are suitable for modeling both parallel and pipelined
processing and cyclic dependencies. An important reason
for the popularity of SDFGs is the existence of analysis
techniques. Development of new SDF-based design tech-
niques is hampered however by the availability of only a
limited set of test graphs. Inspired by Task Graphs For
Free [2] that can only generate acyclic task graphs with
non-pipelined point-to-point communication, we developed
a tool called SDF For Free (SDF3). It generates random
sets of SDFGs, with support to analyze and visualize SD-
FGs. The tool with C++ source code is freely available
from http://www.es.ele.tue.nl/sdf3. It allows
researchers and designers to generate sets of SDFGs for
evaluation purposes, and to easily compare new analysis
techniques to existing ones.

2. Synchronous Dataflow Graphs

An example of an SDFG is depicted in Fig. 1. The nodes
of an SDFG are called actors; they represent functions that
are computed by reading tokens (data items) from their in-
put ports, and writing the results of the computation as to-
kens on the output ports. An essential property of SDFGs
is that every time an actor fires (performs a computation)
it consumes the same amount of tokens from its input ports
and produces the same amount of tokens on its output ports.
These amounts are called the port rates and are visualized at
both ends of the edges. The edges in the graph, called chan-

∗This work was supported by the Dutch Science Foundation NWO,
project 612.064.206, PROMES, and the EU, project IST-004042, Betsy.

nels, represent data that is communicated from one actor to
another. A channel may contain initial tokens. In Fig. 1,
the number of initial tokens is attached to the channel label.
For analysis purposes one typically abstracts from the actual
functions which actors compute and the values of tokens.

Consistency and absence of deadlock are two important
properties for SDFGs [1, 6]. Consistency is determined
by the port rates. Any SDFG which is not consistent re-
quires unbounded memory to execute or deadlocks. When
an SDFG deadlocks, no actor is able to fire, which is ei-
ther due to inconsistency or due to an insufficient number
of tokens in a cycle of the graph.

3. SDFG Generation

Our SDFG generation algorithm constructs graphs
which are connected, consistent, and deadlock-free. Un-
connected SDFGs can always be constructed by combining
two or more SDFGs generated with the algorithm.

A user specifies in a configuration file the most impor-
tant parameters determining the characteristics of the graph.
These parameters are the fixed number of actors in the graph
and the average and variance of their degree (i.e. the number
of input and output ports) and port rates. The actual degree
of actors and the port rates are random values picked by a
random number generator [7]. To get a better control over
the characteristics of the generated graphs, a minimum and
maximum value, bounding the range of possible values, can
also be specified.

Algorithm 1 shows pseudo-code for the SDFG genera-
tion algorithm. It starts by constructing a connected SDFG
containing the user-specified number of actors (line 2-14).
All ports are assigned a random rate which can make the
SDFG inconsistent. At line 16, consistency is checked us-
ing the algorithm described in [1]. Whenever an inconsis-
tency is found, the rates of the involved ports are changed
such that the SDFG becomes consistent. Next, the proce-
dure DISTRIBUTETOKENS distributes tokens over the chan-
nels in the graph making it deadlock free. This is done by
selecting a random channel in the graph and adding a to-
ken to it and computing the throughput of the graph. If the
graph is not deadlock free, the throughput will be zero and
more tokens need to be added. This process is repeated till
the graph becomes deadlock free. At this point, the proce-
dure DISTRIBUTETOKENS may continue adding a random

Algorithm 1 Generate random SDF graph
Input: Number of actors (nrActors) and specification of the

properties (propSpec) of the SDFG.
Result: An SDFG (A,C).

1: procedure RANDOMSDFG(nrActors,propSpec)
2: Create actor a with random (according to propSpec)

input/output ports InPa / OutPa

3: A← {a}; C ← ∅
4: OutP ← OutPa; InP ← InPa

5: while |A| < nrActors do
6: Create actor a with random ports InPa / OutPa

7: A← A
S

{a}
8: Connect actor to graph via random channel (po, pi)
9: OutP ← (OutP

S

OutPa)\{po}
10: InP ← (InP

S

InPa)\{pi}

11: while InP 6= ∅ and OutP 6= ∅ do
12: Get random ports po ∈ OutP and pi ∈ InP

13: C ← C
S

{(po, pi)}
14: OutP ← OutP\{po}; InP ← InP\{pi}

15: Remove all ports InP
S

OutP from actors
16: MAKECONSISTENT(A,C)
17: DISTRIBUTETOKENS(A,C)
18: ANNOTATE(A,C)

number of additional tokens to a set of randomly selected
channels.

For many SDFG analysis algorithms, properties must be
assigned to the actors, tokens, and channels, or the SDFG
as a whole. For example, algorithms which deal with the
throughput of a graph require timing annotations on actors.
Buffer sizing algorithms typically require token sizes which
can be annotated to the channels. SDF3 contains functions
to assign randomly selected values to actors and channels
which represent these properties. Currently, it can assign
an execution time and memory requirement to each actor,
token sizes and buffer sizes to channels, and set a through-
put constraint on the graph. This annotation mechanism can
easily be extended by users of the tool.

By default, the SDFGs generated by Algorithm 1 are
connected in an arbitrary way. If desired, the tool can re-
strict the connections between the actors making the graph
a chain, a-cyclic, or strongly connected. DSP and multime-
dia applications, which are often of these forms, can easily
be mimicked in this way.

4. SDFG Analysis and Visualization

SDF3 implements, besides generation of random graphs,
a library offering the following SDFG analysis and transfor-
mation algorithms.

• (Repetition vector) It can compute the repetition vector
of an SDFG. The repetition vector gives the number of
times each actor should be fired in order to bring the
SDFG back to its original state. It is, for example, used
to check the consistency of an SDFG.

• (Convert SDFG to corresponding HSDFG) It imple-
ments the algorithm from [10] to convert any ar-
bitrary SDFG into its corresponding homogeneous
SDFG (HSDFG). HSDFGs are a special class of SD-
FGs with all port rates equal to 1, implying that all
repetition vector entries are 1. HSDFGs are used in
many scheduling and throughput analysis algorithms.

• (Unfold HSDFG) It can perform unfolding of an HS-
DFG. Unfolding, i.e. replication of actors in an HS-
DFG, is needed to create additional freedom for HS-
DFG scheduling algorithms, potentially allowing them
to generate a schedule with a higher throughput.

• (Scheduling) It contains a list-scheduler, which is the
basic SDFG scheduling technique for multi-processor
systems and a single appearance scheduler, typically
used for DSP applications, which minimizes code size.

• (MCM analysis) It implements Karp’s, Howard’s, and
Young-Tarjan-Orlin’s MCM algorithms. These algo-
rithms can be used to compute the maximally obtain-
able throughput of an SDFG after converting it to its
corresponding HSDFG.

• (Self-timed execution) It can perform a self-timed ex-
ecution which can be used as an alternative means to
compute the throughput of an SDFG. This technique
is explained in [5], where SDF3 is used to generate a
benchmark of SDFGs and to compare the self-timed
execution method for computing throughput to tech-
niques which use MCM analysis.

• (Buffer sizing) It contains algorithms to compute the
minimal buffer sizes [4] and the trade-offs between
buffer sizes and the throughput of an SDFG [11].
Buffer sizes are modeled into an SDFG. Self-timed ex-
ecution is used to compute throughput. Dependencies
of actor firings on each other and cycles of these de-
pendencies, which limit throughput, are also found. By
increasing the buffer size of selected channels on these
cycles throughput can be increased.

• (XML-based format for SDFGs) It supports an XML-
based format for SDFGs which enables simple ex-
change of graphs between different tools.

• (Visualization) It offers a function to visualize SDFGs
through the popular graph visualization tool dotty [3].

5. DSP Synthesis

Both hardware and software synthesis of DSP applica-
tions modeled as SDFGs has been studied extensively [8].
Synthesis involves mapping an SDFG to a target platform
and ordering the actor executions. Typically, single appear-
ance schedulers are used to minimize the code size when an
application is mapped to a single processor system. A list-
scheduler is often used to map an SDFG to a parallel plat-
form. This scheduler requires that an SDFG is converted
into its corresponding HSDFG. Furthermore, unfolding of

Figure 1. An SDFG generated and visualized with SDF3.

the HSDFG is often used to increase the scheduling free-
dom. MCM algorithms are used to analyze the throughput
of an HSDFG model of a (mapped) DSP application. All
these basic DSP synthesis algorithms are available in the
SDF3 library.

6. Multiprocessor Design Flow

SDFGs are often used to model multimedia applications
which have to be mapped to a multiprocessor system. The
idea is that design decisions made during the design flow
are modeled into the SDFGs. Following [9], a design flow
for mapping an application modeled as an SDFG onto a
multiprocessor system with a predictable timing behavior
may look as follows. First, the application graph must be
checked for consistency and absence of deadlock. Next,
actors are mapped to the various processors in the sys-
tem. When multiple actors are assigned to the same pro-
cessor, a schedule ordering their firings is constructed. A
list-scheduler or single appearance scheduler can be used
for this. Next, a decision is made on the storage space as-
signed to each of the channels in the SDFG. To do this, the
designer must make a trade-off between the used storage
space and the throughput of the application. This storage
space must also be allocated in the various memories avail-
able in the system. Finally, the channels in the SDFG must
be mapped to the communication resources and token com-
munications must be scheduled on them. The SDF3 library
offers many basic functions which are needed in the vari-
ous steps of the design flow. This makes it a very useful
instrument for setting-up an SDFG-based flow.

7. Conclusion

SDF3 is a tool for generating SDFGs, a popular model
of DSP and multimedia computation. The user can control
the characteristics of the graphs by specifying bounds, av-
erages and variances on various aspects of an SDFG. The

tool implements a library offering many SDF analysis and
transformation techniques as well as a function to visualize
SDFGs. It is very simple to extend the graph generation tool
and integrate other techniques on top of the library.

References
[1] S. Bhattacharyya, P. Murthy, and E. Lee. Software Synthesis

from Dataflow Graphs. Kluwer Academic Publishers, 1996.
[2] R. Dick, D. Rhodes, and W. Wolf. TGFF: task graphs for

free. In CODES, pages 97–101. IEEE, 1998.
[3] E. Gansner and S. North. An open graph visualization sys-

tem and its applications to software engineering. Software:
practice and experience, 30(11):1203–1233, 2000.

[4] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer
requirements of synchronous dataflow graphs with model-
checking. In DAC’05, Proc., pages 819–824. IEEE, 2005.

[5] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen,
M. Bekooij, B. Theelen, and M. Mousavi. Throughput anal-
ysis of synchronous data flow graphs. In ACSD’06, Proc.
IEEE, 2006.

[6] E. Lee and D. Messerschmitt. Static scheduling of syn-
chronous data flow programs for digital signal processing.
IEEE Transactions on Computers, 36(1):24–35, 1987.

[7] M. Matsumoto and T. Nishimura. Mersenne twister: A
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Transactions on Modeling and
Computer Simulation, 8(1):3–30, 1998.

[8] J. Pino, S. Ha, E. Lee, and J. Buck. Software synthesis for
DSP using Ptolemy. Journal of VLSI Signal Processing,
9(1):7–21, 1995.

[9] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and
B. Mesman. Task-level timing models for guaranteed perfor-
mance in multiprocessor networks-on-chip. In CASES’03,
Proc., pages 63–72. ACM, 2003.

[10] S. Sriram and S. Bhattacharyya. Embedded Multiprocessors
Scheduling and Synchronization. Marcel Dekker, 2000.

[11] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs
in buffer requirements and throughput constraints for syn-
chronous dataflow graphs. To appear in DAC’06, Proc.
ACM, 2006.

