
Throughput Analysis of Synchronous Data Flow Graphs∗

A.H. Ghamarian1, M.C.W. Geilen1, S. Stuijk1, T. Basten1, A.J.M. Moonen1,2,
M.J.G. Bekooij2, B.D. Theelen1, M.R. Mousavi1

1Eindhoven University of Technology
2Philips Research Laboratories Eindhoven

a.h.ghamarian@tue.nl

Abstract. Synchronous Data Flow Graphs (SDFGs) are a use-
ful tool for modeling and analyzing embedded data flow appli-
cations, both in a single processor and a multiprocessing con-
text or for application mapping on platforms. Throughput anal-
ysis of these SDFGs is an important step for verifying through-
put requirements of concurrent real-time applications, for instance
within design-space exploration activities. Analysis of SDFGs can
be hard, since the worst-case complexity of analysis algorithms is
often high. This is also true for throughput analysis. In particu-
lar, many algorithms involve a conversion to another kind of data
flow graph, the size of which can be exponentially larger than the
size of the original graph. In this paper, we present a method
for throughput analysis of SDFGs, based on explicit state-space
exploration and we show that the method, despite its worst-case
complexity, works well in practice, while existing methods often
fail. We demonstrate this by comparing the method with state-of-
the-art cycle mean computation algorithms. Moreover, since the
state-space exploration method is essentially the same as simula-
tion of the graph, the results of this paper can be easily obtained
as a byproduct in existing simulation tools.

1 Introduction
Synchronous Data Flow Graphs (SDFGs, [13]) are

widely used in modeling and analyzing data flow applica-
tions. They have been used in sequential DSP applications
[3, 20]. Recently, they are also used for designing and an-
alyzing concurrent multimedia applications realized using
multiprocessor systems-on-chip [16]. The main aim is to re-
alize predictable performance and among the performance
indicators, throughput is a prominent one.

Throughput analysis of SDFGs has been extensively
studied in literature ([7, 8, 12, 17, 22]). To the best of our
knowledge, all throughput analysis approaches suggest al-
gorithms which are based on an analysis of the structure
of the graphs. The drawback of these approaches is that
they are not directly applicable to SDFGs, but can only be
applied on some special sort of SDFGs, namely, Homoge-
neous SDFGs (HSDFG). Therefore, throughput analysis re-
quires a conversion from an SDFG to an equivalent HS-
DFG, which is always possible in theory, but frequently
leads to a prohibitively large increase in the size of the
graph, causing algorithms to fail to produce a result.

In this paper, we propose an alternative method for mea-
suring the throughput of SDFGs. This method, unlike ex-
isting methods, works directly on an SDFG, avoiding the

∗This work was supported by the Dutch Science Foundation NWO,
project 612.064.206, PROMES, and the EU, project IST-004042, Betsy.

costly conversion to HSDFG. The method generates and an-
alyzes the SDFG’s dynamic state-space by executing it. Al-
though the number of states that may need to be generated
and stored can also be large in the worst case situations, ex-
periments show that the method performs good in practice.

The rest of the paper is organized as follows. The next
section discusses related work. In Section 3, we introduce
the necessary definitions of SDFGs, define an operational
semantics for SDFGs and review SDFGs and equivalent
Homogeneous SDFGs. Section 4 discusses throughput of
data flow graphs and our method for analyzing throughput.
Section 5 places the method in the context of Max-Plus al-
gebra and shows that the results are equivalent to spectral
analysis of the Max-Plus equivalent of an SDFG. Section
6 explains our experimental method and presents the re-
sults of the experiments, comparing the performance of our
method with state-of-the-art throughput analysis through
minimum cycle mean algorithms. Section 7 concludes.

2 Related Work
Various data flow models have been proposed in litera-

ture, such as computation graphs in [12] or SDFG in [13]
among many others. SDFGs are an interesting class, be-
cause they are analyzable and still expressive enough to
model relevant signal processing applications and platforms
[16, 20]. Throughput analysis of (H)SDFGs has been stud-
ied extensively [8, 7, 17, 22, 12]. All these studies were
focused on analysis of HSDFGs and are applicable to SD-
FGs only through a conversion as described in [13, 20] to
HSDFG. Maximum Cycle Mean (MCM) analysis is then
used to determine throughput. Karp proposed an algorithm
in [12] which forms the basis for other improved algorithms
like [6, 8, 22]. An in-depth comparison of the timing behav-
ior of different MCM (related) algorithms is given in [7, 8].
Behaviour of HSDFGs and their throughput can also be an-
alyzed using Max-Plus algebra [1, 6].

HSDFGs and SDFGs correspond to specific subclasses
of Petri nets, namely marked graphs and weighted marked
graphs, respectively (when abstracting from the data values
that are communicated among the graph nodes). Through-
put analysis has been studied extensively in the Petri-net lit-
erature as well. In [19], an MCM-related analytical method
is presented for marked graphs (HSDFGs), which in [5]
is extended to certain specific cases of weighted marked
graphs (SDFGs). In [4], using a linear programming ap-
proach, lower and upper bounds on throughput of a cer-

d,1c,3b,1a,2

1

1

2

2

3

3

1

1

1

1 151

1

1

Figure 1. An example SDFG

tain class of Petri nets are given. The upper bound is exact
for marked graphs, and a conversion from weighted marked
graphs to marked graphs similar to the conversion of SDFGs
to HSDFGs is used to calculate throughput for weighted
marked graphs.

Unlike all other previous approaches, we propose a tech-
nique based on explicit state-space exploration for finding
the throughput which directly works on SDFGs. Because
of this, we save the extra step for converting an SDFG to an
HSDFG, which can be exponentially larger.

3 Synchronous Data Flow Graphs
In this section, we give a precise definition of Syn-

chronous Data Flow graphs and the notations we use for
the purpose of this paper. We introduce a formal, opera-
tional semantics of SDFGs and discuss the relation between
SDFGs and equivalent homogeneous SDFGs.

3.1 Basic Definitions
Typical DSP and multimedia applications consist of a set

of tasks (or operations) that need to be performed in some
order, while data is transferred or communicated among
those tasks. An important class of DSP and multimedia ap-
plications consist of a set of tasks that need to be performed
iteratively, while consuming and producing fixed amounts
of data for each task execution. This class of applications
can be described in a natural way by means of Synchronous
Data Flow (SDF) graphs [13]. The nodes of an SDFG are
called actors, they typically model tasks, while the edges
are called channels, they typically model data transfers or
other dependencies among actors.

The execution of an actor is referred to as an (actor) fir-
ing, the data items communicated between actors are called
tokens, and the amounts of tokens produced and consumed
in a firing are referred to as rates. The classical SDF model
is untimed (or in fact it assumes unit time [13]), and actor
firings are assumed to be atomic. However, there is a natural
extension to SDF in which a fixed execution time is associ-
ated with each actor [20]. This extension makes the model
amenable to timing analysis, of which throughput analysis
is a prominent example.

Example Figure 1 shows an example SDFG, consisting of
four actors.The numbers in actor nodes denote their exe-
cution times. Associated with the source and destination
of each channel edge are the rates. Channels may contain
tokens, denoted with a black dot and an attached number
defining the number of tokens present in the channel. Chan-
nel capacities are unbounded, i.e., channels can contain ar-
bitrarily many tokens. Channel capacity limitations need to
be modeled explicitly. For this, the edges in the opposite

direction with tokens, model available buffer space. The
SDFG of Figure 1 models a multimedia application with
four tasks to be executed iteratively in a pipelined manner.
The three channels from left to right correspond to FIFO
buffers with limited sizes of 1, 5, and 1, resp., as modeled
by the channels in the opposite direction.

We assume a set Ports of ports, and with each port p ∈
Ports we associate a positive finite rate Rate(p) ∈ N\{0}.

Definition 1 [Actor] An actor a is a tuple (In,Out , τ) con-
sisting of a set In ⊆ Ports of input ports (denoted by
In(a)), a set Out ⊆ Ports (Out(a)) with In ∩ Out = ∅
and τ ∈ N\{0} representing the execution time of a (τ(a)).

Definition 2 [SDFG] An SDFG is a tuple (A,C) with a fi-
nite set A of actors and a finite set C ⊆ Ports2 of channels.
The source of every channel is an output port of some ac-
tor; the destination is an input port of some actor. All ports
of all actors are connected to precisely one channel, and all
channels are connected to ports of some actor. For every
actor a = (I,O, τ) ∈ A, we denote the set of all channels
that are connected to ports in I (O) by InC (a) (OutC (a)).

As mentioned, the execution of an actor is defined in
terms of firings. When an actor a starts its firing, it removes
Rate(q) tokens from all (p, q) ∈ InC (a). The firing then
continues for τ(a) time units and when it ends, it produces
Rate(p) tokens on every (p, q) ∈ OutC(a). The details of
SDFG execution are formalized in the next subsection.

Not all SDFGs are meaningful. Inappropriate rates can
lead to undesirable effects. If, for example, in the SDFG
of Figure 1, the input rate of actor b of the c-b channel is
changed from 3 to 4, this would result in a guaranteed dead-
lock after only a few actor firings (2 times a, and all other
actors once); if this rate is set to 2, it would result in an
unbounded increase of tokens in the channel from b to c.
There is a simple property, called consistency, of SDFGs
that avoids these kinds of effects [13] (although it does not
guarantee absence of deadlocks).

Definition 3 [Consistent SDFG, repetition vector] A rep-
etition vector q of an SDFG (A,C) is a function A → N
such that for each channel (i, o) ∈ C from actor a ∈ A to
b ∈ A, Rate(o) · q(a) = Rate(i) · q(b). A repetition vector
a is called non-trivial if and only if q(a) > 0 for all a ∈ A.

An SDFG is called consistent if it has a non-trivial repe-
tition vector. For a consistent graph, there is a unique small-
est non-trivial repetition vector, which is designated as the
repetition vector of the SDFG.

The repetition vector of the SDFG of Figure 1 is
{(a, 2), (b, 2)(c, 3)(d, 3)} (in vector notation: [2 2 3 3]T).
The equations Rate(o) · q(a) = Rate(i) · q(b) are called
the balance equations. From these equations it follows that
firing all actors in an SDFG precisely as often as specified
by a repetition vector has no net effect on the distribution
of tokens over all channels. In the remainder, we always
assume consistency. It can be verified very efficiently.

3.2 An Operational Semantics of SDF
We define the behavior of an SDFG formally in terms of

a labeled transition system. For this, we need appropriate
notions of states and of transitions.

As explained, an actor consumes its required input to-
kens at the start of its firing, and output is produced at the
end of that firing. Channels have infinite capacity, which
means that always sufficient space is available. Since we
are interested in timing analysis, and not for example in
functional analysis, we abstract from the actual data that is
being communicated. To capture the timed behavior of an
SDFG, we need to keep track of the distribution of tokens
over the channels, of the start and end of actor firings, and
the progress of time. For distributions of tokens on chan-
nels, we define the following concept.

Definition 4 [Channel quantity] A channel quantity on the
set C of channels is a mapping δ : C → N. If δ1 is a
channel quantity on C1 and δ2 is a channel quantity on C2

with C1 ⊆ C2, we write δ1 ¹ δ2 if and only if for every
c ∈ C1, δ1(c) ≤ δ2(c). δ1 + δ2 and δ1 − δ2 are defined
by pointwise addition resp. subtraction of δ1 and δ2 resp. δ2

from δ1; δ1 − δ2 is only defined if δ2 ¹ δ1.

The amount of tokens read at the beginning of a firing of
some actor a can be described by channel quantity Rd(a) =
{(p,Rate(p)) | p ∈ In(a)}, produced tokens by channel
quantity Wr(a) = {(p,Rate(p)) | p ∈ Out(a)}.

Definition 5 [State] The state of an SDFG (A,C) is a pair
(γ, υ). Channel quantity γ associates with each channel the
amount of tokens present in that channel in that state. To
keep track of time progress, an actor status υ : A → NN
associates with each actor a ∈ A a multiset of numbers
representing the remaining times of different firings of a.
The initial state of an SDFG is given by some initial token
distribution γ. The initial state equals (γ, {(a, {}) | a ∈
A}) (with {} denoting the empty multiset).

By using a multiset of numbers to keep track of actor
progress instead of a single number, multiple simultaneous
firings of the same actor (auto-concurrency) are explicitly
allowed. This is in line with the standard semantics for SDF.
If desirable, auto-concurrency can be excluded or limited by
adding self-loops to actors with a number of initial tokens
equal to the desired maximal degree of auto-concurrency.

The dynamic behavior of the SDFG is described by tran-
sitions that can be of any of three forms: start of actor firing,
end of firing, or time progress with discrete clock ticks.

Definition 6 [Transitions] A transition of SDFG (A,C)
from state (γ1, υ1) to state (γ2, υ2) is denoted by

(γ1, υ1)
β→ (γ2, υ2) where label β ∈ (A × {start , end}) ∪

{clk} denotes the type of the transition.

• Label β = (a, start) corresponds to the firing start
of actor a. This transition may occur if Rd(a) ¹ γ1

and results in γ2 = γ1 − Rd(a), υ2 = υ1[a 7→
υ1(a)] {τ(a)}], i.e., υ1 with the value for a replaced
by υ1(a)] {τ(a)} (where] denotes multiset union).

• Label β = (a, end) corresponds to the firing end of
a. This transition can occur if 0 ∈ υ1(a) and results
in γ2 = γ1 + Wr(a) and υ2 = υ1[a 7→ υ1(a)\{0}]
(where \ denotes multiset difference).

• Label β = clk denotes a clock transition. It is enabled
if no end transition is enabled and results in γ2 = γ1,
υ2 = {(a, υ1(a) ª 1) | a ∈ A} with υ1(a) ª 1 a
multiset of natural numbers containing the elements of
υ1(a) (which are all positive) reduced by one.

Note that the discrete clock transitions in the above defini-
tion can also be replaced by steps in a dense time domain.
We confine ourselves to discrete time steps as they are by
far the most common in the design of digital systems.

Definition 7 [Execution] An execution of an SDFG is
an infinite alternating sequence of states and transitions
s0

β0→ s1
β1→ . . . starting from the initial state of the graph,

such that for all n ≥ 0, sn
βn→ sn+1.

Note that even deadlocked executions (when no more actors
are firing and no new firings can start) are infinite, because
time can always progress. The maximal throughput (a pre-
cise definition of throughput is given in the next section) of
an SDFG is known to be obtained from one specific type of
execution, namely self-timed execution [20], which means
that actors must fire as soon as they are enabled.

Definition 8 [Self-timed execution] An execution is self-
timed if and only if clock transitions only occur when no
start transitions are enabled.

In the self-timed execution of an SDFG, from one clock
transition to the next, there can be some interleaving of si-
multaneously enabled start and/or end transitions. However,
because these start and end transitions are completely inde-
pendent of each other, independent of the order in which
these transitions are applied, the final state before each
clock transition, and hence also the state after each clock
transition, is always the same. Self-timed SDFG behavior
is therefore deterministic in the sense that all the states im-
mediately before and after clock transitions are completely
determined and independent of the selected execution.

Example Figure 2 illustrates the self-timed execution of
the example SDFG of Figure 1. All clock transitions are
shown explicitly. The order of start and end transitions be-
tween two clock transitions is irrelevant, and therefore they
are conveniently shown as one annotated (macro) step. The
example shows that the self-timed execution consists of a
periodic phase preceded by a so-called transient phase. We
show in the next section that this is always the case for self-
timed execution of connected graphs.

Definition 9 [Iteration] Assume SDFG (A,C) has repeti-
tion vector q. An iteration is a set of actor firings such that
for each a ∈ A, the set contains q(a) firings of a.

In the execution of Figure 2, the periodic phase with a du-
ration of 12 time units consists of precisely one iteration. In
general, it is possible that iterations in an execution of an
SDFG overlap in time.

((1,3,0,1,2,0),({},{},{1},{}))((0,0,0,1,5,1),({2},{},{},{}))

((1,3,0,1,2,0),({},{},{2},{}))

(a,start) clk clk (b,start) clk
(a,end)

clk

(a,start)
(b,end)

(c,start) clk clk(a,end) clk

(b,start)
(c,end)

(d,start)

clk

(a,start)
(d,end)

(c,start)

(b,end)

clk

clk

(a,end)

clk

(b,start)
(c,end)

(a,start)

(b,end)clk

(d,start)

(d,end)

clk

(c,start)

clk
(a,end)

clk

(c,end)

(d,end)

(d,start)

(c,start)

clk

clk
((0,0,0,1,5,1),({},{},{},{}))

state vector () is encoded via pairs where

the corresponds to channels a-b,b-c,c-d,d-c,c-

b,b-a, resp. and the tuple defines the

multisets for a,b,c,d resp.

Figure 2. The self-timed execution of our running example

3.3 Homogeneous SDF
SDFGs in which all rates associated to ports equal 1 are

called Homogeneous Synchronous Data Flow Graphs (HS-
DFGs, [13]). As all rates are 1, the repetition vector for an
HSDFG associates 1 to all actors.

Every SDFG G = (A, C) can be converted to an equiv-
alent HSDFG GH = (AH , CH) ([13, 20]), by using the
conversion algorithm in [20, Section 3.8]. Equivalence in
this context means that there exists a one-to-one correspon-
dence between the SDFG and HSDFG actor firings.

Definition 10 Given an SDFG G = (A,C) and an execu-
tion σ, let tσa,k denote the start time of the k-th firing of any
actor a ∈ A in execution σ, i.e., the number of clock transi-
tions up to the the k-th appearance of

(a,start)→ in σ. If σ is
clear from the context, we write ta,k.

For every actor a ∈ A of an SDFG G = (A,C), with repeti-
tion vector q, the conversion algorithm creates q(a) copies,
a1 . . . aq(a), all with execution time τ(a). The correspon-
dence is as follows: the k-th firing of ar in the HSDFG
corresponds to firing k · q(a)+ r of a in the original SDFG.
It can be shown ([11]) that for the firing start times of a and
its copies, we have that for the self-timed execution, for all
r, k ∈ N with 0 ≤ r < q(a),

ta,k·q(a)+r = tar,k (1)

Note that the k · q(a) + r-th firing of actor a ∈ A, is
also the r-th firing of a in iteration k of G. Also, since actor
a and all its copies in the HSDFG have the same execution
time, there exist a similar equation for the end times of actor
firings in the SDFG and the equivalent HSDFG actor firings.

4 Throughput Analysis of SDF Graphs
In this section, we look at throughput of (executions of)

SDFGs. First, we study properties of SDFG state-spaces,

then we look at the definition of throughput. We review
prevailing methods for throughput analysis of SDFGs and
formulate our own approach. In the remainder of this paper,
we assume that SDFGs are strongly connected and consis-
tent. For graphs that are not strongly connected, analysis is
first done on the strongly connected components and then
combined for the whole graph [7]. Moreover, SDFGs that
model bounded channels are always strongly connected.

4.1 The Self-timed Execution State-Space
The operational semantics of SDFGs with a self-timed

execution policy leads to a state-space of a particular shape,
illustrated in Figure 2, the state-space of our example. It
consists of a finite sequence of states and transitions (called
the transient phase), followed by a sequence that is period-
ically repeated ad infinitum (the periodic phase).

Proposition 11 For every consistent and strongly con-
nected SDFG, the self-timed state-space consists of a tran-
sient phase, followed by a periodic phase.

PROOF Self-timed execution is deterministic if we consider the
execution in ‘macro steps’ from one clock transition to another.
Strongly connectedness ensures that every actor depends on to-
kens from every other actor. This guarantees that there is a bound
on the difference in the number of firings of actors, relative to the
corresponding entries in the repetition vector. From this it follows
that the number of tokens that may accumulate in any channel is
bounded and that the amount of auto-concurrency is bounded and
only a finite number of copies of an actor can be firing at the same
time. Since both the number of simultaneous actor firings and the
number of tokens in any channel are bounded, the number of states
of an SDFG in self-timed execution is finite. This guarantees that
the execution will eventually revisit some state that was visited
before, signifying the fact that (because of determinism) the exe-
cution is then in the periodic regime. 2

Note that if the graph deadlocks, the periodic phase consists
of a single clock transition. If we have a closer look at the
periodic behavior of the graph, we observe the following.

Proposition 12 The periodic behavior of an SDFG consists
of a whole number (possibly 0) of iterations.

PROOF A single execution of the periodic behavior has no net ef-
fect on the number of tokens in the different channels, because it
returns to the same state, which includes information about the to-
kens in channels. From this, it follows immediately that the num-
ber of actor firings (starts and ends) satisfies the SDFG’s balance
equations and thus must be a multiple of the repetition vector. 2

4.2 Throughput
Definition 13 [Actor throughput] The throughput of an ac-
tor a for execution σ of an SDFG is defined as the average
number of firings of a per time unit in σ. Since executions
are infinite, this average is defined as the following limit:

Th(σ, a) = lim
t→∞

|σ|ta
t

.

where |σ|ta denotes the number of occurrences of the transi-

tion
(a,start)→ up to the t-th clock transition in the execution

σ. It is easy to see, that when the execution includes an
infinite number of start transitions, then this is equal to

Th(σ, a) = lim
k→∞

k

tσa,k

.

Note that this definition expresses the throughput of an
SDFG for a particular execution σ. With Th(a) we denote
the throughput of the self-timed execution.

The maximum throughput of an SDFG G = (A, C) is
associated with the self-timed execution of G [20, 11], as
no actor a ∈ A can start a firing without having enough
tokens in all of its input channels and any delay in start of
firing of an actor is of no use in increasing the number of
firings of a itself or any other actor in the graph. Hereafter
in this paper, we only focus on the throughput associated
with the self-timed execution.

Lemma 14 For every consistent and strongly connected
SDFG G = (A,C), the throughput of an actor a ∈ A is
equal to the average number of firings per time unit in the
periodic part of the self-timed state-space.

PROOF Trivial in case of a deadlock. Otherwise, considering the
state-space of the self-timed execution of G, we know that there
is some K such that for all i > K, the i-th firing of a is in the
periodic phase. Let |p| and |p|a respectively, be the number of
clk→ and

(a,start)→ transitions in one period. The k-th firing of a,
when in the periodic phase, can be decomposed as follows: k =
K + m|p|a + r for some positive m and r. The corresponding
time of the start of that firing Ta,k = T + m|p|+ Tr , where T is
the time the graph first reached the periodic phase and Tr the time
of the r-th firing of a in the period, relative to T . Then,

Th(a) = lim
k→∞

k

ta,k
= lim

m→∞
K + m|p|a + r

T + m|p|+ Tr
=
|p|a
|p| .

2

Proposition 15 For a consistent and strongly connected
SDFG (A,C) with repetition vector q and actors a, b ∈ A,
Th(a) · q(b) = Th(b) · q(a).

PROOF Trivial in case of deadlock. Otherwise, it follows from the
previous lemma and Proposition 12 that Th(a)

Th(b)
= |p|a

|p|b = q(a)
q(b)

2

This proposition means that we can define a normalized no-
tion of (maximal) throughput, independent of any specific
actor, and applies to the self-timed execution.

Definition 16 [SDFG throughput] The throughput of an
SDFG G = (A,C) is defined as Th(G) = Th(a)

q(a) , for an
arbitrary a ∈ A.

Proposition 15 guarantees that the result is independent of
the chosen actor a. From Lemma 14 we know that the
throughput of an SDFG can be determined from the peri-
odic part of the state-space.

Corollary 17 The throughput of an SDFG is equal to the
number of actor firings per time unit during one period nor-
malized by the repetition vector. This in turn is equal to the
number of iterations executed in one period divided by the
duration (number of clk transitions) of one period.

We are now also able to express the relation between
throughput of an SDFG and its equivalent HSDFG.

Theorem 18 Let G be an SDFG and H the corresponding
HSDFG obtained from the conversion algorithm of [20],
then Th(G) = Th(H).

PROOF Trivial in case of deadlock. Otherwise, let a be an actor
of G and q the repetition vector of G. For any k we have i ≥ 0
and 0 ≤ r < q(a) such that k = i · q(a) + r and

Th(G) =
1

q(a)
lim

i→∞
i · q(a) + r

ta,i·q(a)+r

From the correspondence between the SDFG and HSDFG dis-
cussed in Section 3.3, we have that ta,i·q(a)+r = tar,i

Th(G) =
1

q(a)
lim

i→∞
i · q(a) + r

tar,i

= lim
i→∞

i + r/q(a)

tar,i
= lim

i→∞
i

tar,i
= Th(H)

2

Example Continuing the example of Figure 2, it can be
seen that the periodic phase takes 12 time units and includes
one iteration of the graph. Actor d executes 3 times during
this period. Hence, the throughput of d equals 3/12 = 1/4.
The normalized throughput of the SDFG itself is 1/12.

The throughput of the SDFG can be determined from the
state space. Often, it is also interesting to determine the crit-
ical components, i.e., the actors and channels that are con-
straining the throughput. These are candidates to improve
(speed of an actor or capacity of a channel) if we need to
increase throughput. This type of information can also be
extracted from the state space, see [21] for an example.

Traditionally (see e.g., [20]), throughput of an SDFG is
defined as 1 over the Maximum Cycle Mean (MCM) of the
corresponding HSDFG. The cycle mean of some cycle of
an HSDFG or weighted directed graph in general is defined
as the total execution time or total weight of the cycle over
the number of tokens or the number of arcs in that cycle
for the HSDFG and weighted directed graph respectively.
The maximum cycle mean over all cycles in the HSDFG or
weighted directed graph is called the MCM of the graph.
The MCM can be shown ([17],[20, Lemma 7.3] to be equal
to the average time between two firings of any of the HS-
DFG actors. Given Theorem 1, and the observation that all
repetition vector entries of an HSDFG are 1, it is easy to see
that Definition 16 of SDFG throughput is the same as the
traditional definition of throughput.

Corollary 19 Let G be an SDFG and H the HSDFG ob-
tained from the conversion of [20], then Th(G) is equal to
1/µ if µ is the MCM of H .

The suggested method (see, e.g., [20]) for computing
throughput of an SDFG is as follows. First, convert the
SDFG to an equivalent HSDFG and then compute the
throughput on this graph. The throughput of the HSDFG
can be computed through an MCM algorithm [12, 8]). In
Sections 2.5.3 and 2.5.4 of [1] an approach is described to
convert an HSDFG to a weighted directed graph in which
each channels contains one token and is annotated with a
cost (execution time). The MCM of this graph then equals
the throughput of the HSDFG. An alternative method to
compute the throughput is the use of an Maximum Cycle
Ratio (MCR) algorithm [8]. Each edge in the weighted di-
rected graph for the MCR has a cost (execution time of the
producing actor in the HSDFG) and a transit time (num-
ber of tokens on the channel in the HSDFG). Efficient algo-
rithms for calculating MCMs/MCRs exist, which are com-
pared in [7]. However, MCM/MCR analysis can only be
applied to an HSDFG which is often exponentially larger
in size than the original SDFG. This makes the approach
as a whole not particularly efficient for SDFG throughput
analysis, as our experiments below confirm.

4.3 The State-Space Exploration Method
We propose a method that calculates the throughput of an

SDFG by directly executing its self-timed behavior. For our
method, we enforce a deterministic order of the interleav-
ing of concurrent transitions corresponding to simultaneous
start and end transitions in between clock transitions (see
Section 3.2). This has no effect on the throughput, but in
this way, the entire state-space becomes deterministic.

In principle, we can execute the SDFG while remem-
bering all states we visit until we detect that we are in the
periodic phase when we encounter a state that we have vis-
ited before. At that point, by Corollary 17, we can calculate
the throughput of the graph by counting, for one period, the
number of iterations that were executed and the number of
clock transitions. Their quotient is the throughput.

We have to store states to detect the periodic phase, but
the lengths of the transient and periodic phases can be fairly

long and we may need to store a large number of states. The
determinism in the state-space however, allows us to store
only selected states. Suppose we pass a state that was vis-
ited before, but not stored. We then continue the execution
in the same way as the first time, revisiting the same states.
We only need to be sure that at least one of the states in
the periodic part is actually stored and we will encounter
it, detecting the cycle. Knowing from Proposition 12 that
the periodic behavior consists of a whole number of itera-
tions we choose to only store one state for every iteration.
In this way, the periodic behavior always includes at least
one state that is stored. (Except when the graph deadlocks
in which case the periodic part consists of only a clk tran-
sition and zero iterations, but that is immediately detected
when a clock transition remains in the same state.)

We can do this as follows. We pick an arbitrary actor a.
Then every iteration includes q(a) start (and end) transitions
of a. We choose to store all the states reached immediately
after every q(a)-th execution of a start transition of a.

Using this method, one can detect the period and also the
number of iterations of the period and the length in clock
transitions can be easily calculated if we additionally store
the number of clock transitions between each two stored
states. With this information we can calculate the through-
put of an SDFG. In this manner we can significantly de-
crease the number of states that need to be stored and com-
pared, and consequently the memory and time needed for
the algorithm.

Since the method is obtained by some additions (storing
and comparing states) to the execution of the behavior of
the SDFG, it is relatively simple to integrate the analysis
method into existing simulation tools for SDFGs.

5 Max-Plus Algebraic Characterization
A very elegant model to reason about (H)SDFGs is the

Max-Plus algebra [1, 6]. Execution of a data flow graph
is captured as a linear transformation in a special alge-
bra and linear algebra theory is used to analyze such sys-
tems. In particular, spectral analysis is directly related to
the throughput analysis problem. In Section 4.2 the relation
between throughput of an SDFG and the Maximum Cycle
Mean of the equivalent HSDFG is shown. The relation be-
tween MCM and Max-Plus algebra is discussed in [1]. In
this section we study directly the relation between through-
put of SDFGs, our throughput analysis algorithm and Max-
Plus algebra. The discussion in this section intends to pro-
vide additional insights into the asymptotic behavior of the
algorithm. Reading it is however not required to understand
the experimental results in the rest of this paper.

We first explain some basics of Max-Plus algebra and
then talk about the relation between our state-space explo-
ration method and the Max-Plus formulation of (H)SDFG.

5.1 The Max-Plus model of (H)SDF
In a self-timed execution of an HSDFG, each actor starts

a firing when there is at least one token on all of its input
channels. The existence of these tokens on the input chan-
nels depends in turn on the end of actor firings which pro-

vide tokens to the channels. In this way, the start times of
each actor firing can be expressed in terms of the start times
of certain other actor firings. In this section, we assume an
HSDFG (A,C) with initial token distribution γ.

Recall that ta,k denotes the start time of the k-th firing
of actor a ∈ A in the self-timed execution. When it ends, it
produces the k+γ(c)-th token on every channel c connected
to one of its output ports. We additionally define tc,k as the
time at which the k-th token is produced on channel c ∈ C
(where tc,k = 0 for all 0 ≤ k < γ(c), because the initial
tokens are already there from the start.) ta,k depends on the
availability of tokens on all of its inputs and starts as soon
as the last of the required tokens has arrived. The tokens are
produced when the actor writing to that channel finishes its
firing. From this we derive the following equations for the
firing times of actors. For each actor a ∈ A we have the
equations (for all k ≥ 0):

ta,k = max
c∈InC (a)

tc,k

For each a ∈ A and channel c ∈ OutC (a) we have the
equations (for all k ≥ γ(c)):

tc,k = ta,k−γ(c) + τ(a)

Combined, this gives a set of equations in which the k-th fir-
ing time of every actor is related to the k-th or earlier firing
times of other actors. Through substitution and introduc-
tion of auxiliary variables (see [6] for details), this set of
equations is converted to a set of difference equations of the
form:

ti,n = max
j

tj,n−1 + τi,j (2)

where the set of variables ti,n includes the firing times of
the actors ta,n.

It is convenient to formulate these equations using Max-
Plus algebra [1] notation. Max-Plus algebra, like conven-
tional algebra, is defined on real numbers R. In Max-Plus
algebra the maximum operator is used in the role of addi-
tion and is denoted by ⊕, and addition, denoted by ⊗, is
used instead of multiplication. From this, a linear algebra
is obtained and equation (2) can be represented using Max-
Plus formulation as follows:

ti,n =
⊕

j

tj,n−1 ⊗ τi,j .

This set of sum-of-products equations can be encoded as a
matrix equation.

tn = Mtn−1.

where vector tn consists of all ti,n. M is a matrix with the
coefficients τi,j . If t0 encodes the initial state and initial
token distribution, then the sequence {tk | k ≥ 0}, where
tk = Mkt0 describes the evolution of the graph over time.
A special role in this plays the eigenvalue equation

Mt = λ⊗ t.

The solution characterizes the graph in its periodic phase.
For such a vector t all execution times of the next iteration

(Mt) are equal to the corresponding execution times of the
current iteration, shifted by λ units of time. With t being an
eigenvector, the same shift occurs for the next iteration and
so on. Hence the behavior is periodic and the corresponding
throughput is 1/λ where λ equals the MCM of the graph.
Note that through the connection between firing times in
SDFGs and in their corresponding HSDFGs, as discussed
in Section 3.3, this model also applies to the execution of
SDFGs if we take all firing times of one iteration in a single
vector. We use this fact in the next section to model our
state-space exploration method.

5.2 A Max-Plus Model of the State-Space
Exploration

We now show how computation of throughput with the
state-space exploration method can be interpreted as a com-
putation of the eigenvalue of the corresponding matrix.
This is akin to the so-called power method for computing
the dominant eigenvalue in conventional linear algebra (see
e.g., [2]).

The vectors tn of the previous section capture the abso-
lute firing times of the actors in the execution of the graph.
In the state-space we defined, and our exploration of the
state-space, we are not concerned with the absolute firing
times, but only relative times, such as remaining execution
times of actors. Since we store one state for every iteration,
we can build a vector of all actor firing times of an entire
iteration, counting relative to the starting time of the par-
ticular actor firing used to determine which state is being
stored. Assume (without loss of generality) that the time of
that actor firing is the first element of the vector: tn(1). De-
fine uk as the relative version of tk, by subtracting the first
entry from each of the entries, which gives all of the firing
times relative to the moment the state was last stored.

uk =
tk

tk(1)

(A division by a scalar t denotes a Max-Plus multiplication
(⊗) with the inverse of t, i.e., a subtraction of t in conven-
tional algebra.) We can then derive the following equation.

uk+1 =
tk+1

tk+1(1)
=

Mtk

(Mtk)(1)
=

1
tk(1)Mtk

1
tk(1) (Mtk)(1)

=
M tk

tk(1)

(M tk

tk(1))(1)
=

Muk

(Muk)(1)
.

We now have a recursive equation which characterizes the
execution of the state-space exploration method. Similarly,
one can show that for any k ≥ 0 and d ≥ 0.

uk+d =
Mduk

(Mduk)(1)
.

From the fact that this execution ends in a periodic phase,
we conclude that there exist m and d such that:

um+d = um =
Mdum

(Mdum)(1)
.

Hence, with µ = (Mdum)(1), we have a solution to the
eigenvalue equation:

Mdum = µ⊗ um.

Here, µ is the total length of the d iterations in the pe-
riodic phase and hence, µ = λd (µ = d · λ in common
algebra), i.e., d times the eigenvalue λ of M which is iden-
tical to d times the MCM of the equivalent HSDFG which
is identical to d divided by the throughput of the SDFG.

6 Experimental Results
6.1 Our SDF Throughput Analysis Tool

This section explains the implementation of the through-
put analysis algorithm based on the method proposed in this
paper. We developed a tool, called smart, which takes an
XML description of an SDFG as input and produces the
C++ code of a program which does the throughput analysis
for the supplied SDFG.

The state of an SDFG consists of a tuple (γ, υ). To im-
plement γ, an array with the size of the number of chan-
nels can be used. The function υ associates with each actor
a multiset of numbers representing the remaining times of
different actor firings of the actors. Instead of using a linked
list for each actor, our implementation uses a fixed-size ar-
ray for each actor a in the SDFG. At position i in the array,
the number of actors a which have i time remaining before
finishing their execution is stored. The maximum size of
the array is determined by the largest execution time of all
actors in the SDFG. As a result, each state requires a fixed
amount of memory which allows for a run-time efficient im-
plementation of state transitions and state comparisons.

Our algorithm builds the state-space of the graph as out-
lined in Section 4.3. A recurrent state (i.e., a cycle) must
be detected from which the throughput can be computed.
States are stored on a stack, indexed using a heap. This
heap reduces the number of states which must be compared
for equality even further. When a recurrent state is detected,
the program computes the throughput from the period.

6.2 Experimental Setup
To the best of our knowledge, all existing techniques

to compute the throughput use a conversion to HSDF, fol-
lowed by MCR analysis or via an additional conversion to
a weighted directed graph followed by MCM analysis. Al-
ternatively, spectral analysis of the Max-Plus formulation
of the HSDF graph can be used. In [9], Dasdan et. al give
an extensive comparison of existing MCM, MCR and spec-
tral analysis algorithms. It shows that Dasdan & Gupta’s
algorithm (DG) [8] which is a variant of Karp’s algorithm
[12] and Howard’s algorithm (HO) [6] which uses spectral
analysis have the smallest running times when tested on a
large benchmark. In [7], Dasdan shows that also Young-
Tarjan-Orlin’s algorithm (YTO) [22] has a very good prac-
tical running time. Originally YTO is formulated as a MCM
problem, but Dasdan gives pseudo-code for a MCR formu-
lation of the problem. In our experiments, we compare the

running times of our state-space exploration method with
these state-of-the-art analysis algorithms.

All algorithms are implemented in smart for compari-
son. For the implementation of HO, the source code offered
by the authors of [6] is used. An implementation of YTO is
available via [14]. It uses the MCM formulation of the prob-
lem. We wrote our own implementation of the DG algo-
rithm using the pseudo-code given in [8]. These algorithms
the minimum cycle mean of a graph, while throughput anal-
ysis requires a maximum cycle mean computation. All im-
plementations are modified to compute this maximum cy-
cle mean. Our comparison requires a conversion from an
SDFG to the weighted directed graphs which are input for
the MCM algorithms. This conversion consists of two steps.
First, an SDFG is converted into an equivalent HSDFG us-
ing the algorithm proposed in [20]. Second, the HSDFG
is converted into a weighted directed graph using the ap-
proach suggested in Sections 2.5.3 and 2.5.4 of [1]. This
step requires the computation of the longest path through a
graph from each edge with initial tokens to any node in the
graph reachable from this edge without using other edges
that contain initial tokens.

We measure the running times of each of the two con-
version steps and the MCM algorithms individually. These
three values per experiment provide insight in the contribu-
tion of the different steps to the total running time required
for computing SDFG throughput. We also measure the run-
ning time of our state-space exploration method. For this
approach, the measured running time consists of the time
needed for the self-timed execution, storing and comparing
states and computing the throughput from the state-space.

6.3 Benchmark

Currently no standard benchmark set of SDFGs exists.
(Note that the benchmark used in [7, 9] is a set of directed
graphs, and cannot be used for our purposes.) To com-
pare the running times of existing approaches for calculat-
ing throughput to our approach, we developed specific sets
of test graphs. The first set of graphs in the benchmark are
actual DSP and multimedia applications, modeled as SD-
FGs. From the DSP domain, the set contains a modem [3],
a satellite receiver [18] and a sample-rate converter [3], and
from the multimedia domain an MP3 decoder and an H.263
decoder. In all graphs, a bound on the storage space of each
individual channel is modeled in the graph. Their bounds
are set to the minimal storage space required for a non-zero
throughput and is computed using the technique from [10].

As a second set of graphs (‘Mimic DSP’), the bench-
mark contains 100 random SDFGs in which actor ports have
small rates and the actors have small execution times. These
settings for the rates and execution times make the graphs
representative for SDFGs of DSP applications.

The practical problem with the existing algorithms for
throughput of an SDFG is that the conversion to an HSDFG
can lead to an exponential increase in the number of actors
[15]. Our approach should not be affected by this problem.
To test this hypothesis, the benchmark contains a set (‘Large
HSDFG’) of 100 randomly generated graphs in which the

Table 1. DSP and multimedia applications
SS DG HO YTO

Modem [s] 1·10−3 82·10−3 81·10−3 81·10−3

Sample rate [s] 1·10−3 > 1800 > 1800 > 1800
Satellite [s] 4·10−3 > 1800 > 1800 > 1800
MP3 decoder [s] 11·10−3 1·10−3 1·10−3 1·10−3

H.263 decoder [s] 4 > 1800 > 1800 > 1800

Table 2. Experimental results
Mimic Large Long
DSP HSDFG transient

avg #actors (SDFG) 20 13 284
avg #actors (HSDFG) 1008 8166 284

avg length trans. phase 68 208 4486

SDFG to HSDFG conversion
avg to HSDF [s] 242·10−3 2 −
var to HSDF [s2] 264·10−3 11 −
#SDFGs not solved 0 10 0

HSDFG to digraph conversion
avg to digraph [s] 479·10−3 218 249·10−3

var to digraph [s2] 17·103 95·103 160·10−3

#SDFGs not solved 9 44 0

MCM algorithms
avg MCM (DG)[s] 271·10−3 2 2·10−3

avg MCM (HO)[s] 1·10−3 9·10−3 <1·10−3

avg MCM (YTO)[s] 1·10−3 8·10−3 <1·10−3

var MCM (DG)[s2] 565·10−3 120 <1·10−3

var MCM (HO)[s2] <1·10−3 <1·10−3 <1·10−3

var MCM (YTO)[s2] <1·10−3 <1·10−3 <1·10−3

MCM based throughput analysis
avg total (DG) [s] 48 222 252·10−3

avg total (HO) [s] 48 220 250·10−3

avg total (YTO) [s] 48 220 250·10−3

var total (DG) [s2] 17·103 97·103 <1·10−3

var total (HO) [s2] 17·103 96·103 <1·10−3

var total (YTO) [s2] 17·103 96·103 <1·10−3

State-space based throughput analysis
avg total (SS) [s] <1·10−3 <1·10−3 912·10−3

var total (SS) [s2] <1·10−3 <1·10−3 77·10−3

rates have a large variation (which tends to cause the expo-
nential increase in the conversion) and all actors have equal
execution times (this avoids long transient phases).

A potential problem with our approach is that the self-
timed execution must first go through the complete transient
phase, while the existing MCM algorithms are not affected
by this issue. To test the impact of this potential problem
on our approach, the benchmark contains a set (‘Long tran-
sient’) of 100 randomly generated SDFGs in which all ac-
tors have a large execution time with a small variation. Such
SDFGs typically have a transient phase with a large number
of clock transitions. Further all ports have a rate of 1, which
makes the SDFGs effectively HSDFGs. This avoids an ex-
ponential increase in the number of actors during the SDFG
to HSDFG conversion, which is also favorable to traditional
throughput analysis methods and thus represents the most
difficult input for our algorithm.

6.4 Results

Using the three algorithms described in Section 6.2 and
our state-space exploration method (SS), we computed the
throughput for all SDFGs contained in the four sets of our
benchmark. The most important characteristics of the SD-
FGs in the benchmark are shown in the first three rows

of Table 2. The length of the transient phase is measured
here in the number of clock transitions. For the MCM al-
gorithms, we measured the running time of the conversion
from the SDFG to the HSDFG, the running time of the con-
version from the HSDFG to the weighted directed graph and
the running time of DG, HO, YTO separately. For the state-
space exploration method, we measured the total running
time of the algorithm.

For some of the graphs, it was not possible to compute
the throughput within 30 minutes using the HO, YTO or DG
algorithms. This is caused by the exponential increase in the
number of actors when converting an SDFG to an HSDFG.
For these graphs, the throughput calculation is stopped and
the running times are not taken into account in the results.
This provides an optimistic estimate of the real average run-
ning time of the existing approaches on the benchmark.

Table 1 shows the measured running times for the real
DSP and multimedia applications. The MCM algorithms
can only compute the throughput for the MP3 decoder and
modem within 30 minutes. They do not complete the HS-
DFG to weighted directed graph conversion. Our algorithm
computes the throughput for all graphs within 4 seconds.

The columns labeled ‘Mimic DSP’, ‘Large HSDFG’ and
‘Long transient’ in Table 2 show the results of our experi-
ments for the corresponding set of SDFGs. For the MCM
algorithms, two conversion steps must be performed before
the actual MCM analysis can be performed. The section la-
beled ‘SDFG to HSDFG conversion’ in Table 2 shows the
measured running time for the conversion from an SDFG to
an HSDFG. For 10 graphs from the set ‘large HSDFG’ it
was not possible to complete the conversion within 30 min-
utes. The second step is the conversion from an HSDFG to a
weighted directed graph. The results for the step are shown
in the section labeled ‘HSDFG to digraph conversion’ in the
Table. A number of graphs fail to finish this step before the
time deadline (see row ‘#SDFGs not solved’ of the section
‘SDFG to HSDFG conversion’).

The measured running times for the MCM algorithms
are shown in the section ‘MCM algorithms’. The overall
required running time using the existing MCM-based ap-
proaches is shown in the section ‘MCM based throughput
analysis’ and the running time for our approach is shown in
the section ‘State-space based throughput analysis’.

We summarize the most important results from the ex-
periments. The results for the set ‘mimic DSP’ show that
our approach has the best average running time with the
lowest variance of all four approaches. Our approach solves
all problems, while the others did not complete 9 problems
due to the conversion to the directed graph. The column
‘Large HSDFG’ in Table 2 shows the running times for SD-
FGs with a large increase in the number of actors when go-
ing from the SDFG to the HSDFG. The running time of the
existing approaches is strongly impacted by this increase
and has grown considerable w.r.t. the results in the previous
set. In contrast, our running times have the same average
and variance as in the previous set. It is further important
to note that the set contains 44 SDFGs for which the con-
version from the HSDFG to a weighted directed graph can-
not be completed. The results for the ‘Long transient’ set

confirm our expectations that SDFGs with a long transient
phase impact the running times of our algorithm while not
influencing the running times of the other algorithms. How-
ever, the running times of our algorithm are on average still
below 1 second, which will be acceptable in most situations.

The conversion to a weighted directed graph is required
for MCM analysis and often a bottleneck for analysis. How-
ever it is not required for MCR analysis. Dasdan gives in [7]
a MCR formulation of YTO (YTO-MCR). One can argue
however that the running time of the YTO-MCR algorithm
will always be larger than the running time of the SDFG to
HSDFG conversion (which is still required) plus the run-
ning time of the YTO algorithm used in our experiments,
the graph used in YTO is never larger than the graph used
in YTO-MCR. Therefore we can conclude from the exper-
imental results that also MCR analysis using YTO-MCR
will be slower than our state-space exploration method.

Overall, the experiments show that the running time of
the existing approaches is greatly impacted by the SDF to
HSDF conversion. The results of the experiments on the
real applications show also that this problem appears fre-
quently in practice. On the other hand, our method tends to
have acceptable running times even if it is confronted with
adverse graphs. We observe that our method has on average
better run times than the existing MCM approaches and it
can compute the throughput of all tested SDGFs within a
maximum of 4 seconds while visiting up-to 12 · 106 states,
while the MCM approaches fail to produce results on a sub-
stantial number of SDGFs.

7 Conclusion
We have introduced a new approach to throughput anal-

ysis of Synchronous Data Flow Graphs (known also as
weighted marked graphs in the Petri-net literature). Exist-
ing methods for throughput analysis include a transforma-
tion to Homogeneous Data Flow Graphs (marked graphs)
and suffer from an exponential blowup in the number of
graph nodes, which makes the approaches fail in certain
cases. Our approach is based on explicit state-space explo-
ration and avoids the translation to HSDFGs. We have intro-
duced an operational semantics of SDFGs. We have studied
properties of the state-space and derived a method for com-
puting throughput based on the state-space. We have shown
that the state-space-based definition of throughput corre-
sponds to the classical definitions in terms of Maximum
Cycle Mean of the equivalent HSDFG and the eigenvalue
of the corresponding Max-Plus matrix equation. Experi-
ments show that our throughput analysis method performs
significantly better in practice than existing approaches.

References

[1] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat. Synchro-
nization and Linearity http://www-rocq.inria.
fr/metalau/cohen/SED/book-online.html.
Wiley, 2001.

[2] S. Berberian. Linear Algebra. Oxford University Press,
1992.

[3] S. Bhattacharyya, P. Murthy, and E. Lee. Synthesis of em-
bedded software from synchronous dataflow specifications.
Journal on VLSI Signal Process. Syst., 21(2):151–166, 1999.

[4] J. Campos, G. Chiola, and M. Silva. Ergodicity and
throughput bounds for petri nets with unique consistent fir-
ing count vector. IEEE Transactions on Software Engineer-
ing, 17(2):117–125, 1991.

[5] D. Y. Chao, M. Zhou, and D. T. Wang. Multiple weighted
marked graphs. Preprints of 12th IFAC World Congress,
Sydney, Australia, 4:259–263, July 1993.

[6] J. Cochet-Terrasson, G. Cohen, G. Gaubert, and J.-P.
Quadrat. Numerical computations of spectral elements in
max-plus algebra. In Int. Conf. on Syst. Structure and Con-
trol, Proc., pages 667–674. Elsevier, 1998.

[7] A. Dasdan. Experimental analysis of the fastest optimum cy-
cle ratio and mean algorithms. Trans. on Design Automation
of Electronic Systems, 9(4):385–418, 2004.

[8] A. Dasdan and R. Gupta. Faster maximum and mini-
mum mean cycle algorithms for system-performance analy-
sis. Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 17(10):889–899, 1998.

[9] A. Dasdan, S. Irani, and R. Gupta. Efficient algorithms for
optimum cycle mean and optimum cost to time ratio prob-
lems. In Design Automation Conferrence, Proc., pages 37–
42. ACM, 1999.

[10] M. Geilen, T. Basten, and S. Stuijk. Minimising buffer
requirements of synchronous dataflow graphs with model-
checking. In Design Automation Conferrence, Proc., pages
819–824. ACM, 2005.

[11] R. Govindarajan and G. R. Gao. Rate-optimal schedule for
multi-rate dsp computations. Journal of VLSI signal pro-
cessing, 9:211–235, 1995.

[12] R. Karp. A characterization of the minimum cycle mean in
a digraph. Discrete Mathematics, 23(3):309–311, 1978.

[13] E. Lee and D. Messerschmitt. Synchronous dataflow. Pro-
ceedings of the IEEE, 75(9):1235–1245, September 1987.

[14] mmcycle. http://elib.zib.de/pub/Packages/
mathprog/netopt/mmc-info.

[15] J. Pino, S. Bhattacharyya, and E. Lee. A hierarchical multi-
processor scheduling system for DSP applications. In Conf.
on Signals, Systems and Computers, Proc., pages 122–126.
IEEE, 1995.

[16] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and
B. Mesman. Task-level timing models for guaranteed per-
formance in multiprocessor networks-on-chip. In CASES,
Proc., pages 63–72. ACM, 2003.

[17] R. Reiter. Scheduling parallel computations. Journal of the
ACM, 15(4):590–599, 1968.

[18] S. Ritz, M. Willems, and H. Meyr. Scheduling for opti-
mum data memory compaction in block diagram oriented
software synthesis. In Int. Conf. on Acoustics, Speech, and
Signal Processing, Proc., pages 2651–2654. IEEE, 1995.

[19] J. Sifakis. Use of Petri nets for performance evaluation.
In Measuring, modelling and evaluating computer systems
Proc., pages 75–93. Elsevier Science, 1977.

[20] S. Sriram and S. Bhattacharyya. Embedded Multiprocessors
Scheduling and Synchronization. Marcel Dekker, Inc, 2000.

[21] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs
in buffer requirements and throughput constraints for syn-
chronous dataflow graphs. To appear in Design Automation
Conferrence, Proc. ACM, 2006.

[22] N. Young, R. Tarjan, and J. Orlin. Faster parametric
shortest path and minimum-balance algorithms. Networks,
21(2):205–221, 1991.

