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Abstract—Multi-processor systems-on-chips are widely adopt-
ed in implementing modern streaming applications to satisfy
the ever increasing computing requirements. Predictable memory
hierarchies, which make memory access predictable, can better
satisfy the strict timing requirements of streaming applications.
However, different levels of the memory hierarchy vary in latency
and capacity. Hence, the system performance not only depends
on the task schedule but also closely relates with the FIFO size
distribution and FIFO allocation, which makes the scheduling
problem much more complex. We propose an efficient Iteration-
based Task-FIFO Co-Scheduling algorithm to optimize the FIFO
size distribution and task/FIFO assignment. Randomly generated
Synchronous Dataflow Graphs with different sizes and a set of
practical applications are used to evaluate the performance of
the proposed method. The experimental results demonstrate that
the proposed algorithm outperforms the load balancing method
and the Highest Access Frequency First algorithm.

I. INTRODUCTION

Modern streaming applications are computation-intensive
and have strict timing requirements. Since a large proportion of
the systems that run these applications are powered by battery,
Multi-Processor Systems-on-Chips (MPSoCs) are widely used
to obtain a better trade-off between the computational capacity
and power consumption. To diminish the effect of the memory
wall, contemporary processors are equipped with multi-level
memory architectures. For example, the memory pyramid of
a typical processor consists of registers, L1 cache, L2 cache
and off-chip memory [1]. In such a memory architecture, the
cache plays a critical role in hiding the delay of the off-
chip memory with higher latency. Nevertheless, the cache is
complex in structure, resulting in larger chip size, more power
consumption and lower access speed [2]. Besides, the occur-
rence of cache misses makes the memory access unpredictable.
To overcome these problems, predictable memory hierarchies
[3], which for example use scratch pad memories (SPMs) [2]
rather than caches, are gathering more and more attention.
Many processors, such as CompSoC [4], SB3500, CELL and
Fermi, also use SPMs to improve performance or/and provide
predicability. In contrast to caches, SPMs need to be explicitly
controlled by the compiler or programmer, making it critical
to design appropriate algorithms to make full use of it.
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Streaming applications, such as video en/decoding, voice
processing, communication protocols, software defined radio,
generally operate on large or indefinite sequences of data items
[5]. To schedule and analyze the performance of streaming
applications on a platform, a computation model is required.
The expressivity of Synchronous Data Flow (SDF) [6], [7]
fits well with the features of streaming applications and hence
SDF graphs (SDFGs) are widely used in literature [8], [9], [10]
and also in this paper. In an SDFG, tasks communicate by the
FIFO allocated to each edge. The throughput of the SDFG or
application is influenced by the size of the FIFOs, i.e., FIFO
size distribution [11]. On MPSoCs with predictable memory
hierarchy, memories on different levels differ in capacity and
latency, so the FIFO size distribution and FIFO allocation have
an important impact on the system performance. Besides, the
task allocation also has significant influence on task parallelism
and hence the throughput, making it important to combine
these aspects in the schedule. In this paper, we investigate
how to exploit the MPSoC with predictable memory hierarchy
that comprises SPMs and off-chip memory to optimize the
schedule of streaming applications modeled by SDFGs, such
that the throughput is maximized.

Though a lot of literature researches SDFG scheduling on
MPSoCs [12], [13], [14] and data allocation on multiple mem-
ory banks/modules [15], [16], [17], these works have not con-
sidered SDFG scheduling with FIFO sizing and allocation. We
propose the Iteration-based Task-FIFO Co-Scheduling (ITFCS)
algorithm to schedule streaming applications while taking into
account the memory hierarchy. The novel contribution of this
paper is a method that solves SDFG scheduling on MPSoCs
with a predictable memory hierarchy without assuming that
FIFOs all fit in the local SPM. Besides, in our method, the
instance collocation rule [18], [19] that binds each task to only
one processor is obeyed. This rule provides many advantages
[18], e.g., simplifying data management, reducing memory
consumption and avoiding graph transformation.

The proposed method is implemented in SDF3 [20], and
is evaluated by a set of practical applications and randomly
generated SDFGs. The effectiveness of the proposed method
is demonstrated by comparing the throughputs generated by
our method and other algorithms, including load balancing [8],
[21] and Highest Access Frequency First [17].



In the remainder of this paper, we use the following
notations. Z, Z+ and Z+

0 denote the set of integers, positive
integers and non-negative integers respectively. We use bold-
face capitals to denote vectors/sets and corresponding italic
lowercase letters to denote elements in them. For a vector or
set, we use | · | to denote the number of its elements.

The remainder of the paper is organized as follows. In
Section II, we discuss the related work. The models and
definitions are described in Section III. In Section IV we
formalize the problem to be solved. The algorithm is elaborated
in Section V and the experimental results are presented in
Section VI. We conclude the paper in Section VII.

II. RELATED WORK

Scheduling of Directed Acyclic Graphs (DAGs) on multi-
processors is extensively studied in [12] and [22] that focus
on scheduling without and with communication overhead
respectively. These works form the basis for SDFG scheduling.
However, SDFGs [6], [7], which are also called Weighted
Marked Graphs in Petri Net theory [23], differ significantly
from DAGs, because they can support both cyclic dependen-
cies between tasks and multi-rate dependencies. So, SDFGs are
more complex than DAGs and the DAG scheduling method
can not be applied to SDFGs directly. In [12], SDFGs are
scheduled by converting them into equivalent homogeneous
SDFGs (HSDFGs) and further transforming the generated HS-
DFGs into Acyclic Precedence Graphs (APGs) [12]. Clustering
is used in [13], [14] to reduce the scheduling complexity by
clustering tasks in an SDFG into various groups, each of which
is an indivisible scheduling element. After clustering the SDFG
into a new consistent SDFG with smaller graph size, this new
SDFG is transformed into an APG on which DAG scheduling
algorithms are used. Because the SDFG is converted to an
APG in the above methods, instances of the same task may be
allocated to multiple processors in the schedule and thus the
instance collocation rule [19] is violated. So, these methods can
not be applied to our problem. In [8], [21], load balancing is
utilized to determine the assignment of the SDFG by balancing
the computation load, communication bandwidth and memory
consumption. In these works, instances of the same task are
bound to the same processor. However, the memory hierarchy
is not taken into account. Since their task allocation strategy
fits well with the problem in this paper, we adapt it to our
problem as a comparison.

The above works have not taken memory capacity and
latency into account, except for [8] that tries to balance the
memory consumption while binding the tasks. Recently, mem-
ory allocation, including data and code allocation, captures
much attention. Reference [15] investigates allocating data to
dual banks of a single-processor so that instruction parallelism
is optimized. The authors proposed interference graphs to
model the data parallelism and transform the problem into
partitioning the interference graph into two parts. This is a
max-bisection problem and is solved by ILP. This work, how-
ever, applies only to single-processor and dual-bank memory;
moreover, it can not be applied to SDFGs used in this paper.
The authors of [16] extended the work in [15], proposing
variable independence graphs to model the data parallelism
more accurately and applying it to multiple memory modules.
The result still suffers the drawbacks of [15]. [17] researches

how to schedule tasks and partition data onto multiprocessors
with virtually shared SPMs. The authors proposed Highest
Access Frequency First (HAFF) to allocate variables to SPMs
for a given schedule. We adapt HAFF to our problem and use it
as a comparison in this paper to justify the importance of FIFO
allocation and the effectiveness of our ITFCS algorithm. While
the above works use DAGs, recently, [24], [25] investigate
similar problems for SDFGs. [24] researches how to use the
SPM of a single-processor machine to overlay the task code of
the application modeled by an SDFG such that the execution
cost of the application is minimized. This work is extended by
[25] to multiprocessors and data overlay. However, these two
works consider dynamic memory overlay, differing from FIFO
allocation considered in this paper, which is in fact a kind of
static allocation.

III. MODELS AND DEFINITIONS

In this section, we introduce the platform model and
application model for specifying the MPSoC and streaming
application. Besides, some relevant concepts and definitions
about the SDFG are also presented.

A. Platform Model

In this paper, we investigate how to schedule streaming
applications on MPSoCs with a predictable memory hierarchy,
of which the memory access time is predictable. We typically
consider the kind of predictable memory hierarchy that is com-
prised of SPMs and off-chip memory, which are all controlled
by the compiler or programmer. CompSoC is a platform of
this kind. The platform model is presented by Definition 1.

Definition 1. (Platform Model) An MPSoC with a pre-
dictable memory hierarchy is modeled as a five-tuple: PM =
(T, OCM,NIC, ini, d, s), where T is a finite set of tiles,
OCM is the off-chip memory, and NIC is the intercon-
nect. Each tile t ∈ T is a pair: t = (p, spm), where
p is the processor and spm is the SPM. We use M =
{spm0, spm1, ..., spm|T|−1, OCM} to represent the shared
memory that is available to all processors on the platform
and P = {p0, p1, ..., p|T|−1} to represent the set of processors
on the platform. ini, d are mappings, ini : P × M → Z+

0 ,
d : P×M→ Z+. ini(p,m) represents the set up time (in clock
cycles) for one memory access and d(p,m) represents the
memory access latency (in clock cycles per word) of processor
p for memory m. We use the linear model ini + d ∗ n to
represent the memory access time (in clock cycles), where n
is the data size. s is a mapping, s : M→ Z+, representing the
memory capacity (in words).

For the above platform, each processor is also equipped
with an instruction and data memory and one direct memory
access (DMA) controller. The instruction and data memory
are used for hosting code and internal data, e.g., heap and
stack, respectively. The DMA controller is used to move data
between local SPM and other SPM or off-chip memory on the
platform, such that the computation can occur in parallel with
memory accesses. Each processor can access the memories
on the same tile directly, the off-chip memory and the SPM
on other tiles by the use of the DMA. We call the access
of local SPM local access, the access of SPM on other



tiles remote access, and the access of off-chip memory off-
chip access. Generally speaking, the latencies of local access,
remote access and off-chip access differ an order of magnitude.
Fig.1 illustrates one example platform consisting of two tiles.
Each tile comprises an instruction memory IMEM, a data
memory DMEM, a scratch pad memory SPM and a direct
memory access controller DMA. For the example, for the
sake of simplicity, we assume that each SPM has size 24,
set up time zero, and we assume that the latencies of remote
access and off-chip access are one and two clock cycles per
word respectively. In this paper, we use the above platform
configuration to elaborate the example.
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off-chip memory
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DMA
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P1

SPM1

DMA

IMEM
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Tile 0 Tile 1

Fig. 1. The structure of the example MPSoC.

B. Application Model

DAGs are widely used in literature to model applications.
Recently, data flow graphs like SDFG and Scenario Aware
Dataflow Graph (SADFG) [10], [26], [27], [9] gain much
attention due to their powerful combination of expressivity and
analyzability. In this paper, we use SDF to model streaming
applications like software defined radio and multimedia ap-
plications. SDFGs can capture application execution features,
e.g., multi-rate, and also provide some useful analytical proper-
ties, e.g., deadlock, repetition vector and memory requirement
analysis, making it more attractive than DAG and other data
flow models. The SDFG model is presented by Definition 2.

Definition 2. (SDFG) A synchronous data flow graph is a
directed graph and is denoted by G = (V,E), where V is
a finite set of nodes or vertices representing tasks or actors
of an application, and E is a finite set of directed edges
denoting the communications between tasks. Each node v ∈ V
is associated with a cost c(v) representing the number of clock
cycles needed to complete an execution of the task. Each edge
e ∈ E is defined as a tuple (src, p, dst, q, iniTok, tokSiz),
where src is the source task, p is the production rate, dst is
the destination task, q is the consumption rate, iniTok is the
initial token number on the edge and tokSiz is the token size
(in words). For a given edge e, we use the notions src(e),
p(e) etc., to denote its elements. When the source task src(e)
finishes its execution, it produces p(e) tokens on the edge and
the destination task dst(e) consumes q(e) tokens from the edge
when it is invoked. We also refer to edge e as the output edge
of task src(e) and the input edge of task dst(e).

An edge whose source task and destination task are the
same is called a self-edge, representing a constraint on auto-
concurrency. In this paper, we do not consider FIFO re-

quirements of self-edges. However, it is straightforward to
incorporate it in our method. To simplify the elaboration, in
the remaining part of this paper, when we refer to SDFG,
except when stating otherwise explicitly, it means an SDFG
without self-edges. Though, it should be kept in mind that
auto-concurrency is not possible in our approach, due to the
instance collocation rule, i.e., each task is bound to one and
only one processor and all its instances should be executed on
it.

Fig. 2 shows one example SDFG with five tasks. We use
this SDFG to elaborate the problem solved in this paper. We
assume that each task in Fig. 2 has an execution time of three
and each edge has a token size of one.
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Fig. 2. The structure of the example SDFG.

Generally speaking, scheduling is the process of mapping
tasks onto the platform, ordering the executions of tasks
bound to the same processor and determining task start/finish
times. If communication latency and contention are considered,
edge scheduling [28], [22] or memory accesses should also
be incorporated into the scheduling. However, SDFGs differ
significantly from DAGs. For DAGs, the schedule objects are
tasks and edges which appear only once in the schedule, while
for SDFGs, multi-rate causes tasks to execute with different
frequencies and thus appear different numbers of times in the
schedule. We use the notions of SDFG iteration and repetition
vector to capture these features of SDFGs.

Definition 3. (SDFG iteration) An SDFG iteration is defined
as the process of executing each task the minimum positive
number of times so that the token count on each edge returns
to the initial value.

Definition 4. (Repetition vector) The repetition vector R of an
SDFG with n tasks numbered from 0 to n−1 is a column vector
of length n, and the k-th element of R equals the number of
instances of task k in an iteration. For a task v, we refer to
the number of its instances by R(v).

The repetition vector can be calculated by solving the
balance equations [6], [7]. For a DAG, each entry of R equals
one. For an SDFG or HSDFG, R exists only when the balance
equations of the graph have non-zero solutions [6], [7]. This
so-called SDFG consistency can be easily verified [7]. In
this paper, we only consider consistent SDFGs that do not
deadlock and have non-zero repetition vector. A consistent
SDFG can always be transformed into an equivalent HSDFG
[12]. However, this conversion might result in exponential
increase in graph size. The repetition vector of the SDFG in



Fig. 2 is [6, 1, 2, 3, 13]T , meaning that in one iteration tasks
a0, a1, a2, a3 and a4 have to execute 6, 1, 2, 3 and 13 times
respectively.

The throughput of the SDFG depends on the maximum
token number or the FIFO size of each edge. Since the token
size of each edge may differ, we use FIFO size in this paper.
We also use FIFO size distribution to denote the size of each
FIFO. Different distributions vary in throughput, which can be
captured by the FIFO-throughput Pareto space, each point of
which records the distribution and its throughput.

Definition 5. (FIFO size distribution) The FIFO size distri-
bution of an SDFG G = (V, E) is a mapping, fs : E → Z+,
representing the size (in words) of the FIFO allocated to each
edge. We also use fifo(e) and fs(e) to represent the FIFO and
FIFO size of edge e ∈ E.

It should be noted that an application iteration also implies
data access with respect to FIFOs of the input/output edges
of each task. Since we use FIFOs for inter-task communi-
cation, the number of FIFO writes/reads is the same as its
source/destination task occurrence in an iteration for each
FIFO.

IV. PROBLEM FORMALIZATION

In this paper, we investigate how to schedule an SDFG on
an MPSoC while exploiting the predictable memory hierarchy.
The problem is stated as follows:

Given a streaming application modeled by an SDFG and
the platform configuration modeled according to Definition
3, find the optimal FIFO size distribution, task and FIFO
allocation, such that the throughput is maximized.

In the above problem, the tasks in an SDFG interact by the
use of FIFOs that are allocated to each edge. The FIFO size is
not given a priori and should be determined by the algorithm.
Since different memories differ in capacity and latency, the
throughput not only depends on the FIFO size distribution, but
also closely relates with the FIFO allocation. Besides, the task
assignment has an important impact on the task parallelism,
making proper allocation a necessity. Therefore, all the above
aspects should be considered such that we can obtain an
optimal throughput bound.

In this paper we make the following assumptions. We
assume that the capacity of the off-chip memory is large
enough such that there is enough memory to accommodate
all the FIFOs. Besides, the IMEM and DMEM on each tile
are assumed to be large enough to accommodate the code
and stack/heap of all the tasks bound to the processor on this
tile. Moreover, for each tile, we assume that there is enough
reserved space in the local SPM for one invocation of each
task assigned to it. The reserved memory is not taken into
account in the platform model and our algorithm.

V. ITERATION-BASED TASK-FIFO CO-SCHEDULING

In this section we introduce the Iteration-based Task-
FIFO Co-Scheduling (ITFCS) algorithm to find near-optimal
solutions for the problem stated in Section IV. This algorithm
comprises four steps and one iteration. Fig. 3 outlines the
framework of our algorithm. Given an application modeled

by an SDFG, the FIFO-throughput Pareto space is computed
first. Then, one FIFO size distribution is selected, and the
FIFO Allocation Aware Task Assigning (FAATA) algorithm is
used to find the task binding. Subsequently, we use the Global
FIFO Allocation Optimizing (GFAO) algorithm to optimize the
FIFO assignment. Finally, the Earliest Task First Scheduling
(ETFS) algorithm is used to find the task and memory access
ordering and timing. In the following subsections, each step is
elaborated.

SDFG

iterate

FIFO-Throughput 

Pareto Space Searching

Earliest Task 

First Scheduling

Global FIFO 

Allocation Optimizing

FIFO Allocation 

Aware Task Assigning

Fig. 3. The framework of the Iteration-based Task-FIFO Co-Scheduling
Algorithm.

A. FIFO-Throughput Pareto Space Searching

References [11], [29] show that the FIFO size distribution
of an SDFG has significant impact on the throughput. We use
non-shared FIFO allocation [11] in which the FIFO assigned
to each edge exclusively occupies a memory block. This kind
of FIFO usage pattern simplifies the FIFO management and
complies with the concept of modular programming. In our
algorithm, each task in the SDFG is extended with a self-edge
with one initial token to avoid auto-concurrency when doing
FIFO-throughput Pareto space searching. This is because each
task is allocated to one and only one processor in our method,
which makes auto-concurrency impossible. So, by adding self-
edges, the FIFO size distributions found are more accurate
than without self-edges. Reference [11] shows that there is a
positive correlation between throughput and total FIFO size.
However, the memory capacity constraints and access latency
are not taken into account, making this result inapplicable to
our problem. For example, assuming that increasing the size of
one FIFO can improve the throughput under the model in [11],
if this makes the FIFO too large to reside in the SPM, then
it should be allocated to the off-chip memory, which would
worsen the performance. Our experiments also demonstrate
the above. So, rather than using the technique introduced in
[11] to obtain the FIFO size distribution leading to maximum
throughput without resource constraint, we use it to find all
possible Pareto points and perform iterative analysis on them.

Table I shows two FIFO size distributions of the SDFG
in Fig. 2. From the table, we can see that the total FIFO
size and the throughput of the first distribution are 4.35%
and 7.69% larger than the second one respectively. It shows
that the throughput increases with the total FIFO size in ideal



F (i, j) =

{
0, if i = 0 or j = 0
F (i− 1, j), if fs(ei) > j, i > 0, j > 0
max{F (i− 1, j), F (i− 1, j − fs(ei)) + p(src(ei)) ∗ R(src(ei)) ∗ tokSiz(ei)}, else

(1)

TABLE I. FIFO SIZE DISTRIBUTIONS OF THE EXAMPLE SDFG

Distribution Edges Total Throughputindex e0 e1 e2 e3 e4 size
1 8 6 4 14 16 48 0.025641
2 7 5 4 13 17 46 0.0238095

scenarios. However, as shown later, this is not the case when
considering the concrete platform in which memories vary in
capacity and latency.

B. FIFO Allocation Aware Task Assigning

In this subsection, we introduce the FIFO Allocation Aware
Task Assigning algorithm that is shown in Algorithm 1. The
goal of this algorithm is to find the task assignment to
tiles, determining to which processor each task should be
assigned. Rather than only considering computational paral-
lelism, which can only guarantee the performance without
inter-task communication, the potential FIFO allocation is also
taken into account such that a good balance can be made
between computation and memory access. To combine these
two aspects and make the algorithm FIFO allocation aware, we
propose a coefficient called localization coefficient to balance
the computation load and local communication. The estimated
potential local communication cost is computed according to
the recursive Equation 1 by a dynamic programming technique.
By utilizing it, a good compromise is reached. Our experiments
also demonstrate the effectiveness of it.

Algorithm 1 FIFO Allocation Aware Task Assigning Algo-
rithm
Input: application model G(V,E), platform model PM =

(T, OCM,NIC, ini, d, s) and FIFO size distribution fs :
E→ Z+.

Output: task to processor assignment proc : V→ P.
1: construct Resource-Aware SDFG.
2: compute task priority according to Equation 2.
3: sort the tasks in non-increasing order of priority, obtain

task list Q.
4: while Q ̸= ∅ do
5: pop-up the first element in Q, denote it as a.
6: for i = 0 to |P| − 1 do
7: tentatively assign task a to processor pi.
8: compute the computation load l(pi) of pi according

to Equation 3.
9: compute the estimated potential local communication

cost eplcc(pi) according to Equation 1.
10: compute the metric value metric(pi) from l(pi) and

eplcc(pi) according to Equation 4.
11: end for
12: proc(a)← argmin

pi∈P
{metric(pi)}.

13: end while

In Algorithm 1, we first construct a Resource-Aware
SDFG (RASDFG) [29] based on the application mod-
el and the FIFO size distribution generated by FIFO-

throughput Pareto space searching. The RASDFG is cre-
ated by adding FIFO size constraining edges and self-
edges to the original SDFG. For each edge e ∈ E of
the original SDFG, we add a FIFO size constraining edge
(dst(e), q(e), src(e), p(e), fs(e)−iniTok(e), tokSiz(e)) to E,
and add a self-edge (v, 1, v, 1, 1, 1) for each task v ∈ V. The
generated RASDFG corresponding to Fig. 2 is shown in Fig. 4
with the FIFO size distribution one in Table I. The generated
RASDFG is strongly connected. Since the throughput of an
SDFG is limited by its critical cycle of the corresponding
HSDFG [12], [8], we use the estimated maximum cycle mean
(MCM), which is also used in [8], to compute the task priority.
The estimated MCM of task v is computed by Equation 2,

emcm(v) = max
Cv∈Cv

∑
v′∈Vc

R(v′) ∗ c(v′)∑
e′∈Ec

iniTok(e′)/q(e′)
(2)

where Cv represents the set of cycles that include task v, and
Vc,Ec are the sets of tasks and edges of cycle Cv respectively.

For example, the priorities of tasks a0, a1, a2, a3 and a4 of
the RASDFG in Fig. 4 are 18, 42, 45, 15 and 45 respectively.
Task assigning is performed according to non-increasing order
of task priority. Each time we pop-up the first task in the
ordered task list and find the best processor where it should
be assigned. We introduce a composed metric to evaluate
the attractiveness of each processor. The metric is composed
by normalized computation load and normalized estimated
potential local communication cost. The computation load is
computed by Equation 3,

l(pi) =
∑
v∈Vi

R(v) ∗ c(v) (3)

where Vi represents the set of tasks that are assigned to
processor pi tentatively.
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Fig. 4. The RASDFG of the example SDFG.

The estimated potential local communication cost eplcc(pi)
of processor pi is calculated according to the recursive Equa-
tion 1 by a dynamic programming technique. The value of
eplcc(pi) represents the maximum achievable intra-processor



communication and indicates the priority of mapping the task
to processor pi. For processor pi, we use Vi to denote the
set of tasks that are assigned to it tentatively and use Ei

to denote the set of edges between these tasks. The edges
are indexed from 1 to |Ei|. We use the cost matrix F in
Equation 1 to store the intermediate results of the maximum
local communication cost. Each element F (i, j) of the cost
matrix F represents the maximum cost when trying to assign
the first i FIFOs to the local SPM with size j. The element
of F is initialized to be zero when the FIFO number or the
SPM size is zero. After recursively computing the remaining
elements of F (i, j), i ∈ [1, |Ei|], j ∈ [1, si], by Equation 1,
we obtain the estimated potential local communication cost
eplcc(pi) = F (|Ei|, si), where si is the size of the SPM
residing on the same tile where processor pi belongs to. As
shown in Equation 1, if the FIFO size of edge ei is larger
than the current SPM size j, then this FIFO can not reside in
the SPM and thus the cost is the same as F (i− 1, j); on the
other hand, the cost is the maximum of two costs. The first is
F (i− 1, j) which means the FIFO of edge ei is not assigned
to the SPM. The second is the sum of F (i − 1, j − fs(ei))
and the access cost of the FIFO, meaning that the FIFO of
edge ei is assigned to the SPM. The access cost of a FIFO
is the total access operations on this FIFO. Since the access
operations by the source and destination tasks are the same and
the memory reading and writing are assumed to have the same
access latency, only the operations triggered by the source task
are counted.

After obtaining the computation load and estimated po-
tential local communication cost, a metric value for each
processor pi is computed by Equation 4, in which c ∈ [0, 1]
is the localization coefficient used to weight the computation
and local communication.

metric(pi) =(1− c) ∗ l(pi)

max
pj∈P

l(pj)

+ c ∗ (1− eplcc(pi)

max
pj∈P

eplcc(pj)
), c ∈ [0, 1]

(4)

The complexity of the FAATA algorithm is
O(|P||V|SfifoSspm), where |P| is the number of processors,
|V| is the number of tasks, Sfifo is the total size of all the
FIFOs and Sspm is the maximum size of the SPMs.

For the SDFG in Fig. 2, the throughput obtained by load
balancing and our method are shown in Table II. While
distribution one has a higher throughput than distribution two
in the ideal analysis, as shown in Table I, the latter one
performs better on our example platform, with the throughput
increasing by 19.15% and 16.00% when using load balancing
and our algorithm respectively. It shows that a good FIFO
distribution in the ideal analysis does not necessarily perform
well on a practical platform, proving the necessity to search
the FIFO-throughput Pareto space. The awareness of FIFO
allocation, which is captured by our method, also improves
the performance, with the throughput increasing by 28.73%
under the former distribution and 25.33% the latter.

The task allocation with the second distribution by using
load balancing and our method are shown in Table III with

TABLE II. THROUGHPUT COMPARISON OF LB AND ITFCS.

Method Distribution number
1 2

Load balancing 1/112 1/94 19.15%
ITFCS 1/87 1/75 16.00%

28.73% 25.33% Thr impr

TABLE III. TASK ASSIGNMENT OF LB AND ITFCS.

Method Proc Ordered tasks
a2 a4 a1 a0 a3

Load balancing p0 1.00 1.00 0.21 0.47 0.75
p1 1.00 0.87 1.00 1.00 1.00

ITFCS p0 1.00 0.80 0.80 0.80 0.80
p1 1.00 0.89 0.25 0.43 0.61

bold font, and the corresponding schedules are shown in Fig.
5. When the load balancing method is used, a2, a1, a0 and a3
are allocated to p0 and a4 is allocated to p1. However, if the
FIFO Allocation Aware Task Assigning algorithm is used, the
task allocation is changed, with a2 and a4 being allocated to p0
and a1, a0 and a3 being allocated to p1. Because the ordered
task list is a2, a4, a1, a0, a3, so a2 is assigned first, processor
p0 is selected arbitrarily since both the processors are the same.
Then, a4 is to be allocated. When using load balancing, a4 is
allocated to p2 to balance the computation load. However, by
using the method proposed in this paper, a4 is still allocated
to p1 since there is an edge, i.e., e4, between a2 and a4, as
shown in Fig. 2. The existence of e4, as shown in Table III,
changes the attractiveness of p0 defined by metric of Equation
4 from 1.00 to 0.80 while p1 increases from 0.87 to 0.89, so,
a4 is allocated to p0. This new allocation, as shown in Table II
and Fig. 5, decreases the schedule length from 94 to 75, with
the throughput improving by 25.33%.

In Fig. 5, both the schedules are illustrated by Gantt
charts. The executions of different tasks are represented by
rectangles of different colors and background patterns, and
each remote memory access is represented by the rectangle
of the same color and background pattern with the task that
triggers this memory access. In Fig. 5(a), fifo(e1) and fifo(e4)
are assigned to spm1, and the others are assigned to spm0. For
this allocation, the overhead of transferring the output data of
a2 is quite large, which increases the schedule length. In Fig.
5(b), fifo(e2) and fifo(e4) are assigned to spm0, and the others
are assigned to spm1. For this allocation, task a2 and task a4
are allocated to the same processor and fifo(e4) is assigned to
the local SPM, so the overhead of transferring the output data
of a2 and the schedule length is smaller.

C. Global FIFO Allocation Optimizing

Given the FIFO size distribution and task assignment,
we try to optimize the FIFO allocation by the Global FIFO
Allocation Optimizing algorithm. As demonstrated by our
experiments, the system throughput depends strongly on the
FIFO allocation. We design a dynamic programming based
Global FIFO Allocation Optimizing algorithm shown in Algo-
rithm 2 to find the optimal FIFO allocation by minimizing the
total memory access cost. While Algorithm 1 considers only
potential local memory access, the algorithm introduced in this
subsection takes into account not only local memory access,
but also remote and off-chip memory accesses. Besides, the
memory access cost used in this subsection is different from
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Fig. 5. Schedules of the example SDFG with distribution 2 by load balancing
(a) and ITFCS (b).

Algorithm 2 Global FIFO Allocation Optimizing Algorithm
Input: application model G(V,E), platform model PM =

(T, OCM, ini, d, s) , FIFO size distribution fs : E→ Z+.
Output: FIFO allocation.

1: define vector L, Li = s(mi),∀i ∈ [0, |M| − 1].
2: let ∆ = ∅, add root node (|E| − 1,L) to ∆.
3: constructDPTree(|E| − 1,L,∆).
4: trace ∆ and find the FIFO allocation.

5: function constructDPTree(i,L,∆) :
6: for j = 0 : |M| − 1 do
7: if fs(ei) ≤ Lj then
8: let L′ = L.
9: let L′

j = L′
j − fs(ei).

10: if node (i− 1,L′) /∈ ∆ then
11: add node (i− 1,L′) to ∆.
12: if i > 1 then
13: constructDPTree(i− 1,L′,∆).
14: else
15: compute the cost of (0,L′) by Equation 5.
16: end if
17: end if
18: add directed edge ((i,L), (i− 1,L′)).
19: compute the edge weight fac(i, j) by Definition 6.
20: store the FIFO mapping indicated by the edge:

fifo(ei)→ mj .
21: end if
22: end for
23: compute the cost of (i,L) by Equation 6.

Algorithm 1 by considering memory access latency. The FIFO
access cost is defined by Definition 6.

cost(0,L) = min
j∈[0,|M|−1],Lj≥fs(e0)

{fac(0, j),+∞} (5)

Definition 6. (FIFO Access Cost) The FIFO access cost
fac(i, j) is the summation of the access costs of the source
task and destination task of edge ei to FIFO fifo(ei) when it is
allocated to memory mj . The value depends on where fifo(ei),
the source task and destination task of edge ei, i.e., src(ei)
and dst(ei), are allocated. If fifo(ei), src(ei) and dst(ei) are
allocated to the same tile, then fac(i, j) = 0. If fifo(ei) is

allocated to the off-chip memory or a tile different from both
tiles where src(ei) and dst(ei) are assigned, then the cost is
computed by Equation 7. If fifo(ei) and src(ei) are assigned
to the same tile, while dst(ei) is assigned to another tile, then
the cost is computed by Equation 8. If fifo(ei) and dst(ei)
are assigned to the same tile, while src(ei) is assigned to
another tile, then the cost is computed by Equation 9. In these
equations ini is the number of clock cycles needed to initialize
the memory access. For the off-chip memory, if DRAM is used,
then the refresh time should be added to ini so that hard real-
time requirements can be guaranteed.

We use backward dynamic programming to solve the FIFO
allocation problem. In Algorithm 2, a dynamic programming
tree or the FIFO allocation tree ∆ is constructed first by
the use of recursive function constructDPTree. Each path
starting from the root of ∆ and ending at its leaf represents
one possible FIFO allocation strategy, which is dictated by the
edges of the path. The cost of each node is computed by the
use of Definition 6 while constructing the tree. At last, the
optimal FIFO allocation is determined by tracing ∆ from root
to leaf node. The cost of each node (i,L) in ∆ represents the
minimal memory access cost when allocating the first i FIFOs
to the memory hierarchy with the memory sizes represented by
the vector L, the index of which is the index of the memory.
The cost of each node is recursively calculated based on its
child nodes and the edges between them, as shown in Equation
6, being aware that (i− 1,L− L′) is the child node of (i,L)
and fac(i, j) is the weight of the edge between them. After
recursively computing the cost of each node in ∆, the minimal
cost of FIFO allocation is obtained, with the value equaling the
cost of the root node, and the best FIFO allocation strategy can
be found by tracing from the root to the leaf nodes of ∆. The
tracing process is as follows. Set the root node as the current
node. Then iterate the following process until the allocation of
all FIFOs are determined. Find the current node’s child node,
whose cost sums with the weight of the edge between it and
the current node equals the cost of the current node, then the
FIFO allocation is determined by this edge. Store the above
result, set this child node as the current node and iterate the
above process. If the current node is a leaf node, e.g., (0,L),
then fifo(e0) is allocated to memory mj , for which fs(e0) ≤ Lj

and cost(0,L) equals fac(0, j).

Fig. 6 shows one example of GFAO. Suppose we
have two memories, i.e., m0,m1, and three FIFOs, i.e.,
fifo(e0), fifo(e1), fifo(e2). The sizes of the memories and FIFOs
and the corresponding FIFO access costs are shown in the left
side of the graph. The right side is the FIFO allocation tree
constructed by the GFAO algorithm. Each node and edge of the
FIFO allocation tree has a label. The pair of the label denotes
the node or FIFO allocation (the first element is the FIFO
index and the second is the index of the memory to which the
FIFO is allocated), and the number below the pair is the cost
of the node or the weight of the edge. For this example, the
root node (2, [6, 8]) is constructed first, and then the tree is
built recursively. For the root node, the child node (1, [1, 8])
is added since fs(e2) is smaller than 6. For node (1, [1, 8]), it
only has one child node, since fs(e1) is larger than 1. Then the
leaf node (0, [1, 6]) is added. Its cost is computed by Equation
5, i.e., 2. The edge between node (1, [1, 8]) and node (0, [1, 6])
is added. The temporary allocation of fifo(e1) is recorded and



cost(i,L) = min
j∈[0,|M|−1],Lj≥fs(ei),L′=0,L′

j=Lj

{
cost(i− 1,L− L′) + fac(i, j),+∞

}
(6)

fac(i, j) = R(src(ei)) ∗ (ini(ps,mj) + p(ei) ∗ tokSiz(ei) ∗ d(ps,mj))

+ R(dst(ei)) ∗ (ini(pd,mj) + q(ei) ∗ tokSiz(ei) ∗ d(pd,mj))
(7)

fac(i, j) = R(dst(ei)) ∗ (ini(pd,mj) + q(ei) ∗ tokSiz(ei) ∗ d(pd,mj)) (8)

fac(i, j) = R(src(ei)) ∗ (ini(ps,mj) + p(ei) ∗ tokSiz(ei) ∗ d(ps,mj)) (9)

the weight of this edge is computed by Definition 6, i.e., (1, 1)
and 3. At this time, all the children of node (1, [1, 8]) have
been constructed. So the cost of this node is computed, i.e., 5.
After that, an edge between (2, [6, 8]) and (1, [1, 8]) is added
and labeled. Proceed with the above process and we can obtain
the FIFO allocation tree. Trace the tree and we can find the
path with the edges in red dash line that results in the cost
of the root node. So the final FIFO allocation is as follows:
fifo(e0), fifo(e1)→ m0, fifo(e2)→ m1.

FIFO access cost
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Fig. 6. The example of GFAO.

D. Earliest Task First Scheduling

In this subsection we introduce the algorithm used to
construct the final schedule, including task and memory access
ordering and timing. The method used is Earliest Task First
by taking into account the FIFO size constraints, memory
access latency and contention. As shown in Algorithm 3, each
time we tentatively schedule one task instance, if available,
and find its earliest start time. The instance with the minimal
start time is selected and scheduled. The memory accesses
required by the task instance are scheduled at the same time.
The above process is stopped when a full iteration is finished.
The insertion strategy, which has the potential to improve the
performance, is used in our method. By the above way, a
blocked schedule [12] is obtained, and we use the reciprocal
of the schedule length of it as the throughput.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed algorithm exper-
imentally by comparing our method with the load balancing
method [8] and the HAFF algorithm [17]. The load balancing
method used for comparison binds tasks of the SDFG to
processors while balancing the computation load. The tasks
are bound in non-increasing order of the task priority defined
as the estimated maximum cycle mean of any execution cycle

Algorithm 3 Earliest Task First Scheduling Algorithm
Input: task and FIFO allocation.
Output: task and memory access schedule.

1: let Rem = R, denoting the remaining number of invoca-
tions of each task in the SDFG.

2: while Rem != 0 do
3: ready task list A = ∅.
4: for each task v in V do
5: if Rem(v) > 0 && input FIFOs of v are ready then
6: tentatively schedule memory accesses of v.
7: tentatively schedule v.
8: store the earliest start time of v.
9: push back v to A.

10: end if
11: end for
12: select the task v′ in A with the minimum start time.
13: schedule task v′ and its memory accesses.
14: Rem(v′)← Rem(v′)− 1.
15: end while

containing that task. The HAFF algorithm assigns FIFOs in
non-increasing order of FIFO access frequency. In the remain-
ing section, we first introduce the platform configuration and
the benchmark used in the experiments. Then, the algorithm
performance is evaluated in terms of throughput.

A. Platform Configuration and Benchmark

We use two sets of MPSoCs in our experiments. One is
with two processors and the other is with four. We assume the
processors and memories are interconnected by network-on-
chip (NOC) [4], [30] and the NOC links are entirely reserved
for our application. The memory access delay is primarily
composed of the NOC delay and the memory response delay.
Data traversing the NOC link can be pipelined, so the delay
equals 4+n, assuming that the link and router delay are both
one cycle [30] and all routes are of two hops, where n is
the data size. The memory response delay depends on the
memory type. For the SPM, the response delay is generally
one cycle [2], so, the memory access delay of a remote SPM
is 4+2n. For the off-chip memory, considering DDR3 with a
transfer rate of 128M words/s, the memory response delay is
8 cycles. Assuming the refresh time of the off-chip memory is
56 cycles and there is no memory access contention, the worst-
case memory access delay is 60+9n. So, in our experiments,
we configure the set up time and latency of the remote SPM



as 4 and 2, and that of the off-chip memory as 60 and 9.

We use a set of practical applications and randomly gen-
erated SDFGs with different sizes as benchmarks for perfor-
mance evaluation. The practical applications include the H.263
decoder [8], H.263 encoder [31], samplerate conversion [32],
bipartite [32], and the MPEG-4 SP decoder [10]. The open
source tool SDF3 [20] is used to generate random SDFGs
of 5, 10 and 15 tasks. The repetition vector is also randomly
generated with a constraints on the sum of the repetition vector
entries. In our experiments, the constraint is set to be five times
the number of tasks. Hence, there are about 25 to 75 task in-
stances in one application iteration. The graph properties such
as in-degree/out-degree and edge production/consumption rate
are all randomly generated given the corresponding average
value, minimum/maximum value and variation. The in-degree
and out-degree are both given the average value and variation
of 2, the minimum value of 0 and the maximum value of 4.
The production and consumption rates are given the average
and variation of 5 and 7, the minimum value of 1 and the
maximum value of 9. For each graph size, 100 random graphs
are generated. The SDFG parameters, including task execution
time and edge token size, are randomly generated. The task
execution time is uniformly distributed between 400 and 1000,
and the token size is randomly generated under the constraint
of communication and computation ratio which is defined as
the ratio between the number of memory access operations and
the total task execution time.

B. Results of Random Applications

Tables IV and V show the experimental results of randomly
generated applications on the MPSoC with two and four
processors respectively. The first column represents the task
number of the randomly generated SDFGs. The column “Iter-
ation” represents the throughput improvement by iterating the
FIFO-throughput Pareto space over using the FIFO distribution
with the maximum ideal throughput. The column “FAATA
vs LB” represents the throughput improvement by the use of
FAATA over the load balancing method. The column “GFAO
vs HAFF” represents the throughput improvement by the use
of GFAO over HAFF.

From Table IV, we can see that the iteration strategy can
improve the throughput substantially for SDFGs of different
sizes, with the average improvement ranging from 13% to 28%
for benchmarks with different task number. It demonstrates
that the FIFO size distribution affects the system performance
and it is of great importance to set the FIFO size of each edge
correctly to achieve a higher throughput. The column “FAATA
vs LB” shows that the algorithm FAATA outperforms the load
balancing method. The throughput improvement of FAATA
over LB is about one third for all our benchmarks, proving that
it is important to consider the potential FIFO allocation when
assigning the tasks. The column “GFAO vs HAFF” shows that
GFAO can produce better FIFO allocation than HAFF. The
system throughput, by the use of GFAO, improves 18% to
30% for different application sets.

From Table V, we can see that the iteration strategy is
also effective for platforms with more processors, with the
improvement amounting to about 12% for different sets of
SDFGs. However, the value is smaller than that in Table IV,

TABLE IV. THROUGHPUT IMPROVEMENT OF RANDOM BENCHMARKS
ON THE MPSOC WITH TWO PROCESSORS.

Task Num Iteration FAATA vs LB GFAO vs HAFF
5 28% 36% 18%

10 19% 41% 30%
15 13% 41% 21%

because the number of memories is larger in this experiment
and hence the influence of FIFO size distribution is reduced.
The column “FAATA vs LB” shows that the algorithm FAATA
outperforms the load balancing method. The throughput im-
provement of FAATA over LB amounts to about one third for
different benchmarks. The effectiveness of GFAO, however,
is far smaller, with the throughput improvement of GFAO
over HAFF reaching only 2% for the benchmark with 5
tasks. Because the processor number is comparable to the task
number, hence the tasks are assigned to processors uniformly,
in such a case, the HAFF and GFAO would produce similar
allocations. For SDFGs with 10 and 15 tasks, the throughput
improvement of GFAO reaches 8% and 13% respectively.

TABLE V. THROUGHPUT IMPROVEMENT OF RANDOM BENCHMARKS
ON THE MPSOC WITH FOUR PROCESSORS.

Task Num Iteration FAATA vs LB GFAO vs HAFF
5 12% 33% 2%

10 13% 35% 8%
15 10% 37% 13%

C. Results of Practical Applications

Table VI shows the experimental results of practical ap-
plications on the MPSoC with two processors. The iteration
strategy has significant performance improvement except the
H.263 encoder. This is because different FIFO allocations
of the H.263 encoder have minimal difference, making the
iteration strategy ineffective. FAATA is effective for all re-
al applications except the H.263 encoder and MPEG-4 SP
decoder. One common feature of these two applications is
that several tasks and the related FIFOs dominate the total
execution time and memory requirement. In such a case, the
load balancing method seems to produce a quite good task
assignment. From the last column of Table VI it is shown
that for real applications the FIFO allocation has more impact
on the system performance. For the applications we use, the
throughput improvement of CFAO over HAFF ranges from
45% to 93%, a value being far larger than that of randomly
generated applications. This implies that the performance is
application structure dependent. It needs further research how
to incorporate the application structure into the algorithm.

TABLE VI. THROUGHPUT IMPROVEMENT OF REAL APPLICATIONS ON
THE MPSOC WITH TWO PROCESSORS.

Task Num Iteration FAATA vs LB GFAO vs HAFF
H.263 decoder 31% 13% 45%
H.263 encoder 0.02% 0.23% 86%

samplerate conversion 38% 7% 93%
bipartite 51% 21% 56%

MPEG-4 SP decoder 21% 0.5% 88%

VII. CONCLUSIONS

In this paper, we investigate the problem of scheduling
streaming applications on multi-processor systems-on-chips
with predictable memory hierarchy by taking into account



memory access latency and memory capacity constraints. We
propose an efficient Iteration-based Task-FIFO Co-Scheduling
(ITFCS) algorithm, consisting of FIFO-Throughput Pareto
Space Searching, FIFO Allocation Aware Task Assigning
(FAATA), Global FIFO Allocation Optimizing (GFAO) and
Earliest Task First Scheduling (ETFS) algorithms, to solve
the problem defined in this paper. Extensive experiments are
carried out on both random SDFGs and practical applications.
Experimental results show that our method outperforms the
load balancing method and Highest Access Frequency First
(HAFF) algorithm. Useful directions for future work include
improving the scalability such that the method can be efficient-
ly applied to large-scale problems, modeling the task/memory
schedule in the SDFG to enable accurate throughput analysis,
and using the schedule result as feedback for searching the
FIFO distribution.
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