
Hardware Approximation of Exponential
Decay for Spiking Neural Networks

Sherif Eissa
Eindhoven University of Technology

Eindhoven, The Netherlands
s.s.b.eissa@tue.nl

Sander Stuijk
Eindhoven University of Technology

Eindhoven, The Netherlands
s.stuijk@tue.nl

Henk Corporaal
Eindhoven University of Technology

Eindhoven, The Netherlands
h.corporaal@tue.nl

Abstract—Spiking neural networks (SNNs) may enable low-
power intelligence on the edge by combining the merits of
deep learning with the computational paradigms found in the
human neo-cortex. The choice of neuron model is an open
research topic. Many spiking models implement neural dynam-
ics from biology that involve one or more exponential decay
functions. Previous work focused on accurate modeling of the
exponential decay function on neuromorphic hardware to the
last significant bit (LSB). In this paper, we explore the limits
of error resilience in SNNs by aggressively approximating their
exponential decay functions and allowing for losses within our
bit precision. Three approximation methods are presented and
implemented with varying degrees of precision resulting in 10
different implementations. Their hardware cost and inference
accuracy on benchmark networks and applications are compared.
To improve the inference accuracy, we implemented fine-tuning.
We also introduced hardware programmability for certain time
constants as hyperparameters. Our results show resilience to lossy
approximation, fast fine-tuning, and a low energy consumption
of 47 fJ per operation.

Index Terms—Neuromorphic Computing, Spiking Neural Net-
works, Exponential function, Error Resilience, Deep Learning

I. INTRODUCTION

SNNs are the next generation of deep learning models that
can enable efficient low power real-time edge applica-

tions. SNNs can leverage event-based neuromorphic systems
to exploit sparsity. In addition to weights, neuron models
contain states (e.g, neuron’s potential) which hold the temporal
history left by previous inputs. Figure 1 shows the dynamics
of the famous Leaky Integrate and Fire (LIF) neuron [1].
Upon receiving an input spike, the neuron’s potential increases
according to the synaptic strength (weight). This potential
leaks (i.e., exponentially decays) through time [1] until the
neuron returns to the rest potential if it remains unexcited
for enough time. If the neuron’s potential reaches a certain
threshold, it fires, releasing its potential as an output spike to
connected neurons and it returns to its resting potential.

Implementing exponential decay accurately in hardware is
resource and energy inefficient. Deep networks have shown to
be error resilient [2]. In this paper, we exploit this resilience to
approximate the decay function to save resources and energy.
We explore three methods; two known methods (i.e., PWL and

This work is funded by the NWO Perspectief program EDL (P16-25).

Fig. 1: LIF dynamics.

LUT) and a novel one called logarithmic scaling. We systemat-
ically study aggressive approximation by implementing each
method with different precision levels and comparing their
costs and accuracy on benchmark networks. We also recover
accuracy loss through fine-tuning.

All three methods use fixed time constants. In practice,
SNNs require decay functions with different time constants.
Related work scale the inter-spike interval (ISI) to be in
accordance with the time constant of a neuron’s state (τ )
[3], we call this pre-processing. We study the feasibility of
programming the hardwares’ time constant at compile-time
hereby saving cost for systems with few time constant values.

Section II discusses related work. Section III presents our
proposed approximations while programmability is discussed
in Section IV. Sections V and VI describe our experiments
on benchmark networks and applications and hardware evalu-
ation. Section VII concludes our work.

II. RELATED WORK

[4], [5] approximated the exponential function using Taylor
series and CORDIC based routines, respectively. These solu-
tions are iterative and are not pipelined. Pipelining is essential
for digital neuromoprhic hardware to enable multiplexing of
many neurons on the same computational hardware [6].

TS-EFA [3] and [7] are Look-up Table (LUT) based
implementations that use two LUTs to calculate two factors.
[7] calculates remaining third factor as a 4th order Taylor
series. We extend them in Section III-A with aggressive
approximation and we implement TS-EFA as our baseline.

[8] implements a piece-wise linear (PWL) approximation
that targets the Softmax activation function in Artificial Neural



Fig. 2: Some implementations plotted together.

Networks. The slopes are realized using bit-shifts and adders.
We extend this work for SNNs in Section III-B.

III. EXPONENTIAL DECAY APPROXIMATION

In this section, we will discuss the theory and imple-
mentation of our three methods: LUT-based, PWL, and our
novel logarithmic scaling methods. Our contribution, besides
logarithmic scaling, is an aggressive approximation, allowing
for significant loss in SNN inference accuracy rather than
functional accuracy. The cost of pre-processing is hidden. We
map exponent values between around -3 and 0 since exponents
beyond -3 cause heavy decay (< 5%) and are considered zero.
Figure 2 shows different implementations.

A. LUT-based implementation

In this method, we make use of the product rule of exponen-
tial functions. Due to our limited mapping, we only require
two integer bits for our calculations. We use two LUTs to
calculate the output potential according to equation (1) where
xL and xS are the two factors stored in the two LUTs. We
scale the precision with different LUT sizes; 16x16, 16x8 and
8x8 to implement exponential decay with 2.6, 2.5 and 2.4 bits
precision, respectively. This method requires two multipliers.

Sout = Sin × e−x = Sin × e−xL × e−xS (1)

The relative error of LUT implementation is uniformly
distributed across the input domain as a periodic saw-tooth
shaped function (see Figure 2). The period and magnitude of
the relative error is dependent only on the bit precision.

B. Piecewise Linear (PWL) Functions

PWL converts a function into regions interpolated by linear
functions. We evaluate 4 PWL implementations of varying
complexity: PWL25, PWL50, PWL100 and Bi-linear. Bi-
linear consists of two linear functions for x ∈ [−3, 0] while
others consist of one linear function for x ∈ [−3,−2] and
linear functions every 0.25, 0.5 and 1 step for x ∈ [−2, 0] for
PWL25, PWL50 and PWL100 respectively.

Similar to [8], we approximate the slopes of functions to
the nearest 3 binary factors and implement them using 3 shift

registers and adders. In addition, a MUX and registers are used
to choose the appropriate linear function except for PWL25
which uses LUTs. Finally, a multiplier is used to multiply the
decay with neuron’s state and produce the neuron’s final state.

C. Logarithmic Scaling (LOG)

Logarithmic scaling breaks down the exponential function
to easily calculated factors using the product rule. While
LUT-based approximation uses equidistant points to calculate
exponent factors, simplifying point selection to simple mem-
ory accesses, but requiring two multipliers to calculate the
factor and the final result. Logarithmic scaling, on the other
hand, chooses easily calculated factors, putting strain on point
selection, but simplifying calculations.

LOG uses logarithmically spaced factors in the input do-
main (i.e, x1 ≈ 0.5x2) for small negative exponents (x >
ln(0.5)) and in the output domain (i.e, y1 = 2y2) for large
negative exponents (x < ln(0.5)) (see LOG1 in Figure 2)
where factors take the form Sout = Sin − Sin2−n for small
negative exponents and Sout = Sin2

−n for large negative
exponents - see Figure 3. This simplifies translating factors
and neuron states to shift and subtract operations (i.e, no
multipliers are needed). However, it complicates point selec-
tion to parallel comparison and thermometer decoding. Each
LOG stage produces one factor similar to equation (1) whereas
stages can be cascaded to improve precision.

The number of points is limited, which makes point selec-
tion feasible. Furthermore, only the first stage compares large
negative exponents. For large exponents, n goes from 1 to 5,
while for small exponents, n goes from 2 to 6. Hence, the first
stage requires 10 comparisons while the others only require 5.

Each extra stage heavily increases accuracy - see LOG1 vs
LOG2 in Figure 2. This comes at a significant hardware cost.
However, increasing n for small exponents increases precision
for very small inputs at an insignificant cost. LOG can be
iterative by reusing a single stage, to provide trade-off between
accuracy and energy/latency but at the cost of pipelining [4].

We implemented LOG1, LOG2 and LOG3 with one, two,
and three factorization stages. Figure 3 shows a simplified
dataflow diagram of the first LOG stage. Parallel comparisons
are done and counted (pop-count) to calculate shift value (n).
We subtract the chosen factor from the exponent to produce
exponent remainder for the next stage if needed.

LOG has a desired effect for SNNs. It has a low relative
error for smaller exponents and a relaxed relative error for
larger ones due to the logarithmic scaling of points (Figure 2).

For inference accuracy, we are interested in the compounded
error in between two output spikes which can cause a shift
in output spike times between the exact and approximated
models. If the ISI between two spikes is large (e.g, greater
than τ ) and thus the exponent is large, the neuron state decays
significantly. This implies that the history held by the neuron
state has become less significant to the output and does not
require precise calculation. For small ISIs, we observed two
cases: a) if the input spike responses are strong (due to having
a strong synaptic weight), the amount of compounded error is



>?

ln(63/64)

>?

ln(3/4)

…
…

Pop-Count

Sin– (Sin>>n)
Or Sin>>n

exp factor

exponent

Sin

n

ln(1/64)

ln(1/2)

……

…
…

 exp – exp 
factor

exponent 
remainder

>?

>?

>?

ln(31/32)

Sout

……

Fig. 3: Simplified RTL of first stage of Logarithmic scaling.

relatively low due to the low number of events needed to reach
the firing condition, b) if the input spike responses are weak,
the amount of compounded error is relatively high due to the
high number of events needed to reach firing condition. This
can cause a significant error in relative output spike timing.
Hence, relative error is more significant for small negative
exponents. The relationship between events and the overall
error can be expressed as:

DecayError = EPENE, (2)

where EPE is the average error per event and NE is the number
of input events received between two output spikes.

LOG does not require multiplication. Each stage consists of
comparators, 1 shift register and 1 subtractor for the output,
and a MUX and a subtractor for calculating the exponent
remainder in intermediate stages.

IV. PROGRAMMABILITY

It is common for SNNs found in literature to have one time
constant parameter per layer or even for the entire network [9],
[10], [11], [12], [13]. Hence, a fairly good neuromorphic
compiler can compile a network such that each computational
hardware deals with a specific time constant parameter for all
its neurons. Hence, programming our hardware with a specific
time constant is a useful feature to save pre-processing cost.

LUTs can be programmed to be directly accessed with ISI
without pre-processing. This idea was demonstrated in [3].
However, in our implementation, the limited sizes of our LUTs
might be insufficient for some networks according to their time
constants and their time granularity (dtτ ). The condition for
programmability is that the decay from ISIs beyond the LUT
sizes (i.e, ISI > LUT1×LUT2) can be safely approximated to

zero (e
dt
τ LUT1×LUT2 ≈ 0). This can be verified by simulation

on inference engines. Otherwise, we recommend larger LUTs
to avoid performance variation.

For PWL implementations, programmability complicates
region selection. This reduces the benefits of programmability
which looks to remove the cost of one multiplication.

For logarithmic scaling, programmability is very simple. It
only requires scaling the comparator constants by multiplying
them with the time constant τ .

V. EXPERIMENTAL RESULTS

A. Models

To test our implementations, we chose three benchmark
networks. We chose networks with simplified neuron models
that are suitable for event-based computation such as LIF
or Adaptive exponential integrate-and-fire (AdEx) as well
as inhibitory (negative excitation) neurons. We also chose
networks that capture different properties found in SNN, such
as deep versus shallow, feed-forward versus lateral versus
recurrent, and dense versus sparse architectures.

1) SRNN is a spiking recurrent neural network architecture
[14]. It contains feed-back connections per layer. It applies LIF
and AdEx neurons. SRNN uses trainable time constants which
are shown to increase learning capability. However, it increases
the memory footprint and bandwidth during operation and
disables programmability of the exponential decay hardware.
We tested this network on one of its reported benchmark
applications; the Spiking Heidelberg Dataset [15].

2) LSNN is a sequential spiking neural network [12]. The
architecture contains LIF and AdEx as well as inhibitory
neurons. The architecture is relatively shallow and lateral.
The authors also apply a rewiring technique, Deep R [12],
which prunes connections. We tested this network on one of
its reported benchmark applications; Sequential-MNIST [16].

3) [13] is an SNN architecture able to train very deep net-
works like VGG [17] and ResNet [18] on relatively advanced
applications in the SNN world. It avoids the expensive back-
propagating through time technique used in Recurrent Neural
Networks and most SNNs trained with gradient descent [10].
We tested this architecture on one of its reported benchmarks;
CIFAR-10 dataset [19] on VGG9.

B. Results

We tested all our ten implementations on all three bench-
mark networks and applications. Table I summarizes the
inference accuracy of all implementations on all benchmarks.

For LUT implementations, 2.6b performed well while 2.5b
and 2.4b suffered performance drops on SRNN and LSNN
benchmarks. For PWL implementations, PWL25 and PWL50
performed well while PWL100 and bi-linear suffered from
significant performance drops across all applications. For LOG
implementations, LOG2 and LOG3 performed well while
LOG1 suffered minor performance drops on SRNN and LSNN
benchmarks. When performance degraded, fine-tuning (i.e,
retraining) recovered accuracy loss in little time (≈ 1epoch).
Since these approximations are event-based (ISI dependent),



TABLE I: Inference accuracy of implementations on bench-
marks applications.

Exp Function LSNN SRNN [13] Top 5 [13] Top 1
S-MNIST SHD CIFAR-10 CIFAR-10

Baseline 93.00% 84.72% 99.09% 90.14%
LUT 2.6b 93.00% 84.32% 99.09% 90.14%
LUT 2.5b 91.00% 80.12% 99.09% 90.16%

Fine-tuned LUT 2.5b 92.90% 84.2%
LUT 2.4b 73.50% 80.43% 99.14% 90.14%

Fine-tuned LUT 2.4b 92.50% 83.25%
PWL25 92.90% 84.54% 99.15% 90.26%
PWL50 92.90% 84.23% 98.98% 90.38%

PWL100 64.60% 82.16% 96.36% 87.94%
Fine-tuned PWL100 93.00% 85.63% 99.05% 90.15%

Bi-linear 52.30% 81.32% 93.51% 81.19%
Fine-tuned Bi-linear 92.70% 84.63% 99.10% 90.30%

LOG3 93.40% 84.98% 99.07% 90.25%
LOG2 92.60% 85.34% 99.07% 90.30%
LOG1 89.50% 79.59% 99.35% 89.96%

Fine-tuned LOG1 92.70% 84.76%

TABLE II: Hardware evaluation of implementations.

Implementation Delay (ns) Area (µm2) Power (µW ) PDP (fJ)
Pre-processing 1.2 360 19 23
Baseline [3] 5.75 24060 97 558

Baseline [3] P 4.55 23700 78 355
LUT 2.6b 5.75 6060 88 507

LUT 2.6b P 4.55 5700 69 314
LUT 2.5b 5.75 5760 87 501

LUT 2.5b P 4.55 5400 68 309
LUT 2.4b 5.75 5460 86 496

LUT 2.4b P 4.55 5100 67 305
PWL25 4.85 4540 64 313
PWL50 4.45 4000 67 300
PWL100 4.25 4000 65 279
Bilinear 4.25 4000 62 266
LOG3 7.2 3160 114 820

LOG3 P 6 2800 95 570
LOG2 5.2 2560 85 445

LOG2 P 4 2200 66 265
LOG1 3.2 1300 43 137

LOG1 P 2 940 24 47

they are ill-suited for CPU/GPU execution and are slower to
simulate. However, it is fine for training only a few epochs.
Hence, we conclude that approximations should be applied
after training and with the help of quick fine-tuning.

VI. HARDWARE EVALUATION

Designs were implemented in C++ using Vivado HLS. We
used Cadence Genus for RTL synthesis. Post-synthesis results
were obtained using 45nm GDPK technology library in the
slow corner at 1.2V using 16-bit fixed point data type for the
network and exponents and 8-bit integer data type for the ISI.

Table II summarizes the hardware costs of all our imple-
mentations and TS-EFA [3] as a baseline, where ’P’ refers to
programmable designs and pre-processing is shown separately.
We highlight in bold the best implementation that preserves
accuracy and the best implementation regardless of accuracy.

Our results show that LOG2 and PWL50 implementations
are the best implementations that preserve inference accuracy.

However, programmability favors LOG2. LOG1 outperforms
all other implementations, but requires fine-tuning.

VII. CONCLUSIONS

In this paper, we have presented different approximations
for exponential decay, including a novel implementation. We
have systematically implemented different levels of precision
and tested their performance on benchmark networks. Log-
arithmic Scaling outperforms known approximations meth-
ods while being easy to program to specific time constants
without any performance variation. Our work concluded that
an exact calculation is an overkill and networks can be
error resilient and can very quickly fit (i.e, be fine-tuned) to
other decay approximations. Our work also encourages the
use of simplified decay functions (e.g, linear decay function
[20]) after training. The implications of using different leak
functions other than the exponential decay function require
more in-depth analysis into the effects of decay on network
performance and robustness [21].

REFERENCES

[1] Wulfram Gerstner et al. Neuronal Dynamics: From Single Neurons to
Networks and Models of Cognition. Cambridge University Press, 2014.

[2] Z. Du et al. Leveraging the error resilience of machine-learning
applications for designing highly energy efficient accelerators. In 2014
19th Asia and South Pacific Design Automation Conference (ASP-DAC).

[3] J. Kim et al. Ts-efa: Resource-efficient high-precision approximation of
exponential functions based on template-scaling method. In 2020 21st
International Symposium on Quality Electronic Design (ISQED).

[4] D. Wu et al. Seco: A scalable accuracy approximate exponential function
via cross-layer optimization. In ISLPED, pages 1–6, 2019.

[5] M. Heidarpour et al. A cordic based digital hardware for adaptive
exponential integrate and fire neuron. IEEE Transactions on Circuits
and Systems, 2016.

[6] M. Davies et al. Loihi: A neuromorphic manycore processor with on-
chip learning. IEEE Micro, 38(1):82–99, 2018.

[7] J. Partzsch et al. A fixed point exponential function accelerator for a
neuromorphic many-core system. In ISCAS, pages 1–4, 2017.

[8] X. Geng et al. Hardware-aware exponential approximation for deep
neural network. Asian Conference on Computer Vision, 2018.

[9] I. M. Comsa et al. Temporal coding in spiking neural networks with
alpha synaptic function. In ICASSP, 2020.

[10] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. Synaptic plasticity
dynamics for deep continuous local learning. CoRR, 2018.

[11] L. Zhang et al. Tdsnn: From deep neural networks to deep spike neural
networks with temporal-coding. AAAI, 2019.

[12] Guillaume Bellec, Wolfgang Maass, et al. Long short-term memory and
learning-to-learn in networks of spiking neurons. CoRR, 2018.

[13] Chankyu Lee et al. Enabling spike-based backpropagation for training
deep neural network architectures. Frontiers in Neuroscience, 2020.

[14] B. Yin, F. Corradi, and S. Bohté. Effective and efficient computation with
multiple-timescale spiking recurrent neural networks. ICONS, 2020.

[15] B. Cramer, F. Zenke, et al. The heidelberg spiking data sets for the
systematic evaluation of spiking neural networks. IEEE Transactions
on Neural Networks and Learning Systems, 2020.

[16] Yann LeCun et al. Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, number 11, 1998.

[17] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. ICLR 2015.

[18] K. He et al. Deep residual learning for image recognition. CVPR 2016.
[19] A. Krizhevsky et al. Learning multiple layers of features from tiny

images. Master’s thesis, Department of Computer Science, University
of Toronto, 2009.

[20] T. Liu et al. Fpt-spike: a flexible precise-time-dependent single-spike
neuromorphic computing architecture. CCF Trans. HPC, 2020.

[21] S. Chowdhury et al. Towards understanding the effect of leak in spiking
neural networks. arXiv e-prints, page arXiv:2006.08761, 2020.


