
CAST – A Task-Level Concurrency Analysis Tool

Sander Stuijk, Jan Ypma and Twan Basten

Eindhoven University of Technology, PO Box 513, NL-5600 MB, Eindhoven, The Netherlands.
s.stuijk@tue.nl

Keywords: Kahn Process Networks, Embedded-Systems Design, Visualization, Streaming, Concurrency.

Abstract

CAST is a system-level software tool that supports
the design of concurrent systems. It assumes that the
functional model of a system is specified as a set of
compute nodes that communicate with each other us-
ing point-to-point connections. CAST provides con-
currency analysis, support for refinement of the con-
currency in the model to implement, and guidance in
the design-space exploration. Its main focus is on
streaming applications. This paper provides a brief
tutorial on CAST. It describes the implementation of
the techniques used to model and analyze the concur-
rency in a specification. Visualization of the metrics
is key for performing a guided design-space explo-
ration, which is why visualization is an integral part
of CAST. This paper presents therefore also our so-
lutions for visualizing concurrency in a specification.

1 Introduction

Next generations of embedded multi-media sys-
tems require high compute power combined with a
low energy consumption for use in mobile appli-
cations that provide streaming video, audio and/or
graphics. To realize these systems, (single-chip)
multi-processor systems are becoming a trend. These
systems are inherently concurrent. To exploit this
concurrency, the parallelism available in an applica-
tion mapped onto the multi-processor system must be
made visible in the mapping trajectory. See Fig. 1
for an overview of this trajectory. To extract paral-
lelism, a specification should allow reasoning about
the concurrency in the application and about how to
exploit this concurrency. In this paper, we present
a software implementation (CAST) of a concurrency
model that allows task-level architecture-independent
concurrency optimization in executable specifications
(source code). The main focus is on streaming appli-
cations. The optimization leads to a specification that

binding

specification

programming

implementation

hardware
architecture

Figure 1: Mapping trajectory.

forms a good starting point for mapping the applica-
tion onto a multi-processor system. The concurrency
model is used in the programming step of the mapping
trajectory. The optimization criteria used in our con-
currency model are inspired by those used in perfor-
mance analysis (see, e.g., [12, 11, 7]) but targeted to-
wards streaming and concurrency. The novelty of our
method is that we consider all aspects of concurrency
including both computation and communication in an
integrated framework, at a relatively high level of ab-
straction, allowing architecture-independent concur-
rency optimization. It allows the easy identification of
concurrency bottlenecks. The result of the optimiza-
tion process is a specification that can easily be fur-
ther optimized for many different platforms. In other
words, our techniques help in making re-usable spec-
ifications. The final architecture-dependent step is not
covered in this paper.

Recently, a trend has emerged to use high-level
models, written in languages such as C and C++, to
introduce concurrency as well as communication and
synchronization into originally sequential languages.
SystemC [1] , YAPI [5] , SpecC [2] and VCC [9]
are all good examples of relatively high-level models
that are suitable for system-level design. They mostly
focus on providing several communication models
which can be refined down to the bus transaction
level. Such refinement can be done, in an object-



oriented flavor, by providing different implementa-
tions of the same interface, where the fixed interface
is all that the communicating processes care about.
CAST builds on the above trend toward executable
communicating process models. Many theoreti-
cal models developed, mainly in computer science,
are too abstract for proper concurrency optimization
of resource-constrained embedded systems. Many
source-code optimizations techniques are too low
level to scale to future multi-processor systems.
Hence, CAST focuses on source-code optimizations
at the task-level. The extracted concurrency can be
exploited in the mapping of the specification onto a
multi-processor system. Our approach is related to
the task-concurrency-management step in the system-
synthesis methodology described in [14]. The task-
concurrency-management step consists of task-level
concurrency extraction, task scheduling and inter-task
refinement. The extraction of task-level concurrency
is limited to the number of independent tasks that can
be found by a designer, based on the deterministic be-
havior of these tasks. The designer does not get sup-
port from the methodology in identifying these tasks.
The approach used in CAST complements the task-
concurrency-management approach since it provides
support for extracting task-level concurrency.

We presented in [13] a model of computation for
specifying concurrency and an accompanying concur-
rency model. These models are briefly introduced in
the next section. The implementation of these mod-
els is presented in Section 3. The implementation of
these models forms the basis of CAST, as the output
of the concurrency analysis is a set of values for all
concurrency properties of the specified application.
To present this information in an intuitive way to a
designer, we need an intelligent user-interface. A first
prototype of such an interface is presented in Section
4. It is discussed how we are able to guide a designer
in an intuitive way through the design space. This re-
quires techniques to handle the information explosion
that occurs when large applications (e.g. MPEG) are
analyzed.

2 Model of Computation

The model of computation and the accompanying
concurrency model, which are the basis of CAST, are
introduced in this section. For detailed information
on these models, we refer to [13].

2.1 Computational Networks

The computational-network model assumes that a
parallel computation is organized as a hierarchical
collection of autonomous compute nodes that are con-
nected to each other by means of point-to-point con-
nections. The set of compute nodes and their con-

a

c

b d

e

Figure 2: A computational network.

nections form the computational network. The con-
nections are the only way of communication between
the nodes. A given node computes on data it receives
along its input connections to produce output on some
or all of its output connections. Thus, each compute
node performs a sequence of actions (e.g., C/C++
statements in an executable specification) which are
modeled as a totally ordered sequence of events.
Events that read from input connections and write to
output connections are respectively called read events
and write events. All other events are called internal
events.

Hierarchy might be useful in a larger computa-
tional network, as it allows abstraction from the prim-
itive operations taking place in the system. We intro-
duce hierarchy in the computational network by al-
lowing a node in a computational network to be a net-
work of compute nodes. The outside world sees this
node as an indivisible compute node with a set of in-
put ports, a set of output ports and a defined behavior,
while the node is in fact a set of compute nodes. Fig-
ure 2 shows a computational network that consists of
the compute nodes � ,

�
, � and a network that contains

the compute nodes � and � .

The computational-network model is used to
model applications for image, video and graphics pro-
cessing (e.g., an MPEG decoder or a still-texture de-
coder). It captures the core of parallel (streaming) ap-
plications. It specifies only those aspects that are nec-
essary for concurrency analysis. In this way, it allows
for many instantiations. The model is, for example,
sufficiently abstract to comprise a number of data-
flow models like Kahn Process Networks [3, 4] and
Synchronous Dataflow [10]. Our concurrency analy-
sis can be applied to executable specifications in all
these models.

Lamport [8] has shown that the events resulting
from a concurrent computation form a partial order,
referred to as the causality relation or happened be-
fore relation. Lamport also introduces logical clocks
that can be used to create an ordering that is consis-
tent with causality for all events that occur during a
computation. We use an adapted version of Lamport’s
clocks to obtain an abstract notion of time for use in
our concurrency model. To reason accurately about
timing aspects without referring to concrete imple-



event

idle time

a

b

e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d

c

16 17 18 19

Figure 3: A partial event diagram.

mentations, we associate a delay, using a delay func-
tion, with the events that take place in the compute
nodes and with the communication over the connec-
tions. Of course, these delays must be in some way
reasonable for actual system implementations.
An execution can be displayed graphically in a partial
event diagram, such as the one shown in Fig. 3. This
figure shows an example ordering of all events that
take place during an execution in the computational
network of Fig. 2.

Node � starts with reading input from the environ-
ment. At the end,

�
and � produce values for the en-

vironment. The gray nodes represent repetition of the
events caused by a single input to the network. As
we are targeting streaming applications, it is common
to have this repetition. In practice, one should pos-
sibly use more than one input to derive an event dia-
gram that can be reliably used by CAST. It can be seen
from Fig. 3 that the connection between the nodes �
and � has a delay of one logical clock value, all other
connections have a delay of zero logical clock val-
ues. Node � executes one event that takes two logical
clock values; all other events require one logical clock
value. Note that the diagram is kept simple for illus-
trative purposes.

2.2 Concurrency Model

Our concurrency model aims at performing
a target-architecture-independent concurrency opti-
mization. Its concurrency measures abstract from the
environment in which a computational network op-
erates, and are calculated from the computational-
network structure and an event diagram of an execu-
tion. The event diagram is used to compute timing
information such as run-times of nodes, idle times,
etc. The concurrency measures are used in conjunc-
tion with a design method that consists of four steps.
Each step tries to optimize one different aspect of
task-level concurrency; it optimizes one of the con-
currency measures, while the other measures are used
to balance the overall concurrency optimization. The
measures are computed for the network and for the in-
dividual nodes in the network. The measures for the
compute nodes provide insight into the concurrency
bottlenecks. The measures for the network can pro-
vide global guidance when optimizing concurrency.

The idea is to first extract as much parallelism as pos-
sible, then choose the granularity of communication,
and finally put together tasks to arrive at a network
with a balanced workload over compute nodes. We
omit the formal definitions of all measures because
that would require the introduction of a lot of for-
malism and focus on their intuitive explanation. The
reader interested in more detail is referred to [13].

Task-splitting. The compute node with the longest
run-time is determining the rate at which new com-
putations can be started in the network. In other
words, this node determines the throughput of the net-
work. The throughput is an important property when
a system designer is designing a streaming applica-
tion. The restart measure provides an abstract notion
of it. To optimize the restart, the slowest compute
node must be split in a set of compute nodes with bet-
ter values for the restart. The slowest node in Fig. 3 is
node � which has a run-time of 10, determined by the
events from logical time 6 to logical time 15.
Good values for the restart can be obtained through
very fine-grained compute nodes. However, this gives
communication overhead (and possibly scheduling
overhead). The restart measure should therefore be
balanced with other measures.

Data-splitting. The structure of a network reveals
the chains of compute nodes that belong to different
parts of the computation taking place in the network.
In other words, it reveals the different data-streams
that are processed in the network. The simple net-
work of Fig. 2 processes two data streams, namely
one through � , � , � ,

�
, and one through � and � . The

more data-streams that can be distinguished in a net-
work, the more data-parallelism is present. However,
if many different data-streams go through one node,
then this node may be a synchronization bottleneck
for those data-streams. Assuming that input node � in
Fig. 2 cannot be split, there is not really an obvious
bottleneck. The structure measure is used to quan-
tify this concurrency property. The (task-level) data-
parallelism that is present in the specification should
be made explicit to optimize this concurrency prop-
erty.

Communication granularity. In a parallel execu-
tion, we want to minimize the overhead of commu-
nicating data between nodes. The nodes should spend
as much time as possible on computation and not on
communication, as computation, i.e., data transfor-
mation, is the main goal of every computational net-
work. The ratio between time spent on computation
and time spent on both computation and communica-
tion is expressed in the computation load. This ratio
can be calculated for the network as a whole and for
individual nodes and should be as high as possible. In
Fig. 3, node � has a computation load of ����� (only 1
in four events is an internal computation event), where



as e.g. node
�

has a computation load of � � �
; this

suggests node � as a bottleneck. The granularity of
communication must balance time spent on commu-
nication and time that nodes have to wait for input
data.

Merging. During an execution, a compute node is ei-
ther busy, performing events, or it is idle. It can be
idle because it is waiting for data or because it has
finished its execution while other nodes have not yet
finished. To get a balanced workload over nodes, we
must balance the execution times (computation plus
communication time) and run-times (execution time
plus idle time) of the different nodes. This is impor-
tant to optimize streaming behavior. To get a notion
of the workload balance, the execution load considers
the ratio between the execution time and the run-time.
Nodes that have a low execution load must be merged
with each other to get a better overall execution load
for the network. In our running example, node � has
the lowest execution load because of the idle time in
the middle of its computation.

A parallel computation will in most cases be faster
than a sequential implementation of that computation.
This is often referred to as speed-up. The realized
speed-up for a computational network depends on the
synchronization that is required between the differ-
ent nodes in the network, the introduced communi-
cation overhead, and the balance of the computation
over the different nodes. The second and third aspect
are covered by the computation load and execution
load respectively. The influence of synchronization is
not yet fully captured in these measures, although a
poor synchronization does affect the execution load.
Synchronization is important when considering con-
currency, because synchronization is limiting the exe-
cution of compute nodes and with that the number of
nodes that can run in parallel. Synchronization con-
straints may impose the restriction that two nodes can
only execute in sequence. A typical example of such
a problem can be seen in Fig. 3 for nodes � , � and�

. This concurrency property is captured in the final
measure of our model, the synchronization measure.
The design method does not contain a special step in
which this property is optimized. It must be taken into
account in all steps.

This section introduced the five concurrency mea-
sures that form our concurrency model. In [13], it is
shown in more detail how these measures are defined
and that all five are meaningful and do not (fully)
overlap, i.e., all five are needed to allow a balanced
optimization of a computational network.

3 Implementation

This section presents the implementation of the
computational-network model and the concurrency

model, as introduced in the previous section. An im-
portant part of the computational-network model is
the delay function that determines the format (timing)
of the event diagram. Its implementation is discussed
in detail in the next sub-section. The implementation
of the concurrency model, which forms the basis of
CAST, is presented in Section 3.2.

3.1 Computational Networks

The computational-network model is presented in
Section 2. It is our belief that the model is suitable for
modeling embedded streaming application, which are
often signal-processing applications. These are nowa-
days often modeled using Kahn Process Networks or
Dataflow graphs, which can be seen as realizations
of our computational-network model. For a first ex-
perimental evaluation of the concurrency model, we
have therefore chosen to use an existing Kahn Pro-
cess Network (KPN) implementation, namely YAPI
[5]. The processes in the YAPI/KPN model become
our compute nodes, the process networks become
our computational networks, and the channels of a
YAPI/KPN are the connections in our computational-
network model.

The previous section introduced the time-stamping
mechanism based on Lamport’s logical clocks that
is a part of the model of computation. This time-
stamping mechanism must allow reasoning about
causality and some timing aspects on a relatively high
level of abstraction without referring to implementa-
tions/physical time. To implement this time-stamping
mechanism, we need an implementation for the delay
functions of the events and connections. The delay
function for events is implemented as two different
functions. One function associates a delay with each
internal event that occurs in the compute nodes and
one function associates a delay with each read/write
event.
A single internal event in a compute node is defined
to be equal to the execution of a single C++ state-
ment. The delay function for internal events must map
each C++ statement on a delay value associated with
that statement. The value of the delay must repre-
sent the amount of work associated with performing
the event. Therefore, we relate internal events to the
number of instructions needed to execute these events
on a processor using a standard compiler. We assume
that the influence of a specific instruction set does not
have too much influence on the results. Our first ex-
periments show that the proposed notion of time is
both accurate and abstract enough to perform target-
architecture-independent optimization.
When the design-space exploration is started, lit-
tle information about the communication medium is
known. As a first strategy to get some abstract no-
tion of the amount of work related to read and write



events, we could use the same approach as with the
internal events. However, the read and write func-
tions used in our software library as communication
primitives will in general not be used in the actual im-
plementation. They will be mapped onto lower-level
more efficient communication primitives. Using the
number of instructions needed to execute a read or
write function call is thus not a very good measure for
the delay associated with the read and write events.
The functions used in the implementation will have
a different delay. Similar problems arise when a de-
lay must be associated with a connection. Although
little information about the implementation is known
in the early stages of design, we observe two impor-
tant properties for the communication. First, in gen-
eral, the more data-elements that are communicated,
the more time that a communication will take. The
number of data-elements communicated should thus
be a part of the delay associated with the read or write
event and the connection. Secondly, each function
that interacts with the communication medium (e.g.,
read, write event and implementation of the connec-
tion) will have to get access to the communication
medium. The time needed for this does in general
not depend on the number of data-elements commu-
nicated. Based on these two observations, we propose
to implement the delay functions for read/write events
and for connections using the linear functions ����� �
and ��� � �

of respectively the number of data-elements
� communicated and the size of the data-elements go-
ing through a connection � . The constants � and

�

approximate respectively the time needed to call the
communication primitives and the access time to the
communication medium. The constants � and � ap-
proximate respectively the time needed to read/write
one data-element and the time needed to transport one
data-element.

3.2 CAST

CAST is a software tool for computing the con-
currency measures of a computational network. The
overview of CAST is shown in Figure 4. The current
version operates on YAPI/KPNs. The core of CAST
consists of three steps (i.e., parser, simulator and an-
alyzer). These steps are described below in some de-
tail.

The actual computation of the concurrency mea-
sures for a given network is performed in the ana-
lyzer. The analyzer uses for that a trace of all events
that have occurred during a simulation of the com-
putational network with a given input. The analyzer
needs also a description of the network structure, the
network graph. Using these two and the settings for
the delay functions, it maps the events onto the appro-
priate delay and then orders these events according to
the causality relations; it creates a (partial) event dia-

parser

simulator

analyzer

.c

.c

trace

measures

cast
db

settings
delay

gui

network
graph

Figure 4: Overview of CAST.

gram. After that, it has enough information to com-
pute the values of the different concurrency measures.
The information needed to compute the event diagram
is obtained through simulation. The simulator takes
C++ source code as an input. It simulates the network
described in these files with a given input and traces
all events that occur in the network. To be able to do
this, the original C++ files containing the network are
modified in the parser. The parser adds functions to
the computational network that log the execution of
individual events to a file when the network is simu-
lated. The parser adds also a CAST run-time environ-
ment, which is used to govern the event tracing and
extraction of the network structure during the simula-
tion. The network structure is thus extracted at run-
time and not through a static analysis. It would of
course be possible to do this using static analysis of
the code, but it is more convenient to do it at run-
time.

The three steps of CAST, the parser, simulator and
analyzer communicate with a database in which they
store relevant information. The analyzer stores for in-
stance the values of the concurrency measures in this
database. The data in the database is available for use
by the graphical user interface.

For typical applications (e.g., JPEG or MPEG en-
coders or decoders), it is practically impossible to
analyze the network for all possible inputs. There-
fore, CAST contains a statistical analysis module.
With this module, not shown explicitly in Fig. 4, it
is possible to select analysis results of different simu-
lations and compute the average, variance, minimum
and maximum for each individual compute node and
computational network. In this way, we can minimize
effects from a specific simulation input, but also ef-
fects of a specific instruction set or setting for the de-
lay functions.



Figure 5: Screen-shot of CAST.

4 Visualization

CAST contains a visualization software package
that helps the designer in understanding the concur-
rent behavior of the network and identifying potential
concurrency bottlenecks by providing a direct method
of feedback on the network analysis results. Figure 5
shows a screen-shot of CAST (operating on a JPEG
decoder). The hierarchy that is present in computa-
tional networks is used to present the designer with
a visual graph representation of manageable magni-
tude, along with a common tree view. Starting from
the top level of the hierarchy, lower level details can
be expanded. This approach makes it possible to work
with networks consisting of hundreds of nodes, while
still being able to reach every node without loosing
the overview.
We discuss in the remainder of this section how a de-
signer can perform a design-space exploration using
CAST. An important step in this exploration is the
identification of bottlenecks. In Sec. 4.2 is discussed
how CAST can be used for this. To identify the cause
of a bottleneck, it might be necessary to look at the
event diagram of the bottleneck node. The support
that CAST offers in this situation is discussed in Sec.
4.3.

4.1 Design-Space Exploration

The goal of our task-level concurrency optimiza-
tion is to transform a computational network in a
structured way into a computational network that has
a balanced workload and good communication behav-
ior. A generally applicable design exploration method
consisting of four steps is used in conjunction with the

concurrency model to realize this, as explained in Sec.
2.2.
The visualization software supports this design explo-
ration method through its visualization of the con-
currency measures and the offered support for find-
ing concurrency bottlenecks. When a potential bot-
tleneck is found, the designer will modify the com-
putational network to resolve this bottleneck. The re-
sults of these actions can be evaluated using CAST by
simulating the new computational network and com-
paring the concurrency measures for the two designs.
The impact of the design changes can be visualized
using bar charts. For convenience, all measures are
normalized in the interval � ��� ��� , with low values cor-
responding to poor concurrency and high values to
good concurrency. This helps the designer to very
quickly get a good overview of the quality of a de-
sign, and it supports an easy comparison of different
designs. This visual feedback combined with the de-
sign methodology guides the designer in an intuitive
way through the design space.

4.2 Identifying Bottlenecks

The bottleneck nodes in a computational network
are those nodes that have low values for the concur-
rency measures. To help the designer in finding these
nodes, CAST can map these measures onto the node
size and colors of the graph representation of the net-
work. This makes it very easy for a designer to iden-
tify potential concurrency bottlenecks. It requires a
simple two-step approach. First, the designer must
open a graph representation of the computational net-
work and identify the node that needs attention be-
cause of its low concurrency figures. If the identi-



Figure 6: An event trace in CAST.

fied node is a computational network, then the de-
signer must analyze its content and identify the bot-
tleneck(s) in it. To view its contents, there are two
choices. The subnetwork can be viewed in-line (dis-
playing its contents along with the top network; an
example is shown in Fig. 5), or apart (zooming in on
the single subnetwork node). If the node is an indivis-
ible compute node, then we have identified the bot-
tleneck compute node. Repeating these steps, the net-
work hierarchy can be traversed until the bottleneck is
identified on the lowest level. After finding the node
that is causing a bottleneck, the event diagram may
help to identify the problem. Having found the se-
quence of events in the node that cause the problem,
we can directly jump from the visualization software
to the lines in the source code that correspond with
these events. This allows for convenient round-trip
engineering.

4.3 Event Diagrams

Traditional approaches to network-communication
analysis often use event traces, diagrams that show
individual communication events between network
nodes. Certain communication bottlenecks result in
patterns in an event trace that can be manually rec-
ognized. Also for concurrency analysis, patterns in
the event diagrams can be used to diagnose concur-
rency bottlenecks. A simple example pattern could be
a long period of inactivity before a required incom-
ing event arrives; that can indicate a low execution
load and/or synchronization value. Another exam-
ple is a large set of repeating communication events,
causing communication overhead; a larger communi-
cation granularity might resolve this problem.

Figure 6 shows an event diagram, as drawn by
CAST, of a simple producer-consumer computational
network with two nodes prod and cons. The black
boxes represent the internal events, the green (light
gray) boxes the write events and the red (dark gray)
boxes the read events. Idle time is represented by
white boxes. The values in the boxes are the number
of logical clock values that an event lasts. The fig-
ure shows clearly that the compute node prod is the
bottleneck. The node cons must wait 11 logical clock
values each time after having processed data from the

prod node.

To draw event diagrams, we can use the event
traces created by the CAST simulation step. However,
the number of events in a simulation is typically more
than a few million. Displaying the relevant events is
therefore crucial for identifying potential bottlenecks.
The visualization software deals with this problem in
the following way. It first displays (a window on)
all events that occur in a single node. This node is
possibly selected using the bottleneck identification
methods mentioned before. Events to and from this
node are displayed. The designer can then decide to
extend the event trace with other nodes, by choosing
from nodes participating in the displayed events. By
extending the event trace, the event-trace communi-
cation patterns will gradually appear. If the designer
recognizes a pattern which causes a problem, he can
take action to resolve it. For recognizing problematic
patterns, the software still depends on a designer be-
ing able to recognize the problem. Further research
must allow for easier characterization of those pat-
terns and possibly semi-automatic detection of some
of these patterns.

5 Conclusion

In this paper, we presented a concurrency anal-
ysis tool that allows reasoning about concurrency
in streaming applications at the executable spec-
ification level. The tool, CAST, implements a
concurrency model that allows target-architecture-
independent concurrency optimization at the task-
level. The model of computation assumed by CAST,
the computational-network model, captures the core
of concurrent streaming applications, specifying only
those aspects that are necessary for concurrency anal-
ysis. This allows for many instantiations of the model.
CAST and its visualization environment can be used
for all of these instantiations. This makes CAST a
very versatile tool for analyzing task-level concur-
rency in streaming applications.
CAST has been tested on, among others, a JPEG
decoder. The performance of our solution, when
mapped onto a homogeneous multi-processor plat-
form, turned out to be similar to the performance of



a JPEG decoder manually optimized for this platform
[6]. The results illustrate that the approach followed
by CAST works. More details can be found in [13].
Currently, the concurrency model helps the designer
in finding bottlenecks in the system. It does not give
support for situations in which a compute node must
be subdivided into multiple nodes. An extension of
the concurrency model is planned that provides this
support. We further plan to add semi-automatic pat-
tern recognition of patterns in event traces. This must
help the designer in finding causes for bottleneck
nodes. Further, the computational-network model and
concurrency model will be extended to support reac-
tive behavior and control applications. We also plan to
extend the concurrency model to take architecture in-
formation into account for the architecture-dependent
step of the design process.

References

[1] Grotker, T., et al., System design with SystemC.
Dordrecht, The Netherlands: Kluwer Academic
Publishers, 2002.

[2] Gajski, D.D., et al., SpecC: specification langu-
age and methodology. Dordrecht, The Nether-
lands: Kluwer Academic Publishers, 2000.

[3] Kahn, G., The semantics of a simple language
for parallel programming. In: Information Pro-
cessing 74, Proc., Stockholm, Sweden, August
1974. Ed. by J.L. Rosenfeld. Amsterdam, The
Netherlands: North-Holland, 1974. p. 471-475.

[4] Kahn, G., and D.B. MacQueen, Coroutines and
networks of parallel processes. In: Informa-
tion Processing 77, Proc., Toronto, Canada, Au-
gust 1977. Ed. by B. Gilchrist. Amsterdam, The
Netherlands: North-Holland, 1977. p. 993-998.

[5] Kock, E.A. de, et al., YAPI: application mod-
eling for signal processing systems. In: Design
Automation Conference, Proc. 37th Int. Symp.,
Los Angeles, USA, June 2000. IEEE, 2000. p.
402-405.

[6] Kock, E.A. de, Multiprocessor mapping of pro-
cess networks: a JPEG decoding case study. In:
System Synthesis, Proc. 15th Int. Symp., Kyoto,
Japan, October 2002. IEEE, 2002. p. 68-73.

[7] Kung, S.Y., VLSI array processors. London,
UK: Prentice Hall. 1998.

[8] Lamport, L., Time, clocks, and the ordering of
events in a distributed system. In: Communica-
tions of the ACM, 21(7), 1978. p. 558-565.

[9] LaReu, W., et al., Functional and performance
modeling of concurrency in VCC. In: Concur-
rency in Hardware Design, LNCS 2549. Berlin,
Germany: Springer-Verlag, 2002. p. 191-227.

[10] Lee, E.A., and T.M. Parks, Dataflow process
networks. In: Proc. of the IEEE, 83(5), May
1995. IEEE, 1995. p.773-801.

[11] Mazzeo, A., and N. Mazzocca, U. Villano,
Efficiency measurements in heterogeneous dis-
tributed computing systems: From theory to
practice. In: Concurrency: Practice and expe-
rience, 10(4), May 1998. p. 285-313.

[12] Raynal, M., and M. Mizuno, M. Neilsen, Syn-
chronization and concurrency measures for dis-
tributed computations. In: Distributed Comput-
ing Systems. Proc. 12th Int. Conf., Yokohama,
Japan, June 1992. IEEE, 1992. p. 700-707.

[13] Stuijk, S., Concurrency in computational net-
works. Master’s thesis, TU Eindhoven, Eind-
hoven, The Netherlands, 2002.

[14] Thoen, F., and F. Catthoor, Modeling, veri-
fication and exploration of task-level concur-
rency in real-time embedded systems. Dor-
drecht, The Netherlands: Kluwer Academic
Publishers, 2000.


