
Online Multi-Face Detection and Tracking
using Detector Confidence and Structured SVMs

Francesco Comaschi1, Sander Stuijk1, Twan Basten1,2 and Henk Corporaal1

1Eindhoven University of Technology, The Netherlands
2TNO Embedded Systems Innovation, Eindhoven, The Netherlands

{f.comaschi, s.stuijk, a.a.basten, h.corporaal}@tue.nl

Abstract

Online detection and tracking of a variable number
of faces in video is a crucial component in many real-
world applications ranging from video-surveillance to on-
line gaming. In this paper we propose FAST-DT, a fully au-
tomated system capable of detecting and tracking a variable
number of faces online without relying on any scene-specific
cues. FAST-DT integrates a generic face detector with an
adaptive structured output SVM tracker and uses the detec-
tor’s continuous confidence to solve the target creation and
removal problem. We improve in recall and precision over a
state-of-the-art method on a video dataset of more than two
hours while providing in addition an increase in throughput.

1. Introduction
With the number of cameras installed all around the

world steadily growing, real-time analysis of video content
is becoming increasingly important. Among objects of pos-
sible interest, faces have received significant attention both
in academia and in industry [15]. The accurate localization
of faces in a video is a necessary first step to initialize other
computer vision tasks, such as face recognition.

Despite recent advances in both detection [7] and track-
ing [9] of visual objects, relatively few works directly ad-
dress the problem of effectively integrating these two com-
ponents in order to provide a fully automated system. When
detecting faces from a video online, the detection compo-
nent can highly benefit from the integration with a tracker
for two main reasons. Firstly, even the multi-view face de-
tectors recently proposed in literature [7, 16] cannot adapt
to the targets’ appearance variations that occur at run-time.
Secondly, even fast face detectors described in literature are
quite computationally intensive [13], and their application
at every video frame impedes to fulfil the real-time require-
ment. Relying on temporal coherence through a tracking al-
gorithm can improve the system capability of continuously
monitoring an object location in time. From the tracking
perspective, any tracking algorithm needs an object detec-
tor to provide a fully automated system. In the first place,

even the most robust tracking algorithms inherently tend to
drift over time, and an object detector can prevent a tracker
from loosing its target. Secondly, target creation cannot be
addressed by a simple tracker, which therefore needs an ob-
ject detector to find possible new candidates for tracking.
Regarding target removal, even though several tracking al-
gorithms implement some tracking-failure detection mech-
anism, the support of an object detector is highly beneficial
in determining when a target is no longer visible.

For these reasons, building a fully automated system ca-
pable of autonomously and effectively locating a variable
number of faces online is an important challenge. When
building such a system, the most relevant aspects to be
considered are the following: (i) the detection component;
(ii) the tracking component; (iii) the target creation and re-
moval component; (iv) the design of the integrated frame-
work.

In this paper we address all the mentioned aspects by
realising FAST-DT (FAce STructured Detection and Track-
ing) a fully automated system capable of accurately local-
izing a variable number of faces from a video online. Our
main contributions are the following:

1. We address the problem of automatically detecting and
tracking a variable number of faces online by build-
ing a framework which effectively combines a generic
face detector with an adaptive structured output Sup-
port Vector Machine (SVM) tracker1.

2. We provide a solution to the target creation and re-
moval problem based on the continuous confidence
provided by the face detector, without relying on any
scene-specific long-term observation.

3. We prove the robustness of FAST-DT by testing it on a
challenging video dataset of more than two hours [2],
where we considerably improve over the state-of-the-
art in both recall and precision.

4. We provide an analysis of the computational cost of the
different components building FAST-DT and report an
increase in throughput over previous work.

1Our C++ implementation of FAST-DT is freely available
on the website http://www.es.ele.tue.nl/video/

978-1-4673-7632-7/15/$31.00 c©2015 IEEE

2. Related Work
Despite much progress in recent years on multi-view

face detection [7, 16], solely relying on a face detector is
non-effective in coping with the challenges posed by real-
world applications. When training a face detector offline, it
is very difficult to provide the detector with enough training
samples to cover the full spectrum of appearance variations
that will occur at run-time. Also, even the faster face de-
tectors recently proposed in literature [13] require a consid-
erable computational effort, and their application on every
video frame will most probably prevent the application from
fulfilling its real-time requirements.

An approach that has been recently applied to multi-
face tracking is tracking-by-association [8, 11]. These algo-
rithms firstly scan large temporal windows of the video se-
quence with one or many face detectors and at a later stage
rely on several affinity measures to find the best-matching
associations between consecutive detections. These meth-
ods are meant for offline applications since they rely on in-
formation from future frames and the exhaustive application
of face detection at every frame represents a computational
bottleneck.

A tracking technique which has proven to be very effec-
tive is tracking-by-detection [12]. These algorithms adapt
to the continuous target appearance variations by training a
target-specific classifier online which learns to distinguish
the object from the background and from other targets. The
robustness of these methods has been mostly proven on
short video sequences [12, 9] with the target position man-
ually annotated in the first frame rather than automatically
located by a detector. In this paper we integrate a robust
structured output SVM tracker with a detector component
in order to provide a fully automated system. We prove
the system capability of accurately tracking multiple faces
across two video sequences of more than one hour each.

The approaches most related to our work are described
in [1, 3]. In [1], the authors integrate a generic pedes-
trian detector with a particle filter in order to track multi-
ple people in a video online. However, their approach is
applied to pedestrian tracking, and the authors report an av-
erage throughput of 0.4-2 frames per second (fps) on an In-
tel PC. In this work we specifically address the problem of
multi-face tracking and we reach an average throughput of
more than 30 fps on an Intel PC with similar computational
power.

In [3], the authors effectively track multiple faces from
a video in a particle filter framework and they adopt two
Hidden Markov Models (HMM) to solve the target creation
and removal problem. The system proposed in [3] relies on
several long-term observations, some of which assuming a
static scenario, like a pixel-based tracker memory for target
creation. FAST-DT robustly tracks multiple faces through a
structured output SVM and solves the target creation and
removal problem solely relying on the continuous confi-
dence provided by a generic face detector. When comparing
our results to [3] through the performance metrics proposed
by the authors in their work, we reach very similar perfor-

mance. However, when comparing our results according to
the widely used PASCAL overlap measure [4, 9], we reach
a considerable improvement in both recall and precision.
These results will be motivated in Sec. 4. We prove our
system capability to process a video in real-time with an
average throughput of more than 30 fps.

3. FAST-DT
Our objective is to build a fully automated system ca-

pable of detecting and tracking a variable number of faces
online. To reach our aim, we propose the overall framework
depicted in Fig. 1. Hereby we motivate the choice of the al-
gorithms composing our framework and we provide a short
description for each of them.

Figure 1: Multi-face detection and tracking framework.

3.1. Detection
In step 1 of FAST-DT, the current video frame is scanned

in parallel by multiple face detectors (one for frontal and
two for profile view). For effective online multi-face de-
tection, the selected face detectors need to provide a good
trade-off between robustness and computational efficiency.
In our framework, we decided to use the AdaBoost clas-
sifier developed by Viola and Jones [10] for several rea-
sons: (i) the Haar features employed by the Viola-Jones
face detector proved to be very effective when it comes to
faces [15] and have become almost a standard in face de-
tection; (ii) the sliding-window search mechanism allows
to rapidly scan for faces at multiple scales, thus helping
the SVM tracker in tracking across rapid scale variations;
(iii) the cascade structure provides a natural mechanism for
a rapid evaluation of the detector confidence at a given im-
age location, which is used for step 4 of FAST-DT.

Even though more sophisticated face detectors have been
proposed in literature [16, 7, 13], the robustness of our
tracking component allows us to favour computational ef-
ficiency over accuracy when selecting the detector.

3.2. Structured output SVM tracker
In real-world applications, targets normally undergo

considerable appearance variations while tracking. For this
reason it is important to implement a tracking mechanism
which is capable of effectively adapting to these variations
in a online fashion. An approach to tracking which has
proven to be very effective in addressing this challenge is

tracking-by-detection [12], which treats the tracking prob-
lem as a detection task applied over time. Most of these
algorithms maintain a classifier trained online for each tar-
get in order to distinguish the object from the background
or other targets [12]. In [6], the authors take a different ap-
proach, and treat the tracking problem as one of structured
output prediction, in which the task is to directly predict the
change in object location between frames. A recent survey
[9] proved the superiority of this approach with respect to
many contenders. Moreover, in [6] the authors introduce
the idea of a budget mechanism which allows to reduce the
computational cost of online tracking without noticeably
decreasing the tracking performance. This is an important
feature for our framework where we aim at tracking multi-
ple targets in real-time. The use of Haar features for image
representation makes this approach even more suitable for
face-related applications.

For these reasons we based our tracking algorithm (step
2 from Fig. 1) on the structured output SVM framework
first introduced in [6]. A kernelized structured output SVM
is learned online to provide adaptive tracking. In [14], the
authors apply the idea of online structured learning to mul-
tiple object tracking by inserting additional constraints. In
FAST-DT the use of additional cues, like explicit occlusion
detection (Sec. 3.5) and the integration of a generic face de-
tector, allows to effectively learn an independent SVM for
each of the tracked targets without taking into account ad-
ditional constraints in the learning phase.

Each tracker maintains an estimate of the position p ∈
P of a 2D bounding box within frame ft ∈ F , where
t = 1, . . . , T is time. Given a bounding box position p,
Haar features are extracted from an image patch within the
bounding box: xp

t ∈ X . The objective of the tracker at time
t is to estimate a 2D translation of the target yt ∈ Y , where
Y = {(∆u,∆v)| ∆u2 + ∆v2 < r2}, r being a search ra-
dius. If pt−1 is the target position at time t− 1, the 2D po-
sition of the target at time t can be found as pt = pt−1 ◦ yt

which is given by (ut, vt) = (ut−1, vt−1) + (∆u,∆v). In
structured SVM a discriminant function F : X ×Y is intro-
duced to find the translation function according to:

yt = f(x
pt−1

t) = arg max
y∈Y

F (x
pt−1

t ,y) (1)

where F is restricted to be in the form F (x,y) =
〈w,Φ(x,y)〉, Φ(x,y) being a joint kernel map. F mea-
sures the compatibility between (x,y) pairs and gives a
high score to those which are well matched. In particu-
lar, the new tracker location (xpt

t ,y) is supplied to the pre-
diction function as a positive labelled sample, while other
samples are weighted according to a loss function based on
bounding box overlap:

∆(y,yi) = 1− spt
(y,yi) (2)

where spt
(y,yi) is defined as follows:

spt
(y,yi) =

area((pt ◦ y) ∩ (pt ◦ yi))

area((pt ◦ y) ∪ (pt ◦ yi))
(3)

In this way, F can be learned from a set of example pairs
{(x1,y1), . . . , (xn,yn)} by minimising a convex objective
function [6]. During tracking, each tracker maintains a set
of support vectors (xi,y) ∈ S , xi being a support pattern.
Since evaluating F (x,y) requires the computation of inner
products between (x,y) and each support vector, and con-
sidering that the number of support vectors is not bounded,
both the computational and storage costs grow linearly with
the number of support vectors. In order to solve this is-
sue only a maximum number of support vectors B for each
tracker is allowed. Once the budget of a tracker is exceeded,
before the addition of a new support vector a suitable sup-
port vector is identified for removal. In general, a higher
value of B allows for more accurate tracking while increas-
ing the computational cost. Our experimental validation
proves that the integration of the tracking component with
a generic face detector allows to reach state-of-the-art per-
formances while keeping the budget as low as B = 10, thus
allowing for lower computational cost.

3.3. Data Association
In order to decide which detection should guide which

tracker, a data association problem needs to be solved. In re-
lated work, greedy algorithms or heuristic approaches have
been used to limit the computational cost of this step [1, 3].
In our framework it is very important to determine whether
a detection shall be matched to a possibly drifting tracker
or classified as a new candidate for tracking, therefore we
solve the association problem through the Hungarian algo-
rithm which allows for optimal single frame assignment. As
we show in Sec. 4.5, the benefits provided by the Hungar-
ian algorithm come at a small cost (a small percentage of
the overall framework).

A score matrix S is computed reporting a score for each
pair (tr, d) of tracker tr and detection d. Each tracker
and each detector are associated to a bounding box b =
(x, y, w, h), where x and y are the top-left corner of the
bounding box and w and h are its width and height. The
matching score between each pair (btr,bd) is computed ac-
cording to the commonly used bounding box overlap ratio
[4]:

s(btr,bd) =
area(btr ∩ bd)

area(btr ∪ bd)
(4)

Only the (tr, d) pairs with a matching score above a
threshold, experimentally set to a value of 0.3, are con-
sidered valid. Since trackers inherently tend to drift over
time, when a matching occurs the detection output is used to
reinitialize the associated tracker. We reset the SVM learn-
ing process taking the new associated detection as first la-
belled example. As detailed in the following subsection,
unmatched detections are considered as possible candidates
for target creation, while unmatched trackers are considered
as candidates for removal.

3.4. Target Creation and Removal
Deciding when to add and remove targets is an essen-

tial component for an automated detection and tracking sys-
tem. The cascade structure of the face detectors applied in

step 1 of FAST-DT allows to compute the detector confi-
dence at a given image location starting from the stage at
which an image patch is rejected from the classifier. This
operation is relatively inexpensive, since the computational
cost of sliding-window based detectors mostly comes from
the large number of image locations to be classified, rather
than from the classifier evaluation itself [5].

Let xb denote the image patch contained in the bounding
box b. A cascade classifier is composed by N stages, each
of them computing a real-valued confidence score cn(xb),
n ∈ {1, . . . , N} for the given image patch. In the Viola-
Jones face detector [10], cn(xb) is given by the Haar fea-
tures computed with the integral image, cn : X → R. If the
image patch is rejected at stage nr, the overall confidence
of the detector for a given image patch xb can be computed
as:

C(xb) = k ∗ nr + cnr (xb) (5)

where we select k = 1000 to ensure that image patches re-
jected at higher stages have a higher score and we normalize
the value of C(xb) in [0, 1].

For target creation, at each time step t we keep a vec-
tor of candidates vt. In order to limit false positives, un-
matched detections from step 3 are not immediately consid-
ered as new targets, but they are added to vt. Then, for a
number of fc consecutive frames, the confidence of each of
the three face detectors is evaluated according to Eq. (5) at
the corresponding position and the maximum is taken. If
the maximum confidence repeatedly scores above a thresh-
old thc, the candidate is added to the current targets and a
new tracker is instantiated, otherwise it is considered to be
a false positive and therefore discarded. For target removal,
we consider all the trackers which were not matched in step
3 and we evaluate the confidence of the three detectors at the
tracker position according to Eq. (5). If the maximum face
detector confidence at the target location is below a thresh-
old thr for fr consecutive frames, we consider the object
to be no longer visible and we remove it from the current
targets. The exact values of the mentioned parameters can
be found in Sec. 4.4.

The proposed mechanism for target creation and removal
requires only 4 parameters to be tuned. It can therefore be
adapted to different scenarios. Moreover, since most object
detectors provide a confidence density in some form, it can
be adapted to different detectors by changing Eq. (5) ac-
cordingly. In general, higher values of fr and fc are more
suitable for relatively static scenarios, while the setting of
thr and thc depends on the specific detector employed.

3.5. Post-processing
In step 5, we introduce two simple mechanisms to check

if any of the current targets is out of scope or largely oc-
cluded. In the first mechanism, for each of the current track-
ers we check if the corresponding bounding box btr is out
of the boundaries of the current frame. If this condition is
met, we consider the target to have abandoned the scene
and we remove it from the current trackers. In the second
mechanism, we compute the overlap between each pair of

trackers according to Eq. (4) to check if any of the track-
ers is occluded by a bigger object. If the overlap is above a
threshold tho, the smaller bounding box is considered to be
occluded and therefore removed from the current trackers.

By adding this simple post-processing step we can
avoid the implementation of costly tracking-failure detec-
tion mechanisms within the tracker itself, and we avoid ad-
ditional constraints in the learning phase of the SVM track-
ers which would slow-down the tracking process.

4. Experimental Results
4.1. Data Set

The great majority of detection and tracking algorithms
are either tested on own recorded sequences, which are not
available for comparison, or on short videos of a few min-
utes length [9, 12]. Short videos can hardly capture the great
variety of challenging conditions related to tracking, and
they are non-effective in proving a system’s capability of
adding and removing tracks at the proper time.

In order to prove the robustness of FAST-DT, we tested it
on the publicly available TA2 dataset [2] which is composed
by two videos of more than one hour each. These videos
present several challenges such as frequent pose variations,
partial or full occlusions, targets entering/leaving the scene
and different illumination conditions. Moreover, the se-
lected dataset allows us to provide a quantitative compar-
ison with the state-of-the-art [3].

4.2. Annotations
We compare the output of our system against the publicly

available ground truth [2], where the positions and sizes of
the faces are described as bounding boxes. Not all the video
frames are annotated, and the time between annotated video
frames δt varies from 0.04 s to 12 s according to the dynam-
ics of the scene.

4.3. Performance Measures
We test FAST-DT using two different sets of metrics.

The first set has been introduced in [3] and provides a good
indication whether the tracking is completely lost or still
on the object, even slightly. These metrics are particularly
useful in measuring the performance of a system where the
accuracy of the bounding box position is not a strict require-
ment, e.g., a human-supervised system where the tracking
output mainly serves as a visual feedback for a human oper-
ator. However, in automated applications in which detected
faces are further processed an accurate localization of the
tracked faces is an important requirement. For example, if
a face recognition step follows the tracking algorithm, it is
important to provide the recognizer with an accurate loca-
tion of the face, including the main facial features.

For these reasons, we also report a second set of metrics
which is more restrictive in determining a tracking success
[4]. In both set-ups, for every annotated frame we asso-
ciate the bounding boxes in output from FAST-DT with the
ground-truth annotations through the Hungarian algorithm.
However, the matching scores are defined differently.

1) Metrics I: in the first set of metrics, the score between
matching pairs is computed according to:

F =
2 ∗ area(bo ∩ bg)

area(bo) + area(bg)
(6)

where bg is the ground-truth bounding box and bo is the
bounding box output from FAST-DT. A match is considered
successful if the F -measure as defined in Eq. (6) is greater
than 0.1. In [3] the authors further define R and FP as2

R =

∑G
i=2 δidi∑G
i=2 δi

, FP =

∑G
i=2 δifi∑G
i=2 δi

(7)

whereG is the number of annotated frames, di is the propor-
tion of correctly detected/tracked faces in frame i, fi is the
number of false positives divided by the number of ground
truth objects in frame i and δi is the time difference between
frames i and i− 1.

2) Metrics II: in the second set of metrics, we adopt the
standard followed by the PASCAL VOC challenge [4]. In
this case, the overlap between bo and bg is computed ac-
cording to Eq. (4), and a threshold of 0.5 is considered. This
criterion is more restrictive and therefore it is a better indi-
cation of the accurate localization of the faces by the track-
ing system. We further measure the widely adopted recall
and precision as defined in [9], but in order to account for
the time difference between consecutive annotated frames,
we weight them according to δi, as we already did for the
previous set of metrics:

recall =

∑G
i=2 δiri∑G
i=2 δi

, precision =

∑G
i=2 δipi∑G
i=2 δi

(8)

where ri is the proportion of correctly detected/tracked
faces in frame i and pi is the number of true positives di-
vided by the number of system outputs. We remark here
that di and ri are defined in the same way. However they
are based on different matching criteria (Eq. (6) and Eq. (4)
respectively, with thresholds of 0.1 and 0.5); therefore they
lead to different numbers.

4.4. Experimental Set-up
In order to provide a fair comparison with the state-of-

the-art, in our experimental set-up we followed the indica-
tions provided by the authors in [3]. Step 1 of Fig. 1 is
applied to a down-scaled version of the video frames (640
× 360 pixels) and the original video frame rate of 25 fps
has been changed to 12.5 fps. This means that for odd
frames, we output the bounding boxes from the previous
frame. The face detector threshold for non-maximum sup-
pression (Sec. 3.1) has been set to 4. The detection step
is run only once every 10 frames, as in [3]. Also steps 3
and 4 from Fig. 1 are run once every 10 frames. In prin-
ciple, the detector confidence evaluation for target creation

2We use the terms R and FP rather than Recall and False positive
rate to better distinguish between the two different set of metrics we re-
port.

and removal could be run every processed frame. However,
in our experiments we found that applying these steps every
frame slows down the algorithm without noticeably improv-
ing the accuracy. The budget for the online SVM trackers
has been set to B = 10. All the other tracking parame-
ters have been set to the values reported by the authors in
[6]. The thresholds for target creation and removal have
been set to thc = 0.8 and thr = 0.5, respectively. We set
fr = 25 and fc = 5, which correspond to 10 s and 2 s of
video respectively, considering that step 4 is run once every
10 frames. The overlap threshold is set to tho = 0.3 for
both step 3 and the occlusion detection mechanism of step
5. All the experiments have been run on a Intel Core i7 with
a 3.07 GHz clock (single thread).

4.5. Quantitative Results

Metrics I [3] Metrics II [4]

Method R FP Recall Precision Throughput

FAST-DT 93.4% 2.2% 85.2% 89.6% 34 fps

Duffner & Odobez [3] 93.7% 1.2% 42.1% 45.4% 20-23 fps

Table 1: Performance comparison with the state-of-the-art.

1) Accuracy: in Tab. 1 we compare FAST-DT with the
state-of-the-art results reported in [3]. For the recall and
precision metrics, we computed them from the output file
made available by the authors. We remark that because of
the randomness involved in our tracking algorithm [6], the
reported numbers for FAST-DT are the median results of
three consecutive runs over the video sequences. There-
fore, decimal differences reported in the table should be
considered with care. From Tab. 1, we can see that when
reporting the metrics adopted in [3], we reach similar per-
formance, with a 1% difference in FP . For the PASCAL
VOC criteria [4], we notice a considerable improvement in
both recall and precision. This is because FAST-DT is
more effective in accurately determining the exact location
of the faces from the video. The improvement in recall and
precision can be ascribed to the robustness of the structured
SVM tracker; our detection component is the same as in [3],
while a more robust target creation and removal component
would have resulted in an improvement also in R and FP .
In Fig. 2 we report some example frames to illustrate the
better recall and precision of FAST-DT with respect to [3].

2) Computational Cost: in Fig. 3 we report the average
time cost in seconds for each of the components of FAST-
DT, plus the overhead due to frame decoding and conver-
sion. The average time per frame when running FAST-DT
on the TA2 dataset is 0.029 s, thus leading to an average
throughput of 34 fps, which represents around a 50% im-
provement over [3], as shown in Tab. 1. Our results and
those reported in [3] have been obtained on Intel PCs with
similar processing power. The average time per frame spent
by the detection component reported by the authors in [3]
is very close to the one we obtain, these being 0.013 s and
0.012 s respectively. A more detailed comparison is not
possible because the implementation of [3] is not available;

(a) (b) (c)

Figure 2: Example frames of FAST-DT output (green), Duffner & Odobez [3] output (yellow) and ground-truth (pink). Even
though the outputs from both FAST-DT and [3] are in the proximity of the targets, we can see that FAST-DT is more effective
in accurately determining the faces location.

moreover, [3] does not report the time cost for all the algo-
rithmic components, and the work includes a person identi-
fication step that has no equivalent in our framework.

Figure 3: Average time cost (seconds) per frame of the pro-
posed method on the TA2 dataset.

From Fig. 3 we can see that even though the detection
(step 1) is run only once every 10 frames, it still accounts
for 41% of the total computation time. The tracking com-
ponent (step 2) is the most expensive, requiring 48% of the
total time. This implies that the detection and tracking com-
ponents alone account for nearly 90% of the total computa-
tion time. Our track creation and removal approach (step 4)
is computationally efficient and its cost is almost negligible
with respect to the overall framework.

5. Conclusions and Future Work
In this paper we propose FAST-DT, a completely auto-

mated system for online multi-face detection and tracking.
FAST-DT combines multiple Haar-feature based face de-
tectors with an adaptive structured output SVM tracker. It
solves the target creation and removal problem using the
continuous detector confidence. We noticeably improve
the performance over the state-of-the-art while providing a
higher throughput. In future work, additional target-specific
knowledge could be added to allow for target identification
throughout a video sequence.

Acknowledgment: This work was supported in part by
the COMMIT program under the SenSafety project.

References
[1] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier,

and L. J. V. Gool. Online multiperson tracking-by-detection
from a single, uncalibrated camera. IEEE Trans. Pattern
Anal. Mach. Intell., 33(9):1820–1833, 2011.

[2] S. Duffner, P. Motlicek, and D. Korchagin. The ta2 database:
A multi-modal database from home entertainment. In IC-
SAP, 2011.

[3] S. Duffner and J. Odobez. Track creation and deletion frame-
work for long-term online multiface tracking. IEEE Trans.
Image Processing, 22(1):272–285, 2013.

[4] M. Everingham, L. J. V. Gool, C. K. I. Williams, J. M. Winn,
and A. Zisserman. The pascal visual object classes (VOC)
challenge. IJCV, 88(2):303–338, 2010.

[5] G. Gualdi, A. Prati, and R. Cucchiara. Multistage particle
windows for fast and accurate object detection. IEEE Trans.
Pattern Anal. Mach. Intell., 34(8):1589–1604, 2012.

[6] S. Hare, A. Saffari, and P. Torr. Struck: Structured output
tracking with kernels. In ICCV, 2011.

[7] M. Mathias, R. Benenson, M. Pedersoli, and L. V. Gool. Face
detection without bells and whistles. In ECCV, 2014.

[8] M. Roth, M. Bäuml, R. Nevatia, and R. Stiefelhagen. Robust
multi-pose face tracking by multi-stage tracklet association.
In ICPR, 2012.

[9] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,
A. Dehghan, and M. Shah. Visual tracking: An experimental
survey. IEEE Trans. Pattern Anal. Mach. Intell., 36(7):1442–
1468, 2014.

[10] P. Viola and M. Jones. Robust real-time face detection. IJCV,
57(2):137–154, 2004.

[11] B. Wu, S. Lyu, B. Hu, and Q. Ji. Simultaneous clustering and
tracklet linking for multi-face tracking in videos. In ICCV,
2013.

[12] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A
benchmark. In CVPR, 2013.

[13] J. Yan, Z. Lei, L. Wen, and S. Z. Li. The fastest deformable
part model for object detection. In CVPR, 2014.

[14] W. Yan, X. Han, and V. Pavlovic. Structured learning for
multiple object tracking. In BMVC, 2012.

[15] C. Zhang and Z. Zhang. A survey of recent advances in face
detection. Technical report MSR-TR-2010-66, 2010.

[16] X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark localization in the wild. In CVPR, 2012.

