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Abstract: Respiration is monitored in neonatal wards using Chest Impedance (CI), which is
obtrusive and can cause skin damage to the infants. Therefore, unobtrusive solutions based
on infrared thermography are being investigated. This work proposes an algorithm to merge
multiple thermal camera views and automatically detect the pixels containing respiration motion
or flow using three features. The method was tested on 152 minutes of recordings acquired on
seven infants. We performed a comparison with the CI respiration rate yielding a mean absolute
error equal to 2.07 breaths/min. Merging the three features resulted in reducing the dependency
on the window size typical of spectrum-based features.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Premature infants are cared for in Neonatal Intensive Care Units (NICUs) where their vital signs
need to be continuously monitored to detect critical events. To measure these biosignals, like
Electrocardiogram (ECG), respiration, and oxygen saturation, many electrodes and sensors are
applied on the infants’ sensitive skin causing discomfort and, in some cases, also skin damage [1].
Respiratory frequency is usually monitored since respiratory instability and apneas (cessations of
breathing) can be common in preterm infants and in term newborns with respiratory diseases [2],
and may require immediate action of the caregiver. The gold standard to monitor respiratory
frequency in non-ventilated patients in NICUs is the Chest Impedance (CI) method, which can be
measured using the electrodes already applied for the ECG. However, it still suffers from motion
artifacts and it is not reliable for neonatal apnea detection [3].
Unobtrusive or non-contact solutions to monitor respiration are being investigated for clinical
environments. The two main observable effects of respiration are respiratory motion and
respiratory flow. Respiratory motion can be monitored unobtrusively using different solutions as
RGB/Near-Infrared (NIR) cameras [4, 5], radar-based solutions [6, 7], pressure mats [8, 9], or
thermal cameras [10, 11]. Of these, thermal cameras are able to also deliver flow information
unobtrusively [12, 13].
Respiratory monitoring is often used to detect apneas, which can be classified in three main
categories: central, obstructive, and mixed. In central apneas no stimulus for breathing is given
by the brain and therefore, both respiratory motion and respiratory flow are absent, while, in
the other two categories some sort of respiratory motion, i. e. respiratory effort, is present [14].
Therefore, when aiming at apnea detection and classification, technologies that can detect both
flow and motion are more appealing, like infrared thermography.
Previous studies based on thermal cameras in a NICU environment used facial landmarks
detection to locate the nasal area by exploiting for example the medial canthus region, one of the
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warmest areas of the face [15, 16]. This is however quite complex in infants’ thermal recordings
and requires high resolution thermal images, or proximity of the camera to the nasal area [17], or
a combination of thermal and RGB cameras [18]. Therefore, approaches aiming at automatic
Region Of Interest (ROI) detection in thermal imaging are being developed [19, 20].
Pereira et al. [19] designed an algorithm to automatically select the ROI containing respiration
signals in infants. This algorithm relies on a large resolution reduction which allows to drastically
reduce the noise in the thermal recordings. Afterwards, a Signal Quality Index (SQI) is calculated
for each ROI based on the spectrum and an empirical threshold is used to decide which ROIs
potentially contain respiration signals. Such an approach is very promising as it allows to obtain
a respiration signal even when the nose is not clearly visible in infant thermal recordings. Our
previous work [20] proposed an alternative approach tested on a thermopile array, which is a
very low-cost device that delivers low-resolution thermal images. The algorithm proposed for
the automatic detection of the ROI was based on the height of the normalized spectrum peak
and required no empirical thresholds to be defined. While the first work was developed for a
high-resolution thermal camera and was tested also in infants, the second one was developed for
an extremely low-resolution thermopile array but was tested only for adults in ideal conditions.
However, both approaches propose the use of features for the localization of the pixels containing
respiration based solely on the spectrum shape, this may be complex to generalize as different
spectrum characteristics can affect the result. For example, the frequency resolution of the
spectrum affects how the energy is distributed and if short windows are used, it may result
in noise pixels’ spectra being difficult to distinguish from respiration ones due to the spectral
leakage, especially when the signal to noise ratio is low.
Moreover, considering complex environments as NICUs, the use of multiple camera views
is important to obtain a proper coverage in all the infants possible positions for the detection
of both respiratory flow and motion signals, called in this work respiration thermal signature.
Furthermore, since neonates in NICUs are inside incubators and the incubators’ Plexiglas walls
are not transparent to long-wave infrared, thermal cameras should be positioned inside the
incubator which is not feasible for large high resolution cameras. Even in case of babies being
in an open bed, bulky cameras can obstruct caregivers’ and parents’ interaction with the infant,
therefore, the use of smaller thermal solutions should be investigated.
Building on our previous work [20], this paper proposes a new algorithm based on an automatic
ROI detection for respiration monitoring in multi-camera low-resolution thermal videos. We
propose a data fusion on a pixel level and define three features that can be merged together to
obtain a more accurate localization of the respiration pixels without relying on spectrum shape
only, spatial averaging, or facial landmarks detection. This algorithm was tested on thermal
videos recorded on seven infants in a real neonatal ward, reaching a total amount of 152 minutes
using CI as gold standard. To our knowledge this is the first work showing results on such a large
dataset of neonatal thermal recordings for respiration monitoring.
The rest of this paper is organized as follows. Section 2 explains the method developed, the setup
used, and the dataset. Section 3 presents the results that are then discussed in Section 4. Section 5
highlights limitations and possible future research, and Section 6 contains the conclusion.

2. Materials and Methods

2.1. Method

Three FLIR Lepton cameras were used to collect thermal videos of neonates in open bed. We
chose to use multiple cameras to increase the camera coverage and have a good visualization
of both respiration motion and flow considering different infants positions. Two cameras were
positioned on the side of the open bed with a view that somewhat focuses on the head of the baby
and the third one was mounted at the foot side of the bed registering the entire baby area. All the
cameras have a resolution of 60× 80 pixels, for further details on the setup refer to Subsection 2.2



Fig. 1. Major processing steps summarized

and Fig. 3.
The videos from the cameras are merged obtaining a single image-plane. Based on three features
a core-pixel, presumed to contain a strong respiratory signature, is selected. This core-pixel is
then combined with temporally highly correlating pixels to form the respiratory output signal.
Consequently, this output uses both respiratory flow and motion present in all camera views. The
Respiration Rate (RR) can then be estimated as the frequency corresponding to the peak of the
spectrum. These steps are summarized in Fig. 1 and explained in more detail in the next sections.
Our algorithm will be benchmarked against Pereira’s method [19], adapted to make it work with
our hardware setup. The algorithm was developed and executed offline in MATLAB (MATLAB
2018a, The MathWorks Inc., Natick, MA, USA).

2.1.1. Preprocessing

The videos were recorded using MATLAB. However, due to the acquisition strategy the sampling
rate of the videos was not uniform. Therefore, to obtain uniformly sampled videos, a 1D linear
interpolation, i. e. using the standard MATLAB function interp1, was performed for each
pixel’s time domain signal resulting in three videos sampled at 9�I (the choice of the sampling
frequency is not particularly critical and 9�I was chosen such that it was close to the average
frame rate). At this point we considered two possible steps, one is treating the videos as three
separate streams and then combine the RRs, the other one is combining the videos on a pixel
level and process them as a single video. The first approach has some advantages based on the
independence of each view, for example if a movement is visible only in one of the cameras the
other two can potentially still deliver a good RR estimation. The second one, instead, rejects
weaker respiration signatures, that can be obtained from unfavorable camera views, allowing to
use only the overall best pixels. Most importantly however, the first method does not perform
well when only one of the cameras detects a correct RR, and therefore, the second method has
been implemented. The result, after merging the videos, is a single video with spatial dimensions
equal to " × ! with " = 180 and ! = 80 pixels as shown in Fig. 1. It should be specified
that we did not correct the single views’ temperature values as visible in Fig. 1 because the
absolute temperature values do not affect the processing since each pixel’s time domain signal is
used independently (the feature called thermal gradient is the only one that could be affected by
differences in the temperature values as this could lead to a false edge-detection, however, the
combination with the other features compensates for this effect).
The merged video was processed with a sliding window approach with a window size equal to
15 B and a slide of 1 B, the window size was chosen as a trade-off between accuracy and latency.
A 15 seconds latency results in a resolution of 4 Breaths Per Minute (BPM), and the slide size



results in an updated respiratory rate every second.

2.1.2. Automatic ROI Detection

We based our respiration pixels selection strategy on different features that are used to find a
core-pixel in the entire image, this pixel will be then used to find the other pixels that contain
respiration. As the core-pixel is crucial to the result, the features are built to ensure a very strict
selection. Each pixel is processed separately, let G8 (=)B) be each pixel’s time domain signal
in a 15 second window, with 8 being the index indicating the current pixel that can therefore
go from 1 to 14400, i. e. the total number of pixels obtained after merging the three camera
views. If we define the current 15 seconds time window as the 9 Cℎ window then = is defined as
= = 0 + 9( 9 − 1), 1 + 9( 9 − 1), ..., # + 9( 9 − 1) with # being equal to 135 samples, i. e. the
samples in 15 seconds with a sampling time )B = 0.111 B.
Three features were used to select the core-pixel in each window:

• Pseudo-periodicity: the first feature is similar to the one presented in our previous
work [20], i. e. the height of the normalized spectrum peak that assumes the respiration
signal to be pseudo-periodic and thus identifiable compared to noise. Each G8 (=)B) is
filtered with a differential filter, the filtered version is named G ′

8
(=)B). This is transformed,
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We obtain the first feature, then, by collecting all the @8 calculated for each pixel in a
vector and by rearranging it in the matrix form, we obtain an " × ! matrix called Q, see
example in Fig. 2. The feature defined in [20] resulted in not being accurate enough for the
selection of a core-pixel in each 9 Cℎ window without any previous knowledge, modification
were therefore required. A constraint on the selection of the possible pixel, based on the
proximity to the previously chosen pixels, was introduced in our previous work, which
causes a dependency on the first selected core-pixel which is undesirable. Therefore, to
avoid this dependency we introduced two new features.

• Respiration rate spatial clusters: the second feature comes from the consideration that
pixels containing the respiration thermal signature are clustered in groups that present
similar frequencies, i. e. the respiration rate. Therefore, for our second feature we select
the frequency corresponding to the highest peak in the spectrum as:

AA8 =

arg max
:

(
| H′
8
( 5: ) |

)
#I)B

. (2)

The AA8 are arranged back into the image shape, called RR with dimensions " × !, on
which a non-linear spatial filter with a 3 × 3 kernel is applied, as follows:

F<,; =
1
9

3∑
A=1

3∑
ℎ=1

(
1

4G?(70 | AA<,; − AAA ,ℎ | /AA<,;)

)
, (3)



while A and ℎ identify the kernel cell, < and ; indicate the current central pixel in the entire
" × ! image. The constant 70 has been found to be not very critical and chosen such that
it results in a weight equal to around 0.5 for a 1% relative error. Therefore, the resulting
matrix will map the pixels having similar frequencies in their neighborhood and it is called
W, an example can be seen in Fig. 2.

• Thermal gradient: this feature assumes that respiration motion is visible in the thermal
recordings and, considering that this is only visible if there is a thermal contrast, an edge
map is built using the gradient as follows:

6<,; =


1 if

√(
m0<,;

m<

)2
+

(
m0<,;

m;

)2
> 1,

0 otherwise,
(4)

with A being a thermal image in degrees Celsius representative of the current window 9

and evaluated as the average of all the thermal images in the window. A gradient of at least
1◦� is considered, 0<,; is an element of A. The gradient operation is performed with the
central difference method, using the standard MATLAB function gradient. The resulting
matrix is called G, Fig. 2 shows an example.

Once the features are calculated, the matrices, Q, W, and G are normalized to have values
between 0 and 1 and then multiplied element-wise, obtaining a combination of the three features,
called V.
The core-pixel that is assumed to contain respiratory thermal signature is then selected as the
pixel corresponding to the maximum of V as:

?A = arg max
8

(E8) . (5)

Once this pixel is selected, the other pixels containing respiration, both flow and motion, can be
found based on the Pearson’s correlation coefficient. More formally, the time domain signals,
G8 (=)B), are filtered at this point with a Butterworth bandpass filter from 30 �%" to 100 �%" ,
corresponding to the normal respiratory rate range in infants including also tachypnea cases [21],
this filtered signal is called Ĝ8 (=)B). The Pearson’s correlation coefficient calculation on these
DC-free signals as:

2?A ,B =

#∑
C=1

(
Ĝ?A (C)

)
(ĜB (C))(

#∑
C=1

(
Ĝ?A (C)

)2 #∑
C=1
(ĜB (C))2

)1/2 . (6)

The 2?A ,B indicate the correlation between the chosen core-pixel ?A and a pixel in position B, that
can vary from 1 to 14400, Ĝ?A (C) or ĜB (C) are the filtered time domain signals of the ?CℎA or BCℎ
pixel, while C is an index that sweeps the time samples. In this work we considered pixels with an
absolute correlation higher than 0.7, empirically chosen:

P = B : | 2?A B |> 0.7. (7)

P consists of a set of pixels that are assumed to contain respiratory thermal signature. Fig. 2
shows an example of all the features.
All pixels contained in P are combined together with an average operation, after correcting for
the sign of each time domain signal. The result is a single time domain signal representing the
respiration signal detected in the 9 Cℎ window. The signal is Hanning windowed and the spectrum
is obtained through DFT. The RR is estimated as the frequency corresponding to the spectrum’s
peak for each window. A final time domain signal is obtained using an overlap-add procedure as
explained in [22].
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Fig. 2. On the top row an example of the three features used, on the bottom row a
representative thermal image, the result of the multiplication, and a representation of
all the pixels contained in P. The core-pixel ?A is shown in white in the last figure.

2.1.3. Benchmarking and Reference

We benchmark our multi-camera and multi-feature ROI detection algorithm against Pereira’s
method [19] applied on all the three different view available in our dataset. A large spatial
averaging is applied in Pereira’s method, which was impossible to reproduce on our images due
to the very different starting resolutions (our images have resolutions of 60 × 80 pixels while
the images used in [19] have a resolution of 1024 × 768 pixels). Therefore, this step had to
be skipped, as a consequence the quantization errors may be stronger in our dataset than in
Pereira’s set after down-scaling. Afterwards, a Hamming window is applied as done originally
and at this point Pereira’s method removes the DC component without further filtering. Directly
using Pereira’s method on our data, resulted in SQIs being higher for the noise pixels than the
pixels showing the respiration signal. Consequently, the method failed as the wrong pixels were
selected. This must be due to the two main differences in our setup: the lower spatial resolution,
which prohibits further down-scaling, and the lower frame rate. Particularly, Pereira’s method
relies on spectrum features, as the one called F2, that depend on the frame rate. Therefore, we
had to optimize Pereira’s method to work on our data.
We were forced to apply a filter to attenuate the low part of the spectrum in order to get meaningful
results. We used a differential filter as in our method, this filter does not change the essence of
Pereira’s method, so we feel it is a fair adaptation. DFT is applied to obtain the spectrum, and the
magnitude of each spectrum is normalized for the maximum as done in Pereira’s method. The
SQI needs to be calculated at this point, in [19] three frequency bands were defined, a low-pass
band below 0.1�I, a band-pass between 0.1�I and 3�I and a high-pass band above 3�I,
and the SQI is calculated using four empirical spectrum features (i. e. the paper [19] mentions
that F1 is the maximum amplitude in the high-pass band, F2 is the percentage of values in the
high-pass band that are larger than an empirical threshold, F3 is the difference between the
maximum amplitudes in band-pass and low-pass bands, and F4 is the ratio between the maximum
amplitudes in the low-pass and band-pass bands). Pereira et al. empirically chose a threshold,
applied on the SQI, equal to 0.75 to eliminate the pixels that do not contain a respiratory signal.



The three frequency bands so defined allow to use the method also for the detection of heart rate,
whose typical frequencies are therefore included in the band-pass band.
In our case, heart rate detection is not one of the application’s goals and also is not practically
implementable due to our limited sampling frequency which would not respect the Nyquist–
Shannon theorem (i. e. the sampling frequency should be at least two times the highest frequency
of a band-limited signal, for heart rate detection in infants upper limit up to 5 Hz can be
considered [23]). Therefore, we adapted the band to the same band we use in our application
(low-pass below 0.5�I, band-pass between 0.5�I and 1.7�I, and high-pass higher than 1.7�I).
The SQI has been calculated using the four features indicated in the original paper but some
thresholds that were empirically defined had to be slightly adapted. Therefore, (i) the threshold for
the calculation of the feature called F2 was increased from 0.1 to 0.2 and (ii) all the pixels having
an SQI higher than 0.5 have been further processed for the RR calculation. We estimated the RR
for each of the valid pixels and combined them using the median, obtaining a RR estimated for
each window. The optimization of the SQI threshold for all the views and babies was the most
problematic, as it resulted in a trade-off between inclusion of many noise pixels, and obtaining
NaNs caused by absence of pixels meeting the criterion. We realized that using a higher threshold,
e. g. 0.6 would be favorable resulting in a reduction of the error in some of the recordings,
however, the use of a higher threshold could not prevent NaNs. Therefore, even though by tuning
the thresholds for each single view and each single baby the results may get better, we decided to
use the same thresholds for all the views which, in our opinion, is more realistic.
The RR was also estimated for the simultaneously collected CI signal in the same way, the CI
signal was firstly filtered with a Butterworth bandpass filter from 30 �%" to 100 �%". The
RR so obtained constitutes our reference for both our method and Pereira’s. Moving mean and
median filters with 9 points were then applied in all cases.
To compare the results with the reference, Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and a Percentage of correct values (PR) have been calculated. PR is defined as
the percentage of estimations in which the absolute difference between an estimated RR and the
reference RR is below 2 �%" , corresponding to the accuracy of a DFT with 4 �%" resolution.
More formally:

%' =

#F∑
9=1

(
| A 5 9 − Ã 5 9 |< 2

)
#F

· 100, (8)

where #F is the number of windows, and A 5 9 and Ã 5 9 are respectively the CI respiration rate and
the estimated respiration rate (ours or Pereira’s) obtained in the 9 Cℎ window. We analyzed the
contribution of each of our features used for the detection of the core-pixel, and how the error
varies when combining them. Moreover, to prove the dependency on window size of features
based on the spectrum shape, we analyzed how the average MAE changes by keeping all the
thresholds values and changing the window size to 8 s, for our method and for the benchmark one.

2.2. Experimental Setup

The recordings were performed using three FLIR Lepton thermal cameras. These were Lepton
2.5, with a resolution of 60 × 80, the cameras are sensitive in the Long-Wave Infrared (LWIR)
range, specifically from 8 to 14 `m. The thermal sensitivity is around 50< and the average
frame rate is 8.7�I. The sensors were connected to smart I/O modules (Pure Thermal 2 or
Pure Thermal Mini) and these were connected to a laptop through USB. The acquisition was
performed using MATLAB, the temperature readings were obtained by using the cameras with
the factory default calibration. The cameras were positioned around the babies’ open beds to
cover all possible infant positions inside the bed, mounting arms as shown in Fig. 3 were used.
The two cameras pointing at the infant face from the two sides are called camera 1 and 2, while



camera 3 is the camera on the foot side of the bed. We specify that camera 3 is actually a Lepton
3.5 which differs from the others only for the resolution, equal to 120 × 160. We noticed the
60 × 80 resolution was sufficient in detecting the respiration rate and decided to use all the
cameras at the same resolution. The images of the Lepton 3.5 were therefore down-scaled to
60 × 80 simulating the use of a third Lepton 2.5. All three cameras have a shutter which has
been deactivated during the acquisition to avoid delays caused by the closing and opening of
the shutter. The reference signal, CI, was obtained from the patient monitor (Philips MX700)
sampled at 62.5�I. An artifact was used to synchronize the videos with the patient monitor.

Fig. 3. The three FLIR Lepton positioned around an infant’s open bed, two with white
housing and one with blue housing.

2.3. Dataset

The study was conducted in the neonatal ward of the Maxima Medical Center (MMC) in
Veldhoven, The Netherlands and the study received a waiver from the Ethical Committee of
the MMC. A written informed parental consent was obtained for all the infants included. The
inclusion criteria were: (i) babies monitored using ECG electrodes for clinical purposes, (ii)
clinically stable, (iii) in open bed. Both preterm and term babies were included in the study.
In total nine babies were included, two babies have been excluded from this analysis due to the
blanket position that resulted in completely hiding the respiratory motion while the respiratory
flow was also barely visible, Table 1 presents the information regarding the remaining seven
infants. For each baby around three hours of videos were acquired, except for Infant 7 where only
one hour was acquired. Since we expected problems from interfering motion (examples baby
moving, parents or nurses handling, or soother presence) we selected only moments without
patient handling and patient motion. The videos were, therefore, manually annotated, the useful
moments can vary from around nine minutes to forty-five depending on the infant. One baby with
respiratory support was included for feasibility purposes and corresponds to Infant 1 in Table 1.

3. Results

Table 2 provides the MAE, RMSE, and PR for our method and the benchmark applied on all
the camera views. On the last row the average results considering all the infants is presented,
the best results for MAE, RMSE, and PR are indicated in bold. Our method yields an average
MAE equal to 2.07 �%" and an average PR of 70.90%, while the benchmark obtains its best
results on camera 3 with a MAE equal to 3.18 �%" and a PR of 56.30% (we also tested
the benchmark on camera 3 at full resolution, i. e. 120 × 160, the results were similar with



Table 1. Infants Data

Infant Gender Gestational Age
(weeks+days)

Postnatal age
(days)

Weight
(g) Sleeping Position Duration

(minutes)
1 F 26w 4d 59 2445 Supine 34.52
2 M 38w 5d 3 4140 Supine 9.24
3 M 34w 1d 16 2995 Supine 31.17
4 M 26w 3d 59 2750 Prone 11.10
5 M 39w 2 3670 Lateral 10.76
6 F 40w 1d 6 3420 Supine 44.70
7 M 40w 2d 1 3775 Lateral 10.17

a MAE equal to 3.39 �%"). Fig. 4 shows an example of results obtained with the method
proposed in this work and the benchmark method. A Correlation and Bland-Altman analysis
was also performed for our method against the reference and displayed in Fig. 5. A mean bias
of −0.55 �%" was obtained with the limits of agreement equal to −6.25 �%" and 5.14 �%" ,
and the Correlation plot shows the agreement between our estimated RRs and the reference ones
obtaining a d = 0.97 (? < 0.0001).
Fig. 6 shows how the individual features, used to select the-core pixel, influence the performance.
The benchmark results on camera 3 are included in this figure to allow comparison. The results
obtained with a window of 8 seconds are also shown in Fig. 6, the average MAE with this reduced
window for all the babies in our method was 2.19 BPM, and 5.18 BPM for the benchmark applied
on camera 3.

Table 2. Results showing MAE in BPM, RMSE in BPM, and percentage of correct
estimation (PR) for our method and the benchmark one.

Infant Ours Benchmark
Cam 1 Cam 2 Cam 3

MAE RMSE PR MAE RMSE PR MAE RMSE PR MAE RMSE PR
1 0.64 1.08 92.37 2.16 3.06 66.11 4.51 5.76 42.02 1.50 2.16 78.76
2 2.89 3.37 52.39 4.22 5.57 37.40 4.40 5.31 40.03 3.99 4.72 38.79
3 4.41 5.79 35.06 7.34 8.82 15.78 7.58 9.41 21.24 4.43 5.85 36.83
4 1.55 2.72 84.30 4.55 6.00 42.04 2.41 3.38 67.38 1.84 3.15 82.23
5 1.54 2.50 81.74 15.43 16.46 8.18 2.87 4.02 66.95 4.51 5.62 46.09
6 1.70 2.39 72.33 NaN NaN 27.20 5.50 7.15 40.68 3.45 4.39 51.25
7 1.73 2.17 78.10 3.34 4.10 48.90 4.37 5.50 53.38 2.54 3.37 60.16

Average 2.07 2.86 70.90 NaN NaN 35.09 4.52 5.79 47.38 3.18 4.18 56.30

4. Discussion

In this work a new algorithm has been proposed to retrieve the respiration rate without facial
landmark detection in low-resolution thermal recordings by combining pixels that highly correlate
with a core-pixel that was carefully selected based on three new features. Moreover, we introduced
the use of multiple parallel camera views, with data fusion on the pixel level, to enable respiration
detection regardless of the momentary position of the babies. Our method was benchmarked
against an adaptation of the method proposed by Pereira et al. [19].
The results obtained from around 152 minutes of infants thermal videos proved the method
is able to correctly identify the pixels containing the respiration thermal signature yielding an
average MAE of 2.07 �%" and around 71% of correct estimations, i. e. error below 2 �%".
The highest MAE was obtained in the case of Infant 3, this infant showed a Periodic Breathing
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Fig. 4. Example of results obtained on Infant 1, on the top row the first image shows
the merged thermal images from the three views, the second one and the third one show
respectively the pixels selected for the respiration signal estimation with our proposed
method and the benchmark method. On the bottom row instead the normalized time
domain signals from the CI reference and our method and the RRs estimated in all the
methods.

(PB) pattern, which is a form of immature breathing typically present in newborns [24] causing
fast changes in momentary RR. Our results were better than the benchmark, regardless of the
camera view selected (the benchmark performed still worse than our method, even when the
combined pixel data was provided as an input, and the benchmark algorithm again optimized
for this different input). Camera 3 obtained the best benchmark result, this was expected since
camera 1 and 2 may contain segments in which no flow or motion are visible in one of them
due to the infant position. We further emphasize that to obtain the benchmark results, Pereira’s
method had to be further optimized in order to get meaningful results with our data.
The Bland-Altman plot in Fig. 5, shows the ability of our method to correctly estimate the RR,
obtaining a mean bias of −0.55 BPM. The limits of agreement give an indication of the error
spread [−6.25; 5.14] BPM. Outliers are also present, these can be caused by synchronization
problems that could be present in the data, considering that infants can have a fast changing RR
small delays can cause high errors. Moreover, we should consider that the reference signal, i. e.
the chest impedance, is also prone to errors, e. g. due to loose electrodes and baby-movements.
As visible from Fig. 6, using only the pseudo-periodicity feature was not reliable enough to
select a core-pixel in each window, the use of a second and a third feature significantly improved
the results. Moreover, our combination of three features proved to be more robust to spectrum
changes due to a different window size yielding for a window of 8 seconds a MAE equal to 2.19
BPM compared to the significantly worsened results of the benchmark on camera 3: 5.18 BPM.
We attribute this results to the use of respiration rate clusters and thermal gradient, that are not
dependent on the spectrum shape.
Our low-resolution cameras were able to detect both respiratory motion and flow when the
relative position of the baby and the camera were favorable. Babies in open bed are a particular
population in neonatal wards and their habits and sleeping patters can significantly differ from
babies in incubators. Infants in open bed are usually covered with blankets which can end up
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size in our method and the benchmark is also included.

hiding the motion happening underneath, in two babies out of nine both flow and motion were
not detectable, this was explained by the blanket position which ended up hiding the respiratory
motion while the cameras did not have good position for the detection of the flow. A baby with
respiratory support was also included in this study, Infant 1, and resulted in having the lowest
MAE compared to all the other infants, this baby had a particularly quiet sleep compared to the
others and the presence of the nasal cannulae introduced a thermal contrast region on the face
itself increasing the number of pixels containing respiration motion.



5. Limitation of the Study and Future Research

One of the most evident limitations is that we isolated around 152 minutes of useful moments
from a total amount of 19 hours corresponding to the 13.3% of the time. This can be due to
several reasons, firstly, events such as feeding, diaper changing, and nursing care took up to one
hour with the baby being completely out of bed. Secondly, the algorithm is currently not able to
cope with significant motion of the baby, or another person in the field of view. This implies that
all segments including random motion of the baby, or nurses or parents hands in the field of view
cannot be used. Since the babies included in this study were in open bed in a single-family room,
where the presence of parents is highly encouraged to develop parent-infant bonding, segments
where parents are comforting their baby (i. e. hands in the field of view) were quite frequent, as
we shall discuss later. The occurrence of these moments should be considered to be significantly
higher compared to the case of babies in incubators. Furthermore, also, the use of a soother is
quite common in this population and causes a motion pattern that can result in being similar to
respiration patterns but at a different frequency, these moments have, therefore, been excluded
too.
A recent work studying a vast dataset of RGB video recordings of infants in incubators [4] showed
after the annotation of 384.3 hours that in 54.9% of these the reference (CI) was poor, in the
11.5% the infant was out of the incubator, and in the 11.3% there were clinical interventions, and
therefore, following our classification 22.3% would remain as useful data. CI is usually disturbed
during baby motion and when there is a poor electrodes contact. Considering the different infant
populations of the two studies we could attribute our reduced percentage of valid data to the use
of the soother and to the increased parent presence. However, a more detailed annotation should
be performed to analyze thoroughly the possible coverage obtainable with this type of setup and
to investigate how to improve the algorithm or the setup for a more realistic clinical application.
This pilot study gave us good insights on the use of such technologies in a complex environment as
a neonatal ward. Even though the focus of this paper was to verify the accuracy of our algorithm
in detecting the respiration rate, there is evidence suggesting this type of setup could also be
used to detect the occurrence of apneas and other type of patterns as shown in the examples in
Fig. 7. Cessations of breathing were observed in Infant 6. These were clearly visible in the video
thanks to the mattress changing temperature due to the respiratory flow. Infant 3 showed a typical
PB pattern throughout most of the measurements. The detection of such events needs further
analysis and should be part of the future development. Moreover, our algorithm currently detects
the respiratory thermal signature, without distinguishing between motion and flow, this can be a
limitation when aiming at apnea detection and should be further studied. Our method was tested
in a neonatal ward setting including only patients in an open bed, the method, the setup, or the
algorithm may need adaptation to work in a NICU setting with babies in incubator, due to the
warm and humid environment inside incubators.

6. Conclusion

A novel approach for automatic respiration pixels detection in multi-camera thermal recordings
was introduced. Our approach is based on the merging of the three camera views and the use of
three features for the detection of the pixels containing respiration motion or flow. This type of
approach has the advantage of being independent on the nose visibility required in approaches
based on facial landmark detection and tracking. Our method was benchmarked against the
method developed by Pereira et al., adapted to work with our recordings, and both were compared
to the RRs obtained with the CI, on 152 minutes recordings acquired on seven infants. Our
method yielded a percentage of correct estimation of around 71% compared to the benchmark
best results of around 56%. Overall, this work shows results for the detection of the respiration
rate in a quite large amount of data. Our algorithm obtained a MAE equal to 2.07 �%" by
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Fig. 7. Example of detectable cessation of breathing, the figures represents two
segments from Infant 6 and 3, the first row contains the respiration signal obtained
with our method and the second row shows the one obtained from the CI reference.
Short apneic events (indicated with the arrows) were visually identified by looking at
the thermal video and found also in the time domain signals, and PB pattern is clearly
visible in the chest impedance and our signal in Infant 3.

comparing our estimated RRs to the ones obtained from the CI reference, and using more features,
not only dependent on the spectrum shape, guarantees robustness to window size changes.
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