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ABSTRACT
Modern multi-processor systems need to provide guaranteed
services to their users. A communication assist (CA) helps in
achieving tight timing guarantees. In this paper, we present
a CA for a tile-based MP-SoC. Our CA has smaller memory
requirements and a lower latency than existing CAs. The
CA has been implemented in hardware. We compare it with
two existing DMA controllers. When compared with these
DMAs, our CA is up-to 44% smaller in terms of equivalent
gate count.

Categories and Subject Descriptors
B.4.3 [Hardware]: Input/Output and data communica-
tion—Interconnections,interfaces

General Terms
Design, Performance

Keywords
CA, Predictable, FPGAs, Communication, MP-SoC, DMA

1. INTRODUCTION AND RELATED WORK
The number of applications which is executed concur-

rently in an embedded system is increasing rapidly. To
meet the computational demands of these applications, a
multi-processor system-on-chip (MP-SoC) is used. In [2],
a multi-processor platform is introduced that decouples the
computation and communication of applications through a
communication assist (CA). This decoupling makes it easier
to provide tight timing guarantees on the computation and
communication tasks that are performed by the applications
running on the platform.

Several CA architectures [4, 5, 6] have been presented
before. These CAs use separate memory regions for stor-
ing data which needs to be communicated and data which
is being processed (i.e., separate communication and data
memories). This enables these CAs to provide timing guar-
antees on their operations, but at the cost of relatively high
latencies and large memory requirements.

The problem of large memory requirement has been solved
by a number of DMA architectures [1, 3, 7]. These DMAs
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Figure 1: Proposed CA-based platform.

transfer data between neighbouring tiles and between tiles
and the main memory. However, DMA controllers do not
provide any guarantees on their timing behaviour. A DMA
controller is a piece of hardware which performs memory
transfers on its own. A CA can be seen as an advanced
distributed DMA controller [5]. Distributed means in this
context that the CAs at both ends of the connection are
working together to execute a block transfer, using a com-
munication protocol on top of the network protocol.

In this paper, we introduce a novel CA architecture in
which a single memory region is used for data which is com-
municated and data which is processed. This leads to an
up-to 50% lower memory requirement as compared to the
CA design presented in [4]. At the same time, our CA ar-
chitecture requires 44% less area when compared to existing
DMA architectures.

The rest of the paper is organized as follows. Section 2
introduces our CA in more detail. Section 3 presents ar-
chitectural details of our CA. The results of the hardware
implementation are presented in Section 4 and Section 5
concludes the paper.

2. COMMUNICATION ASSIST
Figure 1 shows the global view of our CA. It receives data

transfer requests from the processor (step 1 in Figure 1),
moves the data to the Network Interface (NI) FIFOs (step
2). The data goes through the network (step 3) and the CA
at the receiving tile copies it into the local memory of the
tile (step 4). The processor P in tile T1 processes the data
and subsequently releases the space (step 5) so that the CA
can re-use this space for further transfers.

The CA presented in [4] has a separate data memory and
communication memory. These separate memories not only
cost additional area but also latency as the processor has to
move the data from the data memory to the communication
memory and vice versa. Our CA does not require a sep-



arate communication memory resulting in a lower memory
requirement and latency. Following are the basic functions
of our CA:

1. It accepts data transfer requests from the attached pro-
cessor and splits them into local and remote memory
requests.

2. Local memory requests are simply bypassed to the
data memory.

3. Remote memory requests are handled through a round
robin arbiter. Every two cycles, a 32-bit word is trans-
ferred from the buffer in the memory to an NI FIFO
channel or vice versa.

4. The buffers implemented in the memory are circular
buffers. The number of NI FIFO channels can be
greater than or equal to number of buffers in the data
memory. Our CA is programable, so the same buffer
in the memory can be used as input and output de-
pending on the port to which it is connected.

Our CA acts as an interface that provides a link between the
NoC and the sub systems (processor and memory). It also
acts as a memory management unit that helps the processor
keep track of its data. As a result, it decouples communica-
tion from computation and relieves the processor from data
transfer functions.
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Figure 2: CA architec-
ture.
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3. CA ARCHITECTURE
Figure 2 depicts the hardware components of our CA. The

CA is connected to the network through input/output ports.
Each data port has a FIFO buffer (NI FIFO) that connects
the Memory Arbiter (MA) to the network. The NI FIFOs
can be driven by two clocks: 1) the network clock and 2) sub-
system clock. Separate clock domains allow the integration
of subsystems with different clock frequencies. Following are
the main components of our CA.

The Address Translation Unit (AT) is connected to
the processor of a subsystem. The AT monitors the ad-
dress bus of the processor and distinguishes between the lo-
cal memory accesses and buffer memory accesses, it passes
the local memory accesses to the DM, translates the virtual
address of buffer into physical memory address.

The Pointer Store Unit (PSU) contains a set of reg-
isters (called buffer context) describing the status of each
buffer. A buffer context consists of 6 registers as shown in
Figure 3. The PSU selects one of the buffer contexts as in-
dicated by the MA, sends the selected context to the MA
and updates the registers for management of the circular
buffers. Possible configurations of the PSU include the size

of the buffer, the base address of the buffer in physical mem-
ory, and the id of the connected NI FIFO.

The Memory Arbiter (MA) receives an active context
from the PSU and executes it. The MA executes the data
transfer by generating a memory address, memory control
signal and NI FIFO control signals according to the received
context. The MA switches context every two clock cycles
and checks the next buffers’ context.

Every context belongs to a buffer such that the MA trans-
fers one word between the NI FIFO and the buffer and then
moves on to the next buffer. The transfers are performed in
the same number of clock cycles every time and this gives
us a CA with predictable timing behaviour.

4. HARDWARE IMPLEMENTATION
The CA compares favorably to classical DMA controllers.

Table 1 shows the gate count (NAND2 equivalent) compar-
ison of our CA with other architectures. The CA is synthe-
sized for a clock frequency of 200 MHz. The design is imple-
mented using Synopsis Design Compiler and 0.18µm Stan-
dard Chartered library. The results show that the our CA
is 44% smaller than a commercial DMA [1]. The hardware
results for the CA by [4] are not available in the literature.
Note that our CA does not require complex functionality like
“scatter and gather”; this makes our CA light weight when
compared with the architectures shown in Table 1. All of
the designs have 8 channels.

Table 1: Gate count comparison with other DMAs.
Property our CA MSAP [7] PrimeCell [1]

queue config. 32bit*8 32bit*8 32bit*4
(word)

gate count 36.3k 68k 82k

The MSAP presented in [7] is very similar to our CA.
It uses a control network for the hand-shake between the
processors, before the actual data transfer. Our CA does
not require a control network as it uses “backpressure” as
a flow control mechanism. This makes our CA more area
efficient when compared to [7].

5. CONCLUSION
This paper introduces a programmable CA which uses a

shared data and buffer memory. This leads to lower memory
requirement for the overall system and to a lower commu-
nication latency as compared to CAs in literature. The CA
is up-to 44% smaller in terms of area when compared with
similar architectures and commercial DMA controllers.
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