
An MPSoC Design Approach for Multiple Use-cases of
Throughput Constrainted Applications

Ahsan Shabbir1

a.shabbir@tue.nl
Sander Stuijk1

s.stuijk@tue.nl
Akash Kumar1,2

akash@nus.edu.sg
Henk Corporaal1

h.corporaal@tue.nl
Bart Mesman1

b.mesman@tue.nl
1Eindhoven University of Technology, The Netherlands, 2National University of Singapore, Singapore

ABSTRACT
Modern multimedia systems must support a variety of differ-
ent use-cases. Multi-processors Systems-on-Chip (MPSoCs)
are used to realize these systems. A system designer has to
dimension the size of an MPSoC such that the performance
constraints of the applications are satisfied in all use-cases.
In this paper, we present an approach to design MPSoCs
that can meet the throughput constraints of a set of appli-
cations while minimizing the resource requirements.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems

General Terms
Design, performance

Keywords
Dataflow, design-space-exploration, throughput constraints

1. INTRODUCTION
Multi-processor Systems-on-Chip (MPSoCs) are increas-

ingly used in multimedia systems to meet the performance
and energy constraints of modern applications. The different
combinations in which applications are active on the system
are known as use-cases. The MPSoC should be dimensioned
in such a way that it can support all possible use-cases while
minimizing the cost of the hardware platform. This requires
an approach to synthesize a hardware platform and to map
applications onto this platform. Several techniques have
been developed to address this problem (e.g. [1, 3]). These
techniques assume that applications are modeled as acyclic
task graphs. This model-of-computation (MoC) is not very
suitable for modeling streaming, pipelined applications. The
synchronous dataflow MoC [2] allows modeling of pipelining.
A design approach that uses this MoC can potentially save
resources as compared to a design approach based on acyclic
task graphs. A design approach based on this MoC has been
introduced in [4]. This design approach, however, does not
consider multiple use-cases. In this paper, we introduce a

Copyright is held by the author/owner(s).
CF’11, May 03–05, 2011, Ischia, Italy.
ACM 978-1-4503-0698-0/11/05.

novel MPSoC design approach to generate an MPSoC that
is able to support a set of use-cases in which each use-case
consists of a number of throughput-constrained applications.
Applications are modeled with synchronous dataflow graphs
(SDFGs) [2] which allows us to exploit pipelining and hence
save resources. Experimental results show that our tech-
nique is able to find an MPSoC with fewer resources as
compared to a technique [4] that does not consider multiple
use-cases.

2. DESIGN APPROACH
The design approach proposed in this paper is illustrated

in Figure 1. In this example, we must design an MPSoC to
run applications A and B. These applications are modeled
with an SDFG. The nodes in an SDFGs are called actors and
they model the computation that needs to be performed by
the application. The execution time of the actors is anno-
tated inside the nodes. Actors can only communicate to
each other by sending data items, called tokens, through
their edges. An essential property of SDFGs is that every
time an actor fires (executes) it consumes the same amount
of tokens from its input edges and produces the same amount
of tokens on its output edges. These amounts are called the
rates. In our example, all rates are equal to one. Assume
that both applications have a throughput constraint of 0.005
iterations/time-unit. In this case, a new firing of each actor
should on average start every 200 time-units.

Our algorithm starts by estimating the minimum number
of processors needed to meet the throughput constraints of
the applications. Minimum number of processors are found
by multiplying the repetition vector entry of an actor with
its execution time and summing it over all the actors. The
result is multiplied with the throughput constraint of the
application. For our running example, the algorithm esti-
mate that a minimum of two processors is required. Next,
an initial mapping is created by mapping the actors of the
applications to the various processors (step 1 in Figure 1).
The algorithm tries to do this in such a way that the proces-
sor loads are balanced. Subsequently, the mapping is eval-
uated in all use-cases. If an application does not satisfy its
throughput constraints, then some of its actors are moved to
a processor having minimal load (steps 2-6 in Figure 1). This
process is repeated for all actors of the application failing its
throughput constraints. If after moving all actors once, the
application still does not meet its throughput constraint,
the algorithm adds a new processor (step 7 in Figure 1) and



(b0 b2)*
1)*(a (a2)* 0 a1)a(

(b0b2)*
*

(b0b1b2)*

(a2)*(a2)*

(b0b1b2)*

(b1)*

(b0b1b2)*
(a1)*

(b0b1b2)*

(a0 a1a2)*(b0b1b2)*

(a0 a1a2)*

0 1 2

A

10 20 40 30

B

50 60
a a 0b b1 b2

0
2b

P0 P1
a

0
a

2b1
1a

(1)

b
0

(2)

a2

P0 P1

b a1a b2

b0

(4)P0 P1

a1
b1

a0 0a2
b
b2

(5)P0 P1

0b b1a1

a
0
a2b2

(7)(8) P1
P0

2
a

2

P20
a a

1

b
0
b b1

0

P (9)

a

bb
20 b1

1

(a1 a2
(b1)*

(a0)* (a1)*

(b1

)*

)*

*

(b0 b2)*
0 (a a2)

(a1)*
(b0b1)

*
(a0a2)*

(b2)*

(a0 a2)*

(a0 a1)*

(b1)*
0 a2)*a(

Generated Platform
2

a

0

1
1
0

0

22ba
b b

a
P P1

P(a1)*

(a0)*

P2

1
(10)

b
0

b b
21

a
0
a
1
a
2

P P

a
1
a2

0 0 P1 (6) P1

0

a0 a2a1 b2
b 1b

a
(3)

a1a2b1

a
0 b0b2

P P10

0P

Figure 1: Illustrative example.

Table 1: Resource used by [4] and our algorithm
Algorithm [4] Ours (with use-cases) Ours (without use-cases)

actors edges actors edges actors edges
Applications p0 p1 p2 #FIFOs memory p0 p1 #FIFOs memory p0 p1 p2 p3 #FIFOs memory

H.263 decoder 1 2 1 3 1194 4 0 0 1196 0 0 0 4 0 1196
H.263 encoder 3 1 1 4 304 5 0 0 304 5 0 0 0 0 304
mp3 decoder 5 3 6 7 19 13 1 1 18 0 1 13 0 1 18

Total 3 proc 14 FIFOs 1518 bytes 2 proc 1 FIFO 1500 bytes 4 proc 1 FIFOs 1518 bytes

transfers actors to this processor. Once all applications meet
their throughput constraints (step 7), the algorithm tries to
minimize the number of FIFO connections between the pro-
cessors (step 8-9 in Figure 1). This process may involve the
re-mapping of actors in order to reduce the number of re-
quired connections. Step 9 of our example shows that by
moving all actors from application A to processor P2, the
number of FIFOs can be reduced. Finally, our algorithm
tries to assign the edges in the application graphs to the
FIFOs in such a way that as many FIFO as possible can
be re-used between use-cases. The output of our algorithm
is an MPSoC platform and schedules of the actors onto the
processors. The actors from same application are scheduled
using a static order schedule. The actors from different ap-
plications are scheduled using a round robin arbiter.

3. EXPERIMENTS
In this section, we present a comparison between our tech-

nique and the technique presented in [4]. We use three ap-
plications, a H.263 decoder, a H.263 encoder, and an MP3
decoder, to make this comparison. Using these three appli-
cations, we created four different use-cases. In the first three
use-cases only one application is active. In the fourth use-
case, the H.263 encoder and decoder are active, but the MP3
decoder is inactive. Hence, there is no use-case in which all
three applications are active simultaneously.

There are three important differences between our tech-
nique and the technique presented in [4]. (1) The technique
from [4] maps the applications onto a given MPSoC while
our approach generates an MPSoC. (2) We exploit the use-
cases to save resources. The technique from [4] assigns sep-
arate resources to each application. Hence, it assumes that
all applications are active simultaneously. In our case study,
this situation (i.e. use-case) does not occur. (3) The tech-
nique from [4] assumes a platform with preemptive schedul-
ing whereas we target a platform that uses non-preemptive
scheduling.

Table 1 shows the resources consumed by the two tech-
niques. Columns (2-4) show the number of actors of each
application mapped onto the various processors (pi). The
table also shows the number of connections through the in-
terconnect (#FIFOs) and the total buffer size used by each
application (memory). The results show that our approach,
when considering use-cases, requires 33% fewer processors,
93% fewer interconnect FIFOs and 1% less memory as com-
pared to the technique from [4]. These resource savings come
from the fact that we exploit the property that not all appli-
cations are active simultaneously. The last columns (labeled
‘Ours (without use-cases)’) shows the results when we would
not consider use-cases (i.e. we would assume that all appli-
cations are active simultaneously). The results show that
in this situation, more resources are consumed as compared
to [4]. The reason for this high resource usage is the fact
that non-preemptive systems have worse response times as
compared to pre-emptive systems.

4. CONCLUSIONS
In this paper, we present a novel approach to generate

MPSoCs that satisfies the throughput constraints of mul-
tiple applications in all possible use-cases. Experimental
results show that the concept of use-cases allows our ap-
proach to design systems with fewer resources as compared
to a technique [4] which does not consider use-cases.

5. REFERENCES
[1] Hyunok, O., et al. Hardware-software co-synthesis of

multi-mode multi-task embedded systems with real-time
constraints. In CODES ’02, p. 133–138.

[2] Lee,E.A., et al. Static Scheduling of Synchronous Dataflow
Programs for Digital Signal Processing. In IEEE Transactions

on Computers ’87, p. 24–35.
[3] Shin, Y., et al. Schedulability-driven performance analysis of

multiple mode embedded real-time systems. In DAC ’00,
p. 495–500.

[4] Stuijk, S.,et al. Multiprocessor resource allocation for
throughput-constrained Synchronous Dataflow Graphs. In DAC

’07, p. 777–782.


