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Abstract
Memory-bound applications heavily depend on the band-
width of the system in order to achieve high performance.
Improving temporal and/or spatial locality through loop
transformations is a common way of mitigating this depen-
dency. However, choosing the right combination of optimiza-
tions that should be applied on the target loop nest is not
a trivial task, due to the fact that most of these transforma-
tions alter the memory access pattern of the application and
as a result interfere with the efficiency of the sophisticated
hardware prefetching mechanisms present in most modern
architectures. We propose an optimization algorithm that an-
alytically classifies an algorithmic description of a loop nest
in order to decide whether it should be optimized stressing
its temporal or spatial locality. We detect specific patterns
in its definition while also taking the hardware prefetching
units of modern processors into account. We implement our
proposed technique as a tool to be used with the Halide
compiler and test it on a variety of benchmarks. We find an
average performance improvement of over 40% compared
to previous analytical models targeting the Halide language
and compiler.

CCS Concepts • Software and its engineering→Com-
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1 Introduction
The ever-growing gap between processor and memory speed
in modern architectures is currently a severe drawback in
the efficiency of applications in domains where high perfor-
mance is necessary. Memory-intensive (or memory-bound)
applications are affected the most by this problem, since they
usually contain loop nests with a large number of memory
accesses and relatively few computations. As a result, they
are bound by the memory bandwidth of the system [29].
Developers often employ various optimization methods

and techniques in order tomitigate the effects of this memory
bandwidth problem and increase the performance of their
implementations. Loop tiling [1, 4–6, 11, 13, 22, 23, 26, 27] is
a common loop transformation that aims to improve tempo-
ral locality thereby enabling data reuse. Tiling paired with
vectorization and parallelization can have a huge impact on
the performance of an application. However, picking the
proper tile dimensions that will minimize external mem-
ory accesses without interfering with the SIMD unit or the
hardware prefetching mechanism present in most modern
architectures is not a trivial task. Due to these reasons, man-
ually optimizing a target algorithm is a time-consuming
and error-prone process, where numerous architecture and
application-specific parameters need to be considered.
In the past, most approaches to automatic tile size selec-

tion have mainly focused on analytical models [3, 12, 15, 18]
that only consider loop nests that fit into specific patterns
while relying on the compiler to decide on the optimal loop
ordering. These methods may quickly generate efficient code
when the loop nest fits into the expected pattern but may
produce sub-optimal results in other case. Furthermore, they
usually ignore the hardware prefetching mechanisms found
in modern architectures and as a result, the proposed opti-
mizations may actually lead to a deterioration in the perfor-
mance of the final implementation.
Other approaches employ dynamic auto-tuning frame-

works [2, 25] that exhaustively search the optimization space
in order to optimize the target application. In general, these
frameworks are able to produce near-optimal results. How-
ever the time needed to converge to that solution is usually
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unknown, thus making them inadequate for fast design space
exploration and debugging. Furthermore, the fact that they
need to run on the target platform can also be a limitation
for some architectures.
In this work, we propose an optimization algorithm and

analytical model for memory-bound applications that aims
to minimize external memory accesses, while taking neces-
sary architecture and application-specific parameters into
account. The model first classifies the application by de-
tecting patterns in the definitions which are derived by the
statements in the innermost level of the loop nest. We use
these patterns to determine whether the applications should
be optimized with emphasis on spatial or temporal locality
in order to better exploit the hardware prefetching mecha-
nisms, as well as to determine which other optimizations (i.e.
vectorization, non-temporal instructions, multi-threading)
may improve the performance of the final implementation.
The algorithm then invokes an analytical model that based
on the previous classification decides which levels of the
cache hierarchy to optimize for and then chooses the tile
dimensions as well as the final loop nest order.
We implement our algorithm as a tool to be used along

with the Halide language and compiler [20] in order to auto-
matically generate optimization schedules for Halide func-
tions often within milliseconds. We extend the Halide com-
piler with the ability to generate non-temporal stores by
adding a new scheduling directive to the language’s front end.
We test our method on various target applications and com-
pare its results with previous analytical as well as dynamic
empirical (auto-tuning) models. We find that our method
achieves an average performance improvement of 40% com-
pared to the aforementioned analytical models targeting the
Halide DSL. Performance is also better in terms of quality
to the exhaustively auto-tuned implementations, where the
results using our approach are usually achieved in a matter
of milliseconds instead of hours (in terms of optimization
run-time) when using the Halide autotuner.
The remainder of the paper is organized as follows: Sec-

tion 2 discusses related work. Section 3 presents the proposed
model and analysis technique. Section 4 shows the imple-
mented Halide tool, while Section 5 demonstrates experi-
mental results and a comparison with similar frameworks.
Concluding remarks are discussed in Section 6.

2 Related Work
The problem of optimizing memory-intensive applications
has been considered many times in the past. Most of that
work has focused on tile size selection algorithms. These
algorithms usually employ analytical models that aim to
determine the optimal tile dimensions in order to exploit
temporal locality. The authors in [6] take cache parameters
into account when generating tile sizes, but are only consid-
ering one level of cache hierarchy and no interaction with

other optimizations or cache associativity. In [17] the authors
propose the block data layout as a solution to the problem
and also provide a corresponding analysis. However specific
hardware and software support is needed in order take ad-
vantage of their approach, which limits the application scope.
[28] proposes a combination between machine learning tech-
niques and synthetic kernels to calculate the tile size for a
specific class of applications, but limits their search to cubic
tiles and only takes one level of cache hierarchy into account.
The authors in [18] propose an analytical model to optimize
nested loops with a combination of tiling and interchange.
However, their work is focused on embedded accelerators
and thus all interaction with the cache is ignored, leading to
suboptimal results of the model in cache-based systems.

In [14] the authors consider multi-level cache hierarchies
in order to exploit reuse in both L1 and L2 cache levels while
taking associativity into account. We use a similar analysis
for our temporal locality optimizer that exploits reuse in L1
and L2 cache, but extends it in order to also take the hardware
prefetching mechanisms and multi-core aspects of current
architectures into account and to generate the loop nest
permutation that takes advantage of those features. In [15],
interaction with the hardware prefetching mechanisms is
considered in order to achieve reuse in the L3 cache. However,
both techniques rely on the compiler in the back-end to find
the optimal loop order before performing any analysis. To
this end, we propose a combined approach that considers
loop tiling and loop ordering at the same time. Furthermore,
they only consider tiling for applications with some form of
temporal locality, which may lead to suboptimal results in
situations where tiling should be focused only on self-spatial
reuse.
Other approaches have focused on empirical autotuning

methods that exhaustively try to optimize an application
[2, 7, 24, 25]. In [25] an example of such a method is pre-
sented, that generates an optimized BLAS library for a target
platform on the Pluto framework. However, such approaches
usually require a large amount of time in order to explore
the entire design space and converge to an efficient solution
and furthermore cannot be used without access to the target
architecture.
Hybrid methods have also been presented where both

analytical models and exhaustive searches are used [8, 10, 19,
21]. For example, in [21] an analysis is conducted to obtain
bounds on the search space that should be explored. The
authors consider data reuse in multiple levels of the cache
hierarchy but ignore cache associativity.
Halide [20] is a relatively new programming language

that enables the separation of a target algorithm from its
optimization schedule. For this reason, it is a good target
environment for testing our optimization algorithm. Similar
to our approach, the Halide Auto-Scheduler [16], attempts
to automatically generate an optimization schedule for a
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given function by using a heuristic based optimization algo-
rithm. However, the authors’ approach focuses on finding
the best loop fusion options in image processing pipelines
with numerous stages and thus the cache and tiling analysis
it employs is limited (considering only one level of cache
hierarchy). This leads to suboptimal results in small memory
intensive applications. Moreover, it uses the bounds infer-
ence information provided by the back-end compiler regard-
ing memory accesses and footprint and is thus unable to
discern patterns in the source code. The Halide autotuner
implemented in the autotuning framework Opentuner [2], is
another method that automatically generates optimization
schedules by iteratively running an application using differ-
ent optimization configurations. The autotuner needs a large
amount of time to search the design space, while provid-
ing no guarantee regarding the quality of the final solution.
Furthermore, part of the design space is sometimes actually
excluded from the search space, and thus the framework may
be incapable of finding the optimal solution altogether.

3 Proposed Method
In this section we present the general optimization flow
of our proposed method and demonstrate the analysis in-
volved. Figure 1 shows the generic procedure that takes an
algorithmic description of a loop nest as input, classifies it
in order to decide whether to apply loop transformations
as well as which combination of them. It finally performs
parallelization and vectorization (if supported by the target
architecture) in order to produce an optimization schedule
for it. Furthermore, if the optimizer detects that the output
data is not used in future loop iterations, then non-temporal
store instructions are used in order to bypass the cache and
reduce cache pollution. Non-temporal stores can help assure
that data fetched into the cache by the hardware prefetchers
do not get evicted before they can actually be used.
Table 1 lists all the application and architecture-specific

parameters that are required throughout the optimization
process. In the former category, we consider the problem size
(loop bounds in each dimension) as well as the size of the
data type as the main parameters of interest. For architecture-
specific parameters, most of the information we need refers
to the memory hierarchy of the system. Other parameters
may include the native vector width of the architecture, and
the number of processing units.

3.1 Classification
The first step in the optimization flow is the classification
of the algorithm definition. The main purpose of this step
is to decide whether transformations should be applied on
the target loop nest, and whether they should focus on op-
timizing for temporal or spatial locality. The reason behind
this distinction is twofold. Firstly, tiling (and therefore alter-
ing the stride of most load operations of a program) a loop

Input
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Parameters

Application
Parameters

Spatial
Optimizer

Parallelization
Vectorization

Temporal
Optimizer

Optimization
Schedule

Figure 1. Optimization Flow
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nest with only contiguous memory accesses or no temporal
locality may interfere with the efficiency of the streaming
hardware prefetching unit and lead to suboptimal results.
Secondly, tiling for (self-) spatial locality requires a different
analysis since in these applications the only notion of reuse
would refer to cache line reuse, or more specifically to data
that belong to the same cache line.

The classification process that specifies whether to trans-
form the loop nest and therefore optimize for temporal or
spatial locality can be seen in Figure 2.

Table 1. Architecture and application Parameters
LiCLS Li cache line size
Liway Li cache associativity
LiCS Li cache size
Bi Problem size in ith Dimension
DTS Data Type Size

NCores Number of Cores
Nthreads Threads per Core

We first check if the unique indices in the input arrays
of the algorithm description are different from the ones in
the output array. In that case we have multiple cache line
references in our algorithm with temporal reuse possibili-
ties. If we do not detect such a pattern, then it either means
that only self-spatial reuse may be exploited, or that the
algorithm contains only contiguous memory accesses and
applying any loop transformation may alter the stride of the
load operations and therefore interfere with the efficiency of
the prefetching mechanisms. To optimize for spatial reuse
we check whether any arrays appear transposed in the state-
ment. In this case, we transform the loop in order to ensure
that useful data fetched to the L1 cache due to prefetch-
ing will not get evicted before they can be used. If none of
the above patterns exist in the statement, then no further
analysis is needed and no loop transformations are deemed
beneficial. This decision is also supported by the work in [9],
which explains that tiling may not be effective for stencil
computations (even though they might reference multiple
cache lines and therefore have some form of temporal reuse)
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Table 2. Basic notation
lc Amount of data that fits in one cache line

Nsets Number of sets in cache
Twidth Tile width
Bc Loop Bounds in the leading (column) dimension

maxT i Maximum tile size in ith dimension
Tdims Number of tile dimensions
Ti Tile size in ith dimension

wsLi Li cache working set
ai Li access time cost
CLi Estimated misses in Li cache

Corder Loopnest permutation cost
L2pref L2 cache prefetches per access

L2maxpref Maximum prefetch distance
Lieway Effective associativity of Li cache

for i i = 0 ; i i <Bi ; i i +=Ti
for kk =0 ; kk<Bk ; kk+=Tk
for j j = 0 ; j j <Bj ; j j +=Tj
for i = i i ; i < i i +Ti ; i ++
for k=kk ; k<kk+Tk ; k++
for j = j j ; j < j j +Tj ; j ++ / / v e c t o r l o o p
C[ i ] [ j ]=C[ i ] [ j ]+A[ i ] [ k ] ∗B[ k ] [ j ]

Listing 1. Tiled matrix multiplication

due to uniform access patterns that can be easily exploited by
the hardware prefetchers in modern architectures which can
achieve the same level of reuse without the loop overhead
of tiling.

3.2 Optimizations for Temporal Reuse
This section presents the analytical model, as well as the
procedure that is followed in order to determine both the
dimensions of the tile and the final loop permutation.
In general, our goal is to exploit reuse in both L1 and

L2 cache in order to minimize the overall number of cache
misses. More specifically, we pick tile dimensions such that
L1 reuse is achieved in the outermost intra-tile loop and L2
reuse in the innermost inter-tile loop. The shared cache (L3)
is also implicitly considered during the optimization proce-
dure; modern hardware prefetching units are also capable
of detecting non-unit strides in load operations in which
case they fetch the expected data to the last-level-cache (and
usually to the L2 as well). To better exploit this feature, we
also aim to minimize the inter/intra-tile distance of each
loop, therefore minimizing the stride of the equivalent load
operations as well.

As an example, consider the code in Listing 1 which shows
a simple C implementation of tiled matrix multiplication. In
this case the classifier will recognize that different indices
appear in the left and right side of the statement and thus
we should exploit temporal reuse. We want to achieve L1
cache reuse at the outermost intra-tile loop level (i).
For the loop nest of Listing 1, an iteration of the i loop

accesses/loads a row of widthTj from array C, a row of width
Tk from array A and a tile of size Tk ∗Tj from array B. Thus
the working set for the L1 cache in this case will be :

wsL1 = Tj +Tk +TjTk (1)
The total estimated cold misses in the L1 cache for one itera-
tion of the i loop will be:

Tj

lc
+
Tk
lc
+
TjTk

lc
(2)

However, due to the streaming prefetchers present in the
L1 and L2 cache which fetch the next cache line after every
reference, the estimated cold misses will be:

1 + 1 +Tk (3)

Furthermore, for Ti iterations of the i loop, Equation 3) be-
comes:

Ti +Ti +Tk (4)
Finally, the total number of estimated misses in the L1 cache
after taking the inter-tile loop nest iterations into account
will be:

CL1 = (Ti +Ti +Tk )(
BiBjBk

TiTjTk
) (5)

Similarly, we want to achieve L2 reuse at the innermost inter-
tile loop level (jj). One iteration of the jj loop will access a
whole tile of arrays A, B and C. In this case the working set
for the L2 cache will be:

wsL2 = TjTi +TkTi +TjTk (6)

Moreover, just like for the L1 cache, the estimated number
of cold misses for one iteration of the jj loop will be:

TjTi

lc
+
TkTi
lc
+
TjTk

lc
(7)

Which after eliminating the prefetched references becomes:

Ti +Ti +Tk (8)

Which in turn for Bj
Tj

iterations of the jj loop :

Ti
Bj

Tj
+Ti +Tk

Bj

Tj
(9)

And finally after taking the other two inter-tile loops (kk,ii)
into account we can compute the total estimated cost for the
L2 cache:

CL2 = (Ti
Bj

Tj
+Ti +Tk

Bj

Tj
)
Bi
Ti

Bk
Tk

(10)

After computing both (5) and (10) we can compute the
final cost function:

Ctotal = a2CL1 + a3CL2 (11)

We use a weighted cost function where the a2 and a3 are
the relative access times of L2 and L3 cache respectively. We
assume that the hardware prefetching unit can follow the
strides of the memory references and therefore fetch the
equivalent data into the L2 and L3 cache.
Corder is the cost function that describes the total distance

in terms of iterations between the equivalent intra and inter
tile loops. In detail the partial costs for Listing 1 are: TiTk ,
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Bj
Tj
Ti and

Bj
Tj

Bk
Tk

for the j, k, i original loops respectively. The
total loop permutation cost would be:

Corder = (
BjBk

TjTk
+
BjTi

Tj
+TiTk ) (12)

It is obvious that for a different inter-tile or intra-tile permu-
tation, a different loop would be at the outermost intra-tile
loop level (or innermost inter-tile), which in turn would lead
to a different L1/L2 working set and a different number of
estimated misses. This explains why we evaluate all possible
permutations.

Algorithm 1 is used to acquire an upper bound on the di-
mensions of the tile, such that no interference misses occur.
In detail, it emulates the behavior of the cache, by fetching
tile rows into the array emucache and testing whether the set
that the new data will be mapped to is already full, at which
point the interference flag (intrf laд) becomes true and the
upper boundmaxT i is returned. Furthermore, the algorithm
keeps track of the prefetched data that might cause interfer-
ence misses in the following way: If we are optimizing for
the L1 cache, then we also need to consider the fact that for
every cache line that is fetched, the next one is also brought
into the cache by the hardware prefetcher. When optimizing
for the L2 cache, we need to take into account that more
than one prefetching requests may be issued at once, usually
with a maximum distance between the actual reference and
the prefetched data (usually 20 for Intel processors). For this
reason we also fill the array with these extra lines in order
to detect situations where the prefetched data might cause
useful data to be evicted. To accomplish this, we track the
total number of prefetched lines (s), as well as the distance
between the actual reference and the prefetched line (s − p).
Finally, in the case of L2, we limit the effective number of sets
to half the original size. In other words, we reduce the effec-
tive cache size by half (and thus size ofwsL2) to account for
the data that are fetched by the constant stride prefetchers.
As the experiments show in Section 5, this leads to efficient
results, especially in the case of processors without L3 cache
where data is only brought to L2. All the relevant notation
can be found in Table 2.
Algorithm 2 shows the procedure that is followed in or-

der to optimize a loop nest for temporal locality. The first
step is to obtain the proper tile dimensions that minimize
misses in the L1 and L2 cache. To achieve this we evaluate
all possible tile sizes, as constrained by the bounds returned
by the cache emulation algorithm (Algorithm 1) (for the first
three dimensions) and problem size (for loop nests with four
or more levels) for all valid intra-tile and inter-tile permu-
tations. Invalid permutations are considered those where
the loops that correspond to column indices are outermost.
For each possible tile we calculate the size of the working
set in the L1 and L2 cache to ensure that the tile fits in the
cache (in order to minimize capacity misses) and finally if
the dimension that corresponds to the outermost intertile

Algorithm 1 Cache emulation Algorithm (emu)
Input: L1CLS , LiCS , DTS , Ti−1, Liway, Bi , Nthreads , addr,

L2pref , L2maxpref
Output: maxT i

Initializations :
lc = ⌊

L1CLS
DTS

⌋

Nsets = ⌊
Lics

Liway∗DTS
⌋

Lieway =
Liway

Nthreads
maxT i ← 0, s ← 0
intrf laд ← False
if optimizing for L2 then

Ti−1 = ⌈
max (Ti−1,lc )

lc
⌉

Nsets =
Nsets

2
else

Ti−1 = ⌈
max (Ti−1+lc ,2∗lc )

lc
⌉

end if
emucache [Nsets ] = 0
repeat

set ← ⌈ addr+maxT i ∗Bi
lc

⌉

for i = 0 to Ti−1 do
if emucache [(set + i)] = Lieway then

intrf laд ← T rue
else

emucache [(set + i)] + +
s + +

end if
if s − i <= L2maxpref then

for p = 0 to L2pref do
if emucache [(set + i + p)] = Lieway then

intrf laд ← T rue
end if

end for
end if

end for
if intrf laд = False then

maxT i + +
end if

until intrf laд = T rue ORmaxT i = Bi
ReturnmaxT i

loop (the one that we plan to parallelize over cores/threads)
fulfills the following constraint:

BouterTouter ≥ Nthreads/core ∗ Ncores (13)

This constraint ensures that each core/thread can execute
at least one iteration of the inter-tile loop nest in order to
better distribute the computation load among the processing
units. The tile dimensions that correspond to the minimum
total cost are chosen for the final tile size. To better utilize
the prefetching units, we introduce a second step in our
procedure where we try to minimize the distance between
the inter and intra-tile loops that correspond to the same
original loop in the original nest. This way we minimize the
reuse distance of the equivalent data, as well as the stride
of the load operation that will occur on the next inter-tile
reference. Finally, after tiling and reordering the loop nest,
we fuse the outer inter-tile loops when possible to reduce
loop overhead and further exploit parallelism.
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Algorithm 2 Temporal Reuse Optimizer
Input: L1CLS , L2CLS , L1CS , L2CS , L1way, L2way, Ncores ,

B0, .., Bn, DTS
Output: Tile size, Loop order

Step 1: Loop Tiling:
i ← 0
for Every inter-tile loop permutation do

for Every intra-tile permutation do
if Column index is outermost then

Skip to next permutation
end if
repeat

PickTi ≤ Bc
i ← i + 1
maxT i = emu(L1CLS , L1CS , DTS , L1way,

Bc , Nthreads , addr, 0, 0)
Pick Ti ≤ maxT i
if (Tdims > 2) then

i ← i + 1
maxT i = emu(L2CLS , L2CS , DTS , L2way, Bi ,
Nthreads , addr, L2pref , L2maxpref )

Pick Ti ≤ maxT i
if (Tdims > 3) then

for i=3 to Tdims do
Pick Ti ≤ Bi

end for
end if
Calculate wsL2, Estimate CMissL2

end if
Calculate wsL1, Estimate CL1
if (wsL1, wsL2 fit in cache and iterations per thread ≥ 1)
then

CostFunction=(a2CL1 + a3CL2)
end if

until all valid tile sizes evaluated
end for

end for
Step 2: Reorder Loop:
for Every valid inter-tile loop permutation do

for Every valid intra-tile permutation do
Calculate Corder

end for
end for

3.3 Optimizations for Spatial Reuse
Optimizing for spatial locality is important in applications
with no temporal reuse possibilities. This section presents the
analytical model and the procedure to obtain tile dimensions
that take advantage of the streaming hardware prefetching
units in applications with complex strides like transposed
arrays.
As an example, consider the C code in Listing 2 which

shows a tiled implementation of a transposition and masking
algorithm.
for yy =0 ; yy<By ; yy+=Ty
for xx =0 ; xx<Bx ; xx+=Tx
for y=yy ; y<yy+Ty ; y++
for x=xx ; x<xx+Tx ; x++
out [ y ] [ x ]=A[ x ] [ y]&B[ y ] [ x ]

Listing 2. Tiled Transposition and Masking

In this case the classifier detects that the indices are the
same in the input and output arrays, and that one array ap-
pears transposed in the statement. As a result the algorithm
is optimized targeting spatial locality, using Algorithm 3.
We again assume the presence of a streaming prefetcher

in both levels of the cache hierarchy, which means that the
processor will fetch the next cache line for memory refer-
ences in A and B. Just like in the previous section, the cost
of accessing one tile of the transposed array A will be equal
to Tx which after taking the inter-tile loops into account
becomes:

Tx
BxBy

TxTy
=

BxBy

Ty
(14)

The total cost for array A will be:

Cpar tial = (
BxBy

Ty
)
Tx
lc

(15)

where we refer to the factor Tx
lc

as the prefetching efficiency
for array A which represents the efficiency of the constant
stride prefetching unit in the L2 cache. This factor gets mini-
mized forTx = lc (assuming that all tiles have a minimum of
lc size in every dimension). In other words, the transposed
array favors tiles that have the maximum height and the
minimum width. Similarly, for array B the cost of accessing
one tile be equal to Ty which after taking the inter-tile loops
into account becomes:

Ty
BxBy

TxTy
=

BxBy

Tx
(16)

The total cost for array B will be:

Cpar tial = (
BxBy

Tx
)
Tx
lc

(17)

Finally the working sets for the two levels of cache:

wsL1 = lcTx +Tx (18)

wsL2 = 2TxTy (19)
Algorithm 3 shows the pseudocode for the spatial locality

optimizer. Just like in the previous section, we use Algo-
rithm 1 to obtain an upper bound for the tile dimensions (tile
height for 2 dimensional arrays). We calculate the working
sets and if the tile height also fulfills equation (6), then for
each input array we calculate the partial cost (Cpar tial ) as
explained in the previous example (equations (16),(17)). The
final cost function CTotal is equal to the sum of all Cpar tial
costs. We evaluate all valid tile sizes as constrained by the
bounds returned from Algorithm 1 and the problem size in
the leading (column) dimension, and the tile that corresponds
to the minimum Ctotal is chosen as the final tile size.

3.4 Parallelization, Vectorization, NTI
Standard optimizations include performance optimizations
that can be applied after properly transforming the loop nest.
These optimizations usually include vectorization and paral-
lelization. Another possibility is the usage of non-temporal
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Algorithm 3 Spatial Locality Optimizer
Input: L1CLS , L2CLS , L1CS , L2CS , L1way, L2way, B0, .., Bn, DTS
Output: Tile size

Initializations :
lc = ⌊

L1CLS
DTS

⌋,

repeat
CTotal ← 0
Pick Twidth ≤ Bc
i ← i + 1
maxT i = emu(L2CLS , L2CS , DTS , L2way, Bi ,
Nthreads , addr, L2pref , L2maxpref )

Pick Ti ≤ maxT i
Calculate wsL2
Calculate wsL1
for Every input array do

if (wsL1,wsL2 fit in cache and iterations per thread ≥ 1) then
Calculate Cpar t ial
CTotal+ = Cpar t ial

end if
end for

until all valid tile sizes evaluated

stores in applications with no temporal reuse in the output
data. For applications with contiguous memory accesses no
further loop optimization is usually needed since the stream-
ing hardware prefetching units are capable of fetching the
next cache line and thus the data that will be needed in the
near future, and this is why in such cases we bypass all loop
transformations during the optimization flow.

4 Experimental Framework
In this section, we present the experimental framework that
was developed for the Halide DSL and compiler [20]. The red
box in Figure 3 highlights the optimizer that is described in
this work and which is implemented as a tool to be used with
Halide. The Halide language separates the algorithm descrip-
tion from its schedule and therefore enables fast design space
exploration with minimal effort. Listing 3 gives an example
implementation of a matrix multiplication implementation
in the Halide language, along with an optimization sched-
ule. We should emphasize that our proposed optimization
flow can be used with any other compiler/back-end but the
Halide DSL was chosen in order to make use of the schedul-
ing directives that enable quick application of various loop
transformations and optimizations as seen in Listing 3. Such
a framework is especially useful in many applications in the
image processing domain, where most parameters are fixed
and known at compile-time.

As already mentioned in Section 2, there are currently two
ways to generate optimization schedules for Halide functions:
the Halide Auto-Scheduler [16] uses a heuristics-based algo-
rithm to decide on the tile size and final loop permutation,
while the autotuner [2] iteratively searches the design space
with various schedule configurations in order to minimize
the execution time of the final application. We use those two
approaches as references for comparison with our frame-
work.

Halide
Source Code

Application
Parameters

Halide
Statement

Classification

Architecture
Parameters

Parallelization
Vectorization

Spatial
Optimizer

Temporal
Optimizer

Halide
Optimization
Schedule

Halide
Source Code

Halide
Compiler

Optimizer

Figure 3. Experimental Halide Optimization Flow

/ / A l go r i t hm D e f i n i t i o n
C( j , i ) = 0 ;
C ( j , i )=C ( j , i )+A( k , i ) ∗ B ( j , k ) ;
/ / O p t im i z a t i o n S c h e d u l e
C . update ( ) . s p l i t ( j , j_o , j _ i , 5 1 2 )
. s p l i t ( i , i_o , i _ i , 3 2 )
. r e o r d e r ( j _ i , i _ i , j_o , i _o )
. v e c t o r i z e ( j _ i , 8 )
. p a r a l l e l ( i _ o ) ;

Listing 3.Matrix Multiplication in Halide

Our framework requires the definition of a Halide func-
tion, along with the application and architecture specific
parameter as input to the optimizer. The Halide statement is
then processed during the classification step, and depending
on the information that is derived and the patterns that can
be recognized, a different optimization technique is used, as
explained previously in Section 3.
Furthermore, since the Halide compiler cannot generate

non-temporal instructions, we extend it with a new sched-
uling directive that produces non-temporal stores in the
generated code when used in the optimization schedule of
a function. To this end, we introduce a new optimization
to the Halide front-end that allows the compiler to mark a
function and the subsequent Halide Intermediate Represen-
tation (IR) store nodes as non-temporal in order to internally
use that information to generate specific instructions (both
scalar and vector variants) with non-temporal hints during
the LLVM code generation pass in the back-end. Examples of
such instructions (and the ones generated by the compiler in
the following experiments) in Intel platforms with SSE/AVX
support are the vector operations (v)movntdq, (v)movntps
for integer and single precision floating point data types
respectively.

5 Experimental Results
5.1 Comparison to Halide approaches
This section presents the results that were obtained for a
variety of benchmarks. All experiments were conducted mul-
tiple times measuring the average execution time of 100 runs
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for each benchmark. The run-time between different runs of
the same experiment was less than 1%.

We compare our results with the equivalent that theHalide
Auto-Scheduler and autotuner generate on the same plat-
form. Table 3 shows the hardware specifications of the target
architectures that were used throughout the experimental
process, while Table 4 lists the benchmarks, the problem size
used in each of them along with the average execution time
of the best implementation for each benchmark to be used as
reference for the following graphs. We chose three different
architectures to showcase the flexibility of our approach in
platforms with different architectural parameters. Specifi-
cally, the two Intel platforms differ in the number of cores
and therefore may lead to different tile sizes (Equation 13),
while the ARM architecture operates on a completely dif-
ferent memory hierarchy and utilizes one thread per core.
Finally, Table 5 shows the runtime of our framework for
each benchmark. In most cases, the tool is able to provide
solutions within milliseconds, with the only exception being
the convolution layer benchmark due to the large number of
nested loops present in the tiled version of the algorithm and
therefore the large number of possible loop permutations.

Table 3. Experimental Platforms
Intel i7 5930k Intel i7 6700 ARM Cortex A15

LCLS 64B 64B 64B
L1way 8 8 2
L1CS 32KB 32KB 32KB
L2way 8 8 16
L2CS 256KB 256KB 512KB
NCores 6 4 4
Nthreads 2 2 1

Figure 4 shows the throughput (1/s) relative to the fastest im-
plementation for the two Intel platforms. The autotuner bar
refers to the schedule that the Halide autotuner converges
to after one hour of runtime. The Baseline bar corresponds
to the most basic optimization a developer may perform,
which usually includes parallelization of the outer loop and
vectorization of the inner one. Finally, in order to make the
comparison clearer, and since neither the autotuning nor the
autoscheduling methods are able to generate non-temporal
instructions, we separate the results where the classifier de-
cides to use streaming stores. The first nine benchmarks
(convolution layer, doitgen, matmul, 3mm, trmm, gemm,
syrk, syr2k) have been optimized for temporal reuse, while
the transposition, transposition and masking, copy and mask
kernels have been optimized for spatial reuse. Non-temporal
instructions can also be used for the four last algorithms.

The autotuning framework generates relatively poor sched-
ules for most benchmarks either because it excludes sched-
ules with tiling in all dimensions, or because it needs even
more time to converge to a better solution. Due to this rea-
son, we performed an extra experiment for the matrix multi-
plication, doitgen, convolution layer and transposition and

masking benchmarks, where we compare our solution to
the schedule generated by the autotuner after one day of
runtime. It should also be noted that most of the applications
had to be rewritten in a Halide-specific way that uses helper
functions (e.g. sum) and bypasses the initial definition of the
algorithms (e.g. initialize sum to zero) in order to be opti-
mized by the autotuner. These functions rely on the compiler
to perform some optimizations instead of actual loop trans-
formations specified by the developer. Without this alternate
definition, the autotuner would only attempt to optimize the
initialization step and not the actual computation. The syrk
and syr2k benchmarks could not be rewritten in such a way
and thus the autotuned implementations are excluded.
Figure 5 demonstrates the performance of the solutions

generated after one day of autotuning along with the results
of our framework. We chose algorithms with different loop
dimensions (2, 3, 4, 5 dimensions for the transpose and mask-
ing, matrix multiplication, doitgen and convolution layer
respectively) in order to compare our analysis for transform-
ing N-dimensional loops with stochastic autotuned methods.
These results are similar to the ones presented in Figure 4
and therefore strengthen our decision to tile each dimension
of the input loop nest, as opposed to the autotuner sched-
ules that only attempt tiling in the dimensions of the output
array.

0.0

0.2

0.4

0.6

0.8

1.0
tp&m convlayer matmul doitgen

Proposed+NTI

Autotuner

Figure 5. Throughput (1/s) relative to fastest implementa-
tion; autotuner ran for 1 day on Intel 5930K

The schedules provided by the Auto-Scheduler offer a
significant speed-up compared to both the baseline schedules
and the autotuned ones. However, our schedules still perform
significantly better for most benchmarks. The syrk and syr2k
benchmarks are the only exceptions where our approach
performs similar to the baseline schedule due to the fact that
the algorithms contain references along the cache line, and
therefore do not significantly benefit from tiling. However, as
expected, after repeating the experiments for larger problem
sizes, the tiled version performed around 25% better than the
baseline schedule.
Figure 6 shows the effect of non-temporal store instruc-

tions in the applications where the classifier does not detect
output data reuse for the Intel i7-5930K platform. As seen in
the graph, this optimization can significantly improve the
performance in applications with no temporal reuse on the
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Table 4. Benchmarks
Average execution time (ms) - Best implementation

Benchmark Description Problem Size Intel i7 6700 Intel 5930K ARM A15
convlayer 3x3x64x64 Convolution Layer 256x256x64x16 887.12 503.80 8897.29
doitgen Multiresolution Analysis Kernel 256x256x256 233.29 143.77 2824.87
matmul Matrix Multiplication 2048x2048 298.97 182.24 2080.58
3mm Linear Algebra Kernel - three matrix multiplications 2048x2048 310.97 178.90 1564.15
gemm Generalized Matrix Matrix Multiplication 2048x2048 286.12 183.00 1503.06
trmm In-place Triangular Matrix Matrix Multiplication 2048x2048 199.44 131.76 1295.14
syrk Symmetric rank k update 2048x2048 742.57 364.80 3575.62
syr2k Symmetric rank 2k update 2048x2048 1442.41 992.61 7269.75
tpm Matrix Transposition and Masking 4096x4096 10.02 6.00 41.87
tp Matrix Transposition 4096x4096 7.23 4.5 39.00

copy Array Copy 4096x4096 5.49 3.18 -
mask Array Mask 4096x4096 8.32 4.67 -
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Figure 4. Intel platforms - Throughput (1/s) relative to fastest implementation (see Table 4)

output data due to a reduction of the total number of cache
misses.
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Figure 6. Throughput (1/s) relative to Proposed Non-NTI
implementation (Intel 5930K)

Figure 7 demonstrates the results for the ARM Cortex A15
architecture. This architecture does not have an L3 cache

and the L2 one is shared among the four cores of the plat-
form. Due to this reason, a minor change to the model was
required before conducting the experiments: The calculation
of L2way in Algorithm 2 should be updated to L2way

Ncores
instead

of L2way
Nthreads

to account for this fact. Furthermore, since the
ARM architecture does not support vector stores with non-
temporal hints and all other implementations in Figure 7 are
vectorized for increased performance, the mask and copy
algorithms are not included in this graph (their performance
is identical in all three implementations). Our proposed algo-
rithm outperforms the Auto-Scheduler and baseline on this
architecture as well.

5.2 Comparison to other tiling approaches
In this section, we compare our approach to previous state
of the art analytical models for automatic tile size selection.
Namely we pick the TSS method proposed in [14] as well as
the TTS method which was introduced in [15]. We pick these
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Table 5. Optimization runtime
Benchmark convlayer doitgen matmul 3mm gemm trmm syrk syr2k tp&m tp copy mask
Runtime 7.604s 0.153s 0.006s 0.006s 0.006s 0.005s 0.009s 0.012s 0.002s 0.002s 0.002s 0.002s

Table 6. Average execution time (ms) - Intel 5930K
Problem Size 400 800 1024 1600
Technique TTS TSS Proposed TTS TSS Proposed TTS TSS Proposed TTS TSS Proposed
matmul 1.76 1.54 1.65 12.08 15.06 9.35 23.56 71.97 20.46 98.65 104.18 71.62
tmm 1.01 1.19 0.93 5.93 22.42 5.02 10.01 35.46 10.57 58.47 137.83 36.21
syrk 14.80 7.20 5.80 96.24 115.07 69.04 224.88 228.83 159.47 242.11 294.84 213.32
syr2k 30.57 13.22 11.29 58.88 86.99 51.21 228.33 248.60 97.14 451.45 536.22 314.38
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Figure 7.ARMplatform - Throughput (1/s) relative to fastest
implementation

techniques as they have similarities with our approach: The
TSS method considers reuse in the L1 and L2 cache without
taking prefetching into account, while the TTS technique
optimizes for L2 and L3 cache while taking advantage of
hardware prefetching. However, prefetching is not consid-
ered in the analytical model and prefetched references are
not taken into account while estimating the number of cold
misses in every iteration. As a result, the proposed tile sizes
for both TTS and TSS are different than the ones picked by
our approach.

Table 6 shows the average execution time (ms) on the Intel
i7-5930K platform for the three methods. Since both TTS and
TSS use a different framework and back-end compiler, we are
not able to reproduce their optimization flow. For this reason,
we choose this specific platform for our experiments, since
it has similar cache hierarchy (LCLS ,L1way ,L1CS ,L2way ,
L2CS ) as the one used in [15] in order to use the tile di-
mensions picked by TTS and TSS as listed in [15], with a
difference on the size of the L3 cache and the number of cores.
However, since the size of the L3 cache in both platforms is
large enough, and the effective size per core is the same, we
do not expect a big impact on the final tile dimesions. Fur-
thermore, since nor TTS, nor TSS consider loop interchange,
we try every possible loop permutation for each benchmark

and pick the one that results in the best performance to in-
clude in our experiments. We compare the three techniques
for the four benchmarks that are common between the ones
used in [15] and the ones we used in Section 5.1 and four
different problem sizes.

The results presented in Table 6 indicate that our method
outperforms the other two techniques by up to two times on
the syr2k benchmark. Furthermore, the experiments show
that our proposed approach generates results which are on
average 26% and 41% faster than the solutions provided by
TTS and TSS respectively.

6 Conclusion
In this work we propose an optimization framework for
memory bound applications that considers architecture and
application specific parameters while taking advantage of
the hardware prefetching mechanisms in modern platforms.
We implement it as a tool to be used with the Halide DSL
and compiler and compare it to both other analytical as
well as empirical methods. Experimental results indicate a
significant improvement in performance compared to pre-
vious models, while providing solutions usually within mil-
liseconds. These results show that interaction between loop
transformations and the sophisticated hardware prefetching
mechanisms inmodern architectures is of utmost importance
when optimizing memory intensive applications.
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