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ABSTRACT
Synchronous Dataflow (SDF) is a powerful analysis tool for
regular, cyclic, parallel task graphs. The behaviour of SDF
graphs however is static and therefore not always able to ac-
curately capture the behaviour of modern, dynamic dataflow
applications, such as embedded multimedia codecs. An ap-
proach to tackle this limitation is by means of scenarios. In
this paper we introduce a technique and a tool to automati-
cally analyse a scenario-aware dataflow model for its worst-
case performance. A system is specified as a collection of
SDF graphs representing individual scenarios of behaviour
and a finite state machine that specifies the possible orders of
scenario occurrences. This combination accurately captures
more dynamic applications and this way provides tighter re-
sults than an existing analysis based on a conservative static
dataflow model, which is too pessimistic, while looking only
at the ‘worst-case’ individual scenario, without considering
scenario transitions, can be too optimistic. We introduce a
formal semantics of the model, in terms of (max,+) linear
system-theory and in particular (max,+) automata. Lever-
aging existing results and algorithms from this domain, we
give throughput analysis and state space generation algo-
rithms for worst-case performance analysis. The method is
implemented in a tool and the effectiveness of the approach
is experimentally evaluated.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques;
F.1.1 [Computation by Abstract Devices]: Models of
Computation

General Terms
Algorithms, Performance, Theory, Verification

Keywords
Synchronous Data Flow, worst-case performance analysis,
(max,+) algebra
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1. INTRODUCTION
A number of model-based design approaches [12, 16, 22,

19] for firm real-time parallel streaming applications are
based on conservative dataflow actor models such as Syn-
chronous Dataflow [17, 23] or a slight generalisation, Cyclo-
Static Dataflow CSDF [2]. Repetitive actors on suitably
arbitrated resources can be modelled accurately and with
performance guarantees, as data-driven, self-timed dataflow
actors. Such actors start their execution as soon as all in-
put data has arrived, take a given time to execute and after
that produce their output data. As long as such a dataflow
model is analysable, then performance guarantees can be
derived at design-time. SDF and CSDF are such analysable
models, while certain more expressive dataflow models such
as Dynamic Dataflow [4] or Kahn Process Networks [13] are
known to be undecidable and can therefore not be used di-
rectly for such purpose. SDF and CSDF restrict their actors
to produce and consume data with fixed rates per firing or,
in case of CSDF, with fixed periodic patterns.

In many modern streaming applications, such as audio
or video codecs with advanced data compression schemes,
the behaviour of an encoder or decoder can show much
more dynamism than can be effectively expressed with an
SDF or CSDF graph. A simple example is an MPEG-1
Layer 3 audio decoder, commonly known as MP3. It di-
vides a stereo audio stream into frames of 26ms and may
employ five different coding schemes for a frame, depending
on the audio content. The different modes employ differ-
ently sized subbands (short vs. long blocks) or a mixture of
both, partly independently for the left and right audio chan-
nel. SDF or CSDF cannot capture such dynamic switching
between frame types, except by employing an overly pes-
simistic model which is conservative for any type of frame.

Scenario-based or mode-based design [29, 12, 18, 19] is an
approach in which the dynamic behaviour of an application
is viewed upon as a collection of different behaviours, called
scenarios or modes, occurring in certain known or unknown
patterns, but each of which is by itself fairly static and pre-
dictable in performance and resource usage and can be dealt
with by traditional methods. Some of the difficulties are
moved, however, to predicting what scenarios occur and to
dealing with scenario transitions. We also follow the scenario
based approach in this paper by modelling our embedded
software and platform combination with the Scenario-Aware
Dataflow (SADF) [25] generalisation of (C)SDF. SADF char-
acterises every individual scenario or mode by a specific
SDF graph, The SDF graph models tasks with constant,



Figure 1: Example SADF graph
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Figure 2: Execution of the example graph for sce-
narios aaab

worst-case, execution times. Because of the separation in
scenarios, the worst-case execution time estimates can be
tighter. The possible scenario transitions are captured by a
finite state machine (FSM). Figure 3 shows an example of
an MPEG video decoder which follows a regular pattern of I
and P frames and where the P frames are classified in differ-
ent scenarios depending on the number of macro blocks in
the frame. Figure 4 shows the FSM that specifies the pos-
sible scenario sequences. For the MP3 decoder, the frame
types can occur in arbitrary order, which can be expressed
by a fully connected FSM. In a streaming, distributed em-
bedded software system, the difficulty lies in the fact that
different scenarios are concurrently active in different stages
of a pipelined implementation. The techniques introduced
in [9, 21] and in this paper allow those scenarios to still
be handled individually, compositionally. In this paper we
introduce a method to derive the tightest possible perfor-
mance guarantees for the class of SADF graphs. Moreover,
it is shown that two simpler approaches do not provide con-
servative and tight results. Analysing only the worst-case
scenario (for instance the one with the lowest throughput)
does not provide a guaranteed conservative bound on the
behaviour over all scenarios. On the other hand, creating
a single SDF graph from the worst-case execution times of
actors over all scenarios, can be too pessimistic.

We proceed with a discussion of related work in the fol-
lowing section. Then we discuss technical preliminaries of
SDF, SADF and their (max,+) modelling in Section 3. Sec-
tion 4 introduces the (max,+) semantics and state space
model for SADF and indicates how throughput and latency
can de defined on this state space. An efficient approach for
calculating the worst-case throughput of an SADF is given
in Section 5. An implementation of the state-space anal-
ysis algorithm and its evaluation are discussed in Sections
6 and 7 respectively, followed by concluding remarks and
suggestions for future work.

2. RELATED WORK
Throughput analysis of Synchronous Data Flow graphs is

studied in [17, 23, 10]. SDF is very fitting for regular stream-
ing applications. The desire to extend the range of appli-
cability to more dynamic models has lead to use of exten-
sions such as Cyclostatic SDF (CSDF) [2], Heterochronous
Dataflow (HDF) [11], Kahn Process Networks (KPN) [13,
14], Scenario-Aware Dataflow (SADF) [25] and many oth-
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Figure 3: SDF specifications of the MPEG scenarios
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ers. Some of these such as KPN are not statically analysable
and cannot provide hard guarantees. CSDF provides only a
limited, strictly periodic kind of dynamic behaviour. HDF
is introduced in [11], which does not provide means for per-
formance analysis of the model. Different models fill the
spectrum of trade-off between expressiveness, accuracy and
analysability. To express more dynamic behaviour, some
authors have described their applications as execution in
different modes or scenarios of SDF behaviour [25, 11, 9, 8].
In this paper, we build on the SADF model introduced in
[25] in combination with the (max,+) algebra semantics of
[1, 10].

Existing work on scenarios and modes focusses on sequen-
tial software or on other models-of-computation [12, 19].
Real-time calculus also focusses on stream based applica-
tions and has mode-based approaches [19], but handling
cyclic dependencies is limited to Marked Graphs without
modes [26].

The approach of [25] is most closely related to this work.
It works with essentially the same model of computation,
Scenario-Aware Dataflow Graphs. It introduces an analy-
sis technique that works by building up a global state-space
representation of the detailed behaviour of the graph across
sequences of scenarios. Transitions are at the level of in-
dividual firings of actors. This tends to lead to very large
state spaces and tractability issues with larger models. In



comparison, the state-space we build in this paper captures
a complete iteration of the graph in a particular scenario
in a single transition, thereby leading to much smaller state
spaces which are easier to handle. Moreover, it is able to
handle individual scenario iterations separately, despite the
fact that they are pipelined and concurrently active. [25]
also deals with a stochastic version of the SADF model. We
believe that the method in this paper can be similarly ex-
tended to generate a Markov Reward Structure instead of
the state space and analyse it for its stochastic performance
metrics. [20] also deals with scenarios of SDF behaviour,
but in their case only homogeneous SDF graphs are con-
sidered (graphs in which all consumption and production
rates are equal to one), and only the execution times of a
fixed collection of actors can vary with scenarios. In earlier
work [9], we have introduced techniques to find linear upper
bounds on transient behaviour of an SDF, which also allows
the behaviour of an SADF to be analysed, but without exact
results, in this work, the exact behaviour is followed and the
exact tightest bound on throughput is found. Moreover, in
[9], the FSM specification of possible scenario orders could
not be taken into account and one would have to assume
any scenario order to be possible.

A successful approach to the analysis of timed event graphs,
of which SDF graphs are a special case, is linear system the-
ory over the (max,+) semiring [5, 1]. (max,+) automata
[6] represent systems with such linear dynamics changing
over time with different modes depending on the state of
the automaton. We exploit this model in this paper as the
(max,+) linear dynamics captures very well the SDF be-
haviour, while the different modes capture the scenarios.

SDF graphs can be modelled as a specific class of Petri
Nets, (Timed) Weighted Marked Graphs. A more restricted
class of Petri Nets, Safe Timed Petri Nets, has been anal-
ysed using (max,+) automata in [7]. They model every
individual firing, instead of complete iterations and do not
explicitly deal with behavioural scenarios. Moreover, they
first model firings using the Heaps of Pieces model of [28].
Heaps of Pieces are a generalisation of Gantt charts over
multiple resource and data dependencies and have a cute
analogy to the stacking of staircase shaped blocks as in the
Tetris computer game. A Heaps of Pieces model can be
translated to a (max,+) automaton and can so be analysed,
for instance for worst-case behaviour. In this paper we do
not capture single firings, but instead entire iterations of an
SDF graph and the way pieces are defined in the Heaps of
Pieces model does not allow the characterisation of complete
iteration dependencies. However, a direct translation into a
(max,+) automaton is possible and used in this paper. We
then use the analysis results of (max,+) automata of [6]
to derive performance analysis methods for SDF scenarios.
Brilman and Vincent have studied the stochastic analyses of
such systems [3].

3. PRELIMINARIES

3.1 Synchronous Dataflow Graphs
In this paper, we study a class of Scenario-Aware Dataflow

Graphs [25]. This model captures behaviour as a dynamic
switching between scenarios, each of which are captured by
a static Synchronous Dataflow Graph (SDFG) [17, 23]. An
SDFG is a directed graph of actors and channels. An SDFG
models the behaviour of a real dataflow application on a
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Figure 6: SDF models of two of the MP3 scenarios

real platform. Figure 5 shows a block diagram of an MP3
decoder architecture and its mapping on a platform with
three processors. Figure 6(a)-(c) show examples of SDFGs
that model three of the five different frame-type scenarios
of an MP3 audio decoder as they are mapped on the par-
ticular platform. The missing two graphs are merely com-
binations of different parts of the three shown, when left
and right audio channel use different encodings. The syn-
chronisation dependencies between frames arise particularly
from the modelled platform mapping. The circles are called
actors and represent the individual computations or syn-
chronisation points. Actors can fire. When an actor fires,
it consumes and produces fixed amounts of tokens on the
FIFO channels to which it is connected. It can only fire if
sufficient tokens are available on the channels from which
it consumes. The rates of production and consumption are
indicated next to the channel ends. For readability this is
omitted in those cases where the rate is equal to 1. To-
kens thus capture dependencies between actor firings. Such
dependencies may be data dependencies, but also depen-
dencies on shared resources. Actors do not always represent
actual computations, but may also be used to model com-
munication, or synchronisation, for instance to express more
complicated schedules (such as the Sync actors in Figure 6).
For a more detailed, formal, semantics of SDF and its prop-
erties we refer to [17, 23, 10].
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Figure 5: MP3 realisation

To model performance aspects, firings of actors may take
time. In typical timed SDF [23], actor firings are modelled
with a constant execution time, usually an upper bound on
the real execution time of the corresponding computation
of the actual application. Note that by modelling scenarios
separately we are able to give tighter upper bounds for ac-
tors. Because the SDF model of computation is monotone
(an earlier or shorter firing of an actor cannot lead to an-
other actor firing occurring later), one can use worst-case
execution times in the model and get from the model an
upper bound on the actual firing times and data produc-
tion times of the real application in practice. The so-called
self-timed execution is a schedule in which every actor fir-
ing takes place as soon as possible, immediately when all
required tokens are available. In this way, the self-timed
execution represents the best (tightest) bound that can be
given on the timing behaviour of the application based on
the SDF model. That is why the self-timed execution is of
special interest.

The constant rates with which tokens are produced and
consumed make SDFGs execute in fixed repetitive patterns,
called iterations. An iteration consists of a collection of actor
firings that together have no net effect on the position and
numbers of tokens on channels. Moreover, they typically
also constitute a coherent collection of computations, for in-
stance processing of a frame in an audio or video stream,
such as the audio frames of the MP3 decoder. For the ex-
ample graph of Figure 1, (in both scenarios) an iteration
consist of a single firing of each of the actors. Initially the
graph has a specific distribution of its initial tokens across
the graph. This distribution remains invariant with individ-
ual iterations performed by the graph, independent of the
scenario that is executed. The production times of this col-
lection of initial tokens at the end of an iterations exactly
captures the starting condition for the next iteration, be it
in the same or in a different scenario. This is illustrated
in Figure 2, which shows an initial execution of a sequence
of four scenarios, aaab. The first firing of actor A for ex-
ample starts at time 2, because it requires an output token
from C which needs to complete a firing first. Iterations
are alternatingly coloured dark and light grey. Observe that
the iterations overlap indicating some degree of pipelining in
the execution. The initial tokens are drawn in the row of the
actor that produces them and are numbered with the itera-
tions. Observe that the collection of initial tokens produced
at the end of an iteration contains enough information to
determine the timing of the following iteration. Similarly,
for the MP3 scenario graphs, the initial tokens labelled A to
E, reoccurring in every scenario graph, carry dependencies
between the iterations of MP3 frames. The MP3 scenario
graphs have extra initial tokens which do not represent de-

pendencies between iterations. These tokens are assumed
to be initially available as early as they are needed. In the
remainder of the paper, we assume given a finite set S of
scenarios and for every scenario in S a corresponding SDFG
with the same number, N , of numbered initial tokens.

3.2 (max,+)-characterisation of SDF
Scenarios

We use (max,+) algebra [1] to capture the semantics of
our scenarios of SDF graphs. Two essential characteristics
of the self-timed execution of an SDFG are synchronisation,
when the graph waits for sufficient input tokens to fire, and
delay, when an actor starts firing it takes a fixed amount
of time before it completes and produces its output tokens.
These two elements correspond well to the (max,+) opera-
tors max and addition. If T is the set of tokens required by
an actor to start firing and for every τ ∈ T , tτ is the time
when the token becomes available, then the starting time of
the firing of the actor is given by: maxτ∈T tτ . Let further e
be the execution time of that actor, then the output tokens
produced by that actor become available for consumption
by other actors at: maxτ∈T tτ + e, which is a (max,+) ex-
pression.

The behaviour of a dataflow graph can be characterised
completely by the times at which the tokens in channels are
produced, which capture exactly the dependencies between
iterations that are crucial to studying scenario transition
behaviour. We particularly consider the collection of tokens
that exist in their various channels in between iterations, the
initial token configuration. The production times of these
tokens are collected in a vector γ consisting of as many en-
tries as there are initial tokens in the graph (e.g., five (A-E)
in Figure 6). After one iteration, by definition [17], there
exist the same number of tokens in the same channels, but
with different times at which they are produced; γ0 becomes
after an iteration of the graph a new vector γ1 of the same
size. We refer to such a vector as a time-stamp vector. The
process of execution of an SDFG can be captured by means
of a matrix-vector multiplication in (max,+) [1]. In this
algebra, addition and max operator take the role of multi-
plication and addition respectively of traditional linear al-
gebra. The evolution of the SDF graph, characterised by
the matrix G, is then governed by the following equation
γk+1 = Gγk. In an SADF graph, we have such a matrix
Gs for every scenario s ∈ S. If iteration k is executed in
scenario s, then γk+1 = Gsγk.

For Figure 1, for instance, we have the following matrices.

Ga =

 1 −∞ 3
1 −∞ 3
−∞ 2 −∞

 ,Gb =

 1 −∞ 2
1 −∞ 2
−∞ 3 −∞





An entry t at column k and row m in the matrix specifies
that there is a minimum distance of t between time-stamps
of token k of the previous iteration to token m of the new
iteration, following from dependencies in the graph. An en-
try −∞ signifies that there is no dependency relation. If
the last iteration produced its tokens according to the vec-
tor [3; 3; 2]T (as the tokens labelled ‘1’ in Figure 2) and we
execute an iteration in scenario a then the new tokens are
produced according to the vector:

γ =

 1 −∞ 3
1 −∞ 3
−∞ 2 −∞

 3
3
2

 =

 max{1 + 3, −∞+ 3, 3 + 2}
max{1 + 3, −∞+ 3, 3 + 2}

max{−∞+ 3, 2 + 3, −∞+ 2}

 =

 5
5
5


The new vector represent the tokens in Figure 2 labelled ‘2’.

The Heaps of Pieces model [28] is used in literature to
study the behaviour of discrete event systems and in partic-
ular Safe Timed Petri Nets (see for instance [7]). For read-
ers familiar with the concept of Heaps of Pieces it is good to
observe that Pieces cannot accurately capture a complete it-
eration of an SDF graph as a single Piece, since Pieces have
fixed relative starting times (the lower contour) and fixed
completion times (the upper contour). While an iteration
is more ‘flexible’ than a rigid Piece as it consists of a col-
lection of independent actor firings, a short stack of Pieces.
However, a single iteration can be accurately captured by a
single (max,+) matrix multiplication.

We briefly introduce some notation related to (max,+)
algebra (see [1] for background on (max,+) algebra, linear
system theory of the (max,+) semiring). (max,+) alge-
bra defines the operations of the maximum of numbers and
addition over the set IR−∞ = IR ∪ {−∞}, the real num-
bers extended with −∞. For readability, we use the stan-
dard notation for the max and addition operations instead
of the ⊕ and ⊗ notation mostly used in (max,+) literature.
For scalars x and y, x · y (with shorthand xy) denotes or-
dinary multiplication, not the (max,+) ⊗ operator. The
max and + operators are defined as usual with the addi-
tional convention that −∞ is the zero-element of addition:
−∞ + x = x + −∞ = −∞ and the unit element of max,
max(−∞, x) = max(x,−∞) = x. (max,+) is a linear al-
gebra: x + max(y, z) = max(x + y, x + z). The algebra
is extended to a linear algebra of matrices and vectors as
usual. Note that any matrix-vector multiplication in this
paper denotes a (max,+) matrix-vector multiplication and
not a traditional matrix-vector multiplication. For a matrix
M and vector x, we use Mx to denote this (max,+) matrix
multiplication. If a = [ai] and b = [bi] with ai, bi ∈ IR−∞

are vectors of size k, then we write a � b to denote that
for every 1 ≤ i ≤ k, ai ≤ bi. With a a vector and c
a scalar, we use c + a or a + c to denote a vector with
entries identical to the entries of a with c added to each
of them: c + a = a + c = [ai + c]. We use 0 to de-
note a vector with all zero-valued entries. The size of 0
is derived from the context. We use max(a, b), defined as
[max(ai, bi)] as a max operator on vectors and a+b, defined
as [ai + bi] as addition of vectors. ||a|| denotes a vector
norm, defined as: ||a|| = maxi ai, i.e.,the maximum ele-
ment. It is a proper vector norm in the algebra, because (i)
||a|| = −∞ iff ai = −∞ for all i; (ii) ||c+ a|| = c + ||a||;

(iii) ||max(a, b)|| ≤ max(||a||, ||b||). For a vector a with
||a|| > −∞, we use anorm to denote a−||a||, the normalised
vector a, so that ||anorm|| = 0. An inner product is defined
as follows: (a, b) := maxi(ai+bi). If matrix M = [mj ] (i.e.,
has column vectors mj), then Mx := maxj(mj + x) and
MTx := [(mj ,x)]. It is easy to verify that also matrix mul-
tiplication is linear: M(max(x,y)) = max(Mx,My) and
M(c + x) = c + Mx. Moreover, matrix multiplication is
monotone: if x � y, then Mx �My.

A (max,+) automaton [6], recast in the context and ter-
minology of this paper, is a 4-tuple A = (N, i,f ,M). con-
sisting of an integer number N of states, an initial vector
i, a final vector f and a morphism M on finite sequences
of scenarios, mapping such sequences to an N by N matrix
such that

M(s1 . . . sk) = Gsk . . .Gs1 .

The automaton associates with a sequence of scenarios, a
completion time as follows:

A(s1 . . . sk) = (f ,M(s1 . . . sk)i) = fTGsk . . .Gs1i.

In this way, i captures the initial enabling times of the
graph’s initial tokens. Usually it is assumed that i = 0.
Then, M(s)i captures the production times of the initial
tokens of the SADF after the sequence s of scenarios. The
final vector f specifies how this final vector determines the
metric we are interested in. If this is for instance the usual
concept of makespan, then this can be captured by taking
f = 0. Oftentimes we are interested in worst-case increase
of A(s) for growing length of s. In our case, this represents
the worst-case throughput for any sequence of scenarios. [6]
shows how this maximum growth rate, determining mini-
mum throughput can be efficiently computed as the maxi-
mum cycle mean (MCM) of the equivalent timed event graph
[1] of the matrix G = maxs∈S Gs. It also shows how, given
an infinite regular sub language of S∗, the set of all finite
scenario sequences, the maximum growth rate can be deter-
mined by a product of automata. We exploit this result to
determine throughput of an SADF for a given FSM specify-
ing the scenario sequences.

3.3 Scenario-Aware Dataflow
Every individual scenario is modelled by an SDFG in the

form of its corresponding (max,+) matrix. See [9] for a
method to derive the (max,+) matrix using a symbolic ex-
ecution of a single iteration of the SDF graph. An SADF
graph is further characterised by the possible orders in which
certain scenarios may occur. SADF specifies scenario se-
quences by means of a Finite State Machine (FSM). (In
[25] scenario sequences are stochastically characterised by a
Markov chain. For worst-case analysis we can abstract from
transition probabilities and obtain an FSM.) Every state is
labelled with a scenario and different states can be labelled
with the same scenario (See Figure 4). Since we focus here
on streaming applications, we consider infinite executions
of the FSM to characterise the scenario sequences that may
occur. Note that since our worst-case performance require-
ments are safety requirements, there is no need for specific
acceptance conditions, such as, e.g., Büchi automata.

Definition 1. Given a set S of scenarios. A scenario
finite state machine F on S is a tuple (Q, q0, δ,Σ) consisting
of a finite set Q of states, an initial state q0 ∈ Q, a transition



relation δ ⊆ Q × Q and a scenario labelling Σ : Q → S. A
path of F is a sequence q of states q(k) ∈ Q with q(0) = q0
such that for all k ≥ 0, (q(k), q(k + 1)) ∈ δ.

Every path q through the FSM corresponds to a sequence
s of scenarios with s(k) = Σ(q(k)).

4. A STATE-SPACE EXECUTION MODEL
The FSM specifies all possible orders in which scenario se-

quences can occur. With that sequence of scenarios and an
initial time-stamp vector γ0, we can associate a sequence
γ0γ1γ2 . . . of vectors with γk+1 = Gsk+1γk. We derive
straightforwardly from the theory of SDF [23] that this se-
quence of vectors is guaranteed to be an upper bound on
the self-timed execution of the dataflow system’s execution
under this scenario sequence. Iteration k is guaranteed com-
pleted at the latest according to time-stamp vector γk, but
possibly earlier.

Definition 2. (Throughput) Throughput of an SADF
is defined as the largest value τ ∈ IR such that for every
possible scenario sequence and corresponding vector sequence
γ, for every ε ∈ IR, ε > 0, there is some K ∈ IN such that
for all L ∈ IN, L > K, L

||γ(L)|| > τ − ε.

Note that the definition roughly states that the throughput
achieved by the specific scenario sequence is always at least
τ . The somewhat cumbersome definition is used since not
for every scenario sequence, the limit of the average through-
put, which might seem a more intuitive definition, exists.
Here we have defined throughput in terms of the number
of iterations, which is in accordance with the definition of
throughput of SDF as used in [10]. However, it is straight-
forward to adapt the definition of throughput to for instance
the average number of firings of a particular actor or the av-
erage number of tokens produced on a particular channel,
even if that number differs per scenario, as explained below.

Similarly, one can define latency of the SADF graph.

Definition 3. (Latency) The latency of an SADF rel-
ative to desired period π ∈ IR is defined as the smallest vector
λ such that for every possible scenario sequence and corre-
sponding vector sequence γ, for every k ≤ 0, γ(k) � kπ+λ.

To compute throughput and latency, we have to check all
possible scenario sequences. To do this, we first define a
state-space of scenario sequence executions. From the FSM
F = (Q, q0, δ,Σ) and the set of SDF matrices {Gs | s ∈ S}
we can define a new state space (C, c0,∆) as follows.

• A set C = Q × IR−∞
N

of configurations (q,γ) with a
state q ∈ Q of F and a (max,+) vector γ.

• An initial configuration c0 = (q0,0).

• A labelled transition relation ∆ ⊆ C×IR×C consisting
of the following transitions: {((q,γ), ||γ′||, (q′,γ′norm)) |
(q,γ) ∈ C, (q, q′) ∈ δ,γ′ = GΣ(q′)γ}.

A state of the new state space is a pair consisting of a
state of the scenario FSM and a normalised vector indicat-
ing the relative distance in time of the time-stamps of the
tokens. An edge in this state space represents the execution
of a single iteration in the scenario indicated by the FSM
state of the destination of the edge. The meaning of an edge

((q1,γ1), d, (q2,γ2)) can be clarified as follows. If we start
with tokens having time-stamps according to γ1 and we ex-
ecute a single iteration in scenario Σ(q2) then the new set of
tokens are guaranteed to be ultimately produced at d + γ2

(or earlier). Note that because of linearity, this means that
if the starting vector equals t+γ1, then an upper bound for
the new vector is t+d+γ2. In general, for any path leading
to state (q,γ), the exact tightest upper bound that can be
given is T + γ where T equals the sum of the delays along
the edges of the path.

The possible behaviours of our SADF graph are captured
by the reachable part of this state space. It can be con-
structed in depth-first-search (DFS) or breadth-first-search
(BFS) (or any other) manner incrementally while checking
for desired constraints such as latency.

The reachable state space of the example graph is shown
in Figure 7. The bold state is the initial state. The grey box
highlights the cycle with lowest throughput. It is achieved
only by an alternation of scenarios a and b. Bold arrows
indicate a possible path (scenario sequence) to this cycle.
The overall throughput can be determined by a maximum
cycle mean analysis of the state-space, but we discuss a more
efficient method later on. Assuming we know that the max-
imum achievable throughput is 1/3 (the minimum period is
3), we can determine the latency in a single traversal of the
state space. We demonstrate this only along the path indi-
cated with bold arrows. We have to determine the smallest
λ such that γk � λ+ 3k. In other words,

λ = max
k
{γk − 3k}

λ = max
k


 0

0
0

 ,
 3

3
2

− 3,

 4
4
6

− 6,

 9
9
6

− 9


So, for this example (also if we complete it for the entire
state space), the latency is simply given by the vector λ =
[0; 0; 0]T . If we are specifically interested in the completion
time of actor C, its latency can be directly derived from λ as
follows. In scenario a, by the vector inner product ([−∞; −
∞; 2]T ,λ) and in scenario b by ([−∞; −∞; 1]T ,λ). With
the above solution of λ this guarantees a latency of 2 for any
firing of actor C.

We can give a practical condition under which the state
space is finite.

Proposition 4.1. If for every possible scenario sequence
s allowed by the FSM and any k ≥ 0 there is some m > k
such that the matrix H =

∏
k≤l<m Gs(l) contains no entries

−∞, then the reachable part of the state space is finite.

Proof. We only give the intuition behind the condition
here. An entry −∞ means there is no dependency. If in
a particular scenario sequence it is possible for parts of the
graph to evolve completely independently from other parts,
then the graph may become unbounded, because the faster
time-stamps will diverge to −∞. Otherwise any token can
be shown to be dependent on a critical token by a path of
bounded length and the time-stamps can only take a finite
number of different values.

Proposition 4.2. The throughput of an SADF is equal
to the inverse of the maximum cycle mean attained in any
of the reachable simple cycles of the state space.
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Figure 7: State space of example SADF graph

Proof. (Sketch.) Let τ be the throughput of the SADF
and let µ be the maximum cycle mean among the reachable
simple cycles. A scenario sequence that goes to the cycle
of µ and then cycles around it has a throughput of 1/µ.
Therefore, τ ≤ 1/µ. Assume that τ > 1/µ, then there exists
a sequence of scenarios such that the average throughput
remains in an ε-environment of τ that does not include 1/µ.
Because the reachable state space is finite, there must be
a cycle with a cycle mean larger than µ and hence also a
simple cycle with a cycle mean larger than µ. That would
contradict the definition of µ and hence, τ = 1/µ.

The grey box in Figure 7 highlights the cycle with the
maximum cycle mean which determines the throughput and
the bold arrows indicate a possible path (scenario sequence)
to the critical cycle. We mentioned earlier that it is possible
to measure throughput in terms of the average number of
actor firings or produced tokens per time unit if that num-
ber varies per scenario. In that case, one would annotate
the transitions additionally with the number of firings per-
formed or tokens produced in that particular iteration and
compute the Maximum Cycle Ratio (MCR) of both anno-
tations, which is equally efficient using Karp’s method [15]
The calculation of the latency vector is similarly adjusted
for the number of firings instead of the number of iterations
only.

5. WORST-CASE THROUGHPUT
The state space of the SADF graph can be large and we

discuss a reduction technique in the following section, but
first we focus on worst-case throughput calculation. For this,
it is not necessary to construct the state space explicitly.
Instead we may work directly on the (max,+) automaton
which generates the explicit state space, using the results of
Gaubert [6]. N is the number of initial tokens of the SADF
with scenarios S, the order of which is specified by the FSM
(Q, q0, δ,Σ). Let Gs be the (max,+) matrix of scenario s.

Then we can define directly the throughput graph (V,E),
which can be obtained in a number of steps from the FSM
and the scenario matrices using procedures from [6]. It has
a set V of vertices each of which represents a combination of
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Figure 8: (max,+) automata of example SADF
graph
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Figure 9: Reduced (max,+) automaton of example
SADF graph

one of the initial tokens and a location of the FSM with its
implied scenario. The set E of labelled edges represents the
worst-case time dependencies between the individual tokens
in the specific locations and corresponding scenarios. It is
formally defined as follows.

• V = {(q, n) | q ∈ Q, 1 ≤ n ≤ N}

• E = {((q1,m), d, (q2, n)) | q1, q2 ∈ Q,GΣ(q2)(m,n) =
d 6= −∞, 1 ≤ m,n ≤ N}

The resulting graph for the running example is shown as
the bottom graph in Figure 8. It can be seen as being con-
structed from the individual timed event graph representa-
tions of the individual scenarios [1]. The upper two graphs
show them for the scenarios a and b. Observe that they are
equivalent representations of the scenario matrices Ga and
Gb respectively; there is an edge from node m to node n if
the corresponding entry at row m and column n of the ma-
trix is unequal to −∞ and it carries the same value. (The
MCMs of these graphs correspond to the largest eigenval-
ues of the matrices and determine the maximal throughput
within the particular scenario.) The final throughput graph
can be constructed from these graphs and the FSM of the
SADF by replacing every location of the FSM by the graph



of its corresponding scenario and for every edge in the FSM,
connect the time dependency edges to the corresponding
initial tokens of the corresponding successor scenario graph.
Applying this to the FSM in Figure 1 and the two graphs
at the top of Figure 8 gives the result shown at the bottom
of Figure 8.

Observe that the size of the throughput graph is as follows.
It has |Q|×N vertices, i.e., the number of states in the FSM
times the number of initial tokens in the graph. And at most
|V |2 edges. This graph is typically much smaller than the
explicit state space. Based on the throughput graph, the
worst-case throughput of the SADF can be determined as
the MCM of the graph; the MCM analysis is O(|V | · |E|) =
O((|Q| · N)3). Correctness of the method follows from the
results of [6].

Proposition 5.1. The throughput of an SADF is equal
to the inverse of the maximum cycle mean of its throughput
graph.

Proof. Follows straightforwardly by construction of the
graph, the (max,+) automaton semantics of SADF and Propo-
sition 1 in [6].

In many cases in practice, the scenarios may occur in arbi-
trary order in which case the scenario FSM is fully connected
with a single state for every scenario and the throughput
graph is very regular, simplifying the analysis as follows.

Proposition 5.2. The throughput of an SADF with a
fully connected FSM is equal to the inverse of the maximum
cycle mean of the timed event graph corresponding to the
matrix G = maxq∈Q GΣ(q).

Proof. Follows straightforwardly from the (max,+) au-
tomaton semantics of SADF and Theorem 2 of [6].

In this case one can construct a simplified throughput graph
with one vertex for every initial token only. For the example
graph we have (using Ga and Gb as in Section 3.2).

G = max(Ga,Gb) =

 1 −∞ 3
1 −∞ 3
−∞ 3 −∞


The timed event graph corresponding to G is shown in Fig-
ure 9 and has an MCM of 3, the eigenvalue of G.

It is important to repeat that although we are allowed in
this situation to construct a new matrix taking the max-
imum of the elements of the individual scenario matrices,
this does not mean that we could have achieved this result
by either considering only the ‘worst-case’ scenario or by
considering the graph in which each actor takes as its exe-
cution time the worst-case over all scenarios. One can easily
demonstrate that the former approach is strictly too opti-
mistic (as the running example illustrates) and the latter
approach is strictly too pessimistic.

6. STATE SPACE ANALYSIS
We have implemented an algorithm that computes the

execution state space of the SADF graph. We use a basic
breadth-first-search approach for this. It is given as Algo-
rithm 1. It constructs the state space StSp straightforwardly
according to the definition of Section 4. The while loop
realises a breadth-first exploration by keeping unexplored
states in a queue BFS.

Algorithm 1 Compute state space of an SADF

1: ComputeStateSpace(G)
2: Input: SADF G
3: BFS := new Queue()
4: StSp := new Graph()
5: BFS.insert((G.FSM.q0, 0))
6: StSp.insertState((G.FSM.q0, 0))
7: while not BFS.isEmpty() do
8: (q,γ) := BFS.removeBegin()
9: for q′ in q.nextStates() do

10: γ′ := G.execute(γ, q′.scenario);
11: StSp.addEdge((q, γ), γ′.norm(), (q′, γ′.normalize()))
12: if not StSp.includesState(q′, γ′) then
13: StSp.insertState(q, γ′)
14: BFS.add(q′, γ′.normalize())
15: end if
16: end for
17: end while
18: return StSp

3 3
3

3

2P≥3

2+1

Figure 10: Reduction by approximating the be-
haviour

During the exploration procedure, we enumerate the state-
space and check timing constraints or compute latency. Ex-
ploration continues until we reach a state that we visited
before, we back-track and stop exploration in that direction.
Still, the state space can be large and using the information
in the time-stamp vectors, we can do a bit more to limit the
space we need to search. We can try to create a an edge to
a different state, already visited before with the same FSM
state, but different vector, with a conservative (pessimistic)
estimate of the timing guarantees. This might be sufficient
for instance if we run the algorithm to show that the graph
can attain a certain latency, or if we want to trade-off the
run-time for an approximate answer.

The approach is illustrated in Figure 10. It shows a state-
space exploration in progress of the example state space of
Figure 7. The latest state explored is (a, [−1;−1; 0]T ) at the
right-hand side of the figure. This is not yet a recurrent state
and we can decide to continue exploration. We also have the
option however of closing the cycle to state (a, [0; 0;−1]T )
already in the set of visited states, indicated by the dashed
arrow. Knowing that in general γ2 � γ1 + ||γ2 − γ1||, we are
guaranteed that an execution according to the given cycle
can be done with a period of at most the sum of delays in the
cycle, incremented with ||γ2 − γ1||. In this case, the norm
of the difference is 1 and the sum of the delays equals 5 for 3
iterations, so the throughput for this cycle is conservatively
estimated to be at least 3/6 while in reality it is 6/9.

If we are not trying to compute for instance the minimal
latency vector, but we are trying to prove that a certain
given latency can be attained, we can try to close cycles us-
ing the rule above as soon as possible and only if it does not
enable us to prove that the required latency can be attained,
then we continue.

Algorithm 1 has been implemented in our publicly avail-
able SDF3 software library for SDF analysis [24]. We applied



an some additional optimization to the algorithm which is
optimized for presentation. We have used edge-labelled FSMs
instead of the state-labelled, since they tend to have fewer
states. Conversion between one and the other approach is
trivial.

7. EXPERIMENTAL RESULTS
We have done experiments with the MP3 model discussed

earlier, on an H.263 model and on a large collection of ran-
domly generated graphs, on a 3.4GHz, Intel Pentium 4 based
PC. A conservative SDF model, without scenarios, of the
MP3 decoder can guarantee a throughput of 1.08 · 10−7

frames per cycle. Experiments with the SADF graph show
that the MP3 graph with frame type scenarios can achieve
a guaranteed throughput of 1.72 · 10−7 frames per proces-
sors cycle, 59% higher. Since one frame equals 26ms of real
time, the application can make its real-time requirements if
the processor performs at least 1/0.026 frames per second
divided by 1.72 · 10−7 frames per cycle, equals 224 MCy-
cles per second. The corresponding state space of the MP3
SADF has only 17 states and the analysis took less than
10ms. In comparison, a similar MP3 model from the web
site of [24] took 21.49s to analyse for average throughput
with the tool of [25].

We have also used our method on the H.263 decoder graph
used in [25] (Figure 3). The run-time of our algorithm on
this graph with 5 actors is around 10ms. It has 121 states.
Increasing the pipeline depth (adding initial tokens to the
edge from RC to FD) to 5, increases the time for gener-
ating the state space (now 1093 states) to 160ms, but the
throughput can still be analysed with the method of Section
5 in 10ms.

We have also analysed a collection of more than 5000 ran-
dom SADF graphs between 3 and 18 actors with an entry
in the repetition vector between 1 and 7 and between 10
and 70 scenarios, giving an average 36% higher throughput
guarantee than from a conservative SDF model of the same
graph. The execution times for state space generation are
summarised in Figure 11, averaged for graphs with a partic-
ular number of actors (a), a particular number of scenarios
(b) or a particular maximum entry in the repetition vector
(c). The graph shows that the average execution times scale
with the complexity of the graph. They scale roughly linear
with the number of actors and with the number of scenar-
ios. The execution time is most strongly correlated with
the number of scenarios. It scales more than linear with
the repetition vector entries. These results are mostly due
to the conversion from the SDF scenario graphs to (max,+)
matrices, during which an iteration of the SDF graph is sym-
bolically simulated.

8. FUTURE WORK AND CONCLUSIONS
An interesting future application of the approach is pos-

sible when in the FSM characterising the possible scenario
sequences we can distinguish application scenarios from sys-
tem scenarios. Application scenarios are scenarios of be-
haviour that are forced upon the system from the application
behaviour. For instance, in the different MP3 frame types,
determined by the MP3 file, not by the system. System
scenarios, in contrast, may be behaviours selected by the
system itself, depending on conditions and optimisation cri-
teria. For instance resource allocation or voltage/frquency

scaling. This may give rise to a game-theoretic approach
to scenario determination by an FSM, where a good sys-
tem controller can be defined in terms of a winning strategy
in a game where every move of the environment (applica-
tion scenario) needs to be countered with a system move
(selection of a system scenario) so as to achieve an overall
goal (for instance minimising power consumption while guar-
anteeing throughput and latency constraints). It is a well
studied subject in automata theory and techniques exist to
automatically generate such controllers [27]. The potential
optimisation technique discussed in Section 6 needs to be
investigated, which requires an efficient way of finding good
states to close the cycles.

To conclude, in this paper we have introduced a formal
model of Scenario-Aware Dataflow graphs based on the the-
ory of (max,+) automata and derive from this theory tech-
niques to analyse worst-case performance. The techniques
can give the exact highest throughput that can be guar-
anteed for the specific model very efficiently and can de-
termine minimal latency that can be attained from a state
space analysis. An algorithm and implementation of the
techniques have been presented and have been experimen-
tally evaluated, showing that it can give much tighter perfor-
mance guarantees for many SADF graphs than SDF based
analysis and that run-times are often good, in particular for
throughput analysis without state-space generation.
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