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ABSTRACT
Multimedia applications usually have throughput constraints.
An implementation must meet these constraints, while it
minimizes resource usage and energy consumption. The
compute intensive kernels of these applications are often
specified as Synchronous Dataflow Graphs. Communica-
tion between nodes in these graphs requires storage space
which influences throughput. We present exact techniques
to chart the Pareto space of throughput and storage trade-
offs, which can be used to determine the minimal storage
space needed to execute a graph under a given throughput
constraint. The feasibility of the approach is demonstrated
with a number of examples.

Categories and Subject Descriptors: C.3 [Special-pur-
pose and Application-based Systems] Signal processing sys-
tems

General Terms: Algorithms, Experimentation, Theory.

Keywords: Synchronous Dataflow, buffering, throughput,
optimization.

1. INTRODUCTION
Synchronous Dataflow Graphs (SDFGs, [11]) have tradi-

tionally been used to model and analyze sequential DSP
applications. Recently, they are also used for designing and
analyzing multimedia applications realized using multipro-
cessor systems-on-chip. The main focus is on predicting the
timing behavior of these complex media systems.

The nodes in an SDFG communicate data with each other.
Storage space, buffers, must be allocated for this data. At
design time, the allocation (size) of this storage space must
be determined. The available storage space in an embedded
system is usually very limited. Therefore, the storage space
allocated for the graph should be minimized. Minimizing
storage has the additional advantage that it saves energy.

Minimization of buffer requirements in SDFGs has been
studied before, see for example [1, 4, 5, 7, 9, 10, 12, 13,
14]. The proposed solutions target mainly single-processor
systems. Modern media applications, however, often tar-
get multi-processor systems. Furthermore, they have timing
constraints expressed as throughput or latency constraints.
Only looking for the minimal buffer size which gives a dead-
lock-free schedule as done in [1, 4, 5, 7, 12, 14] may re-
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sult in an implementation that cannot be executed within
these timing constraints. It is necessary to take the timing
constraints into account while minimizing the buffers. Sev-
eral approaches have been proposed for minimizing buffer
requirements under a throughput constraint. In [9], a tech-
nique based on linear programming is proposed to calculate
a schedule that realizes the maximal throughput while it
tries to minimize buffer sizes. Hwang et al. propose a heuris-
tic that can take resource constraints into account [10]. This
method is targeted towards a-cyclic graphs and it always
maximizes throughput rather than using a throughput con-
straint. Thus, it could lead to additional resource require-
ments. In [13], buffer minimization for maximal throughput
of a subclass of SDFGs (homogeneous SDFGs) is achieved
via an integer linear programming approach. In general,
the minimal buffer sizes obtained with this approach can-
not be translated to exact minimal buffer sizes for arbitrary
SDFGs. We propose, in contrast to existing work, an ex-
act technique to determine all trade-offs (Pareto points) be-
tween the throughput and buffer size for an SDFG.

The buffer minimization problem is known to be NP-
complete [4]. Researchers have successfully applied explicit
state-space exploration techniques to solve NP-complete (and
even worse) scheduling problems [2, 3, 17]. In the context of
buffer minimization, [7] proposed a state-space exploration
technique to find minimal buffer requirements to execute an
SDFG with a deadlock-free schedule. This has motivated
us to apply a state-space exploration based technique to the
problem of storage-throughput trade-off analysis. However,
our technique is in general not exhaustive. It prunes the
search space in an efficient way, as confirmed by our exper-
iments, without loosing any Pareto points.

We first introduce the timed SDF model and formalize the
storage requirements and throughput of an SDFG. Subse-
quently, we explain our technique to perform a design-space
exploration to find the trade-offs between throughput and
memory consumption of an SDFG. The feasibility of the ap-
proach is demonstrated with a number of case studies. For
space reasons, proofs are published separately in [19].

2. SYNCHRONOUS DATAFLOW GRAPHS
An example of a Synchronous Dataflow graph (SDFG) is

depicted in Fig. 1. The nodes of an SDFG are called ac-
tors; they represent functions that are computed by reading
tokens (data items) from their input ports, and writing the
results of the computation as tokens on the output ports. An
essential property of SDFGs is that every time an actor fires
(performs a computation) it consumes the same amount of
tokens from its input ports and produces the same amount
of tokens on its output ports. These amounts are called the
port rates and are visualized as port annotations. Actor
firings are atomic and require a fixed execution time, de-
noted with a number in the actors. The edges in the graph,
called channels, represent data that is communicated from
one actor to another. The channels may contain tokens, de-
picted with a black dot and an attached number defining the
number of tokens present in the channel. The storage space
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Figure 1: Example SDFG.

of a channel is in principle unbounded, i.e., it can contain
arbitrarily many tokens. Formally an SDFG is defined as
follows. We assume a set Ports of ports, and with each port
p ∈ Ports we associate a finite rate Rate(p) ∈ N\{0}.

Definition 1. (Actor) An actor a is a tuple (In, Out, τ )
consisting of a set In ⊆ Ports of input ports (denoted by
In(a)), a set Out ⊆ Ports of output ports with In

T

Out = ∅
and τ ∈ N\{0} representing the execution time of a (τ (a)).

Definition 2. (SDFG) An SDFG is a tuple (A,C) consist-
ing of a finite set A of actors and a finite set C ⊆ Ports2 of
channels. The channel source is an output port of some ac-
tor, the destination is an input port of some actor. All ports
of all actors are connected to precisely one channel, and all
channels are connected to ports of some actor. For every ac-
tor a = (I,O, τ ) ∈ A, we denote the set of all channels that
are connected to the ports in I (O) by InC(a) (OutC(a)).

As mentioned, actor execution is defined in terms of firings.
When an actor a starts its firing, it removes Rate(q) tokens
from all (p, q) ∈ InC(a). The execution continues for τ (a)
time units and when it ends, it produces Rate(p) tokens on
every (p, q) ∈ OutC(a). It is possible to choose rates in an
SDFGs such that the SDFG deadlocks or such that tokens
accumulate on the channels. In the latter case an SDFG
can only execute in unbounded memory. Consistency [11]
is known to be a necessary condition to allow an execution
within bounded memory. Since consistency is straightfor-
ward to check, we focus on consistent SDFGs. Furthermore,
we assume connectedness. For unconnected graphs, analysis
can be done per connected subgraph.

3. OPERATIONAL SEMANTICS OF SDF
SDFG execution is formalized through a labeled transition

system. This requires appropriate notions of states and of
transitions.

As explained, an actor consumes input tokens at the start
of a firing, and produces output at the end of the firing.
Channels have infinite storage space, which means that there
is always sufficient space available for output. We abstract
from the actual data that is being communicated or pro-
cessed by actors and treat all data elements equally in the
form of (normalized) tokens. This is possible as we are in-
terested in the timing behavior and memory usage, and not
for example in functional analysis. In order to capture the
timed behavior of an SDFG, we need to keep track of the
distribution of tokens over the channels, of the start and end
of actor firings, and the progress of time.

To measure quantities related to channels, such as the
number of tokens present in, read from or written to chan-
nels, we define the following concept.

Definition 3. (Channel quantity) A channel quantity
on the set C of channels is a mapping γ : C → N. If γ1 is
a channel quantity on C1 and γ2 is a channel quantity on
C2 with C1 ⊆ C2, we write γ1 � γ2 if and only if for every
c ∈ C1, γ1(c) ≤ γ2(c). Channel quantities γ1+γ2 and γ1−γ2

are defined by pointwise addition resp. subtraction of γ1 and
γ2 resp. γ2 from γ1; γ1 − γ2 is only defined if γ2 � γ1.

The amount of tokens read at the start of a firing of some
actor a can be described by a channel quantity Rd(a) =
{(p, Rate(p))|p ∈ In(a)} and the amount of tokens pro-
duced at the end of a firing by a channel quantity Wr(a) =
{(p, Rate(p))|p ∈ Out(a)}.
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Figure 2: Limited auto-concurrency.

Definition 4. (State) The state of an SDFG (A,C) is a
pair (γ, υ). Channel quantity γ associates with each channel
the amount of tokens in that channel in that state. To keep
track of time progress, an actor status υ : A → N

N associates
with each actor a ∈ A a multiset of numbers representing
the remaining times of different firings of a. We assume
that the initial state of an SDFG is given by some initial
token distribution γ, which means the initial state equals
(γ, {(a, {}) | a ∈ A}) (with {} denoting the empty multiset).

The use of a multiset of numbers to keep track of actor
progress instead of a single number allows multiple simulta-
neous firings of the same actor (auto-concurrency). This is
in line with the standard SDF semantics. Auto-concurrency
can always be limited or excluded by adding self-loops to ac-
tors with a number of initial tokens equivalent to the desired
maximal auto-concurrency degree. For our running exam-
ple, we disallow auto-concurrency by adding self-loops with
a single token to all actors as shown in Fig. 2. The dynamic
behavior of the SDFG is described by transitions. Three
different types are distinguished: start of actor firings, end
of firings, or time progress in the form of clock ticks.

Definition 5. (Transition) A transition of SDFG (A, C)

from state (γ1, υ1) to state (γ2, υ2) is denoted by (γ1, υ1)
β
→

(γ2, υ2) where label β ∈ (A × {start, end}) ∪ {clk} denotes
the type of transition.

• Label β = (a, start) corresponds to the firing start of
actor a ∈ A. This transition may occur if Rd(a) � γ1

and results in γ2 = γ1 − Rd(a), υ2 = υ1[a 7→ υ1(a) ]
{τ (a)}], i.e., υ1 with the value for a replaced by υ1(a)]
{τ (a)} (where ] denotes multiset union).

• Label β = (a, end) corresponds to the firing end of a ∈
A. This transition can occur if 0 ∈ υ1(a) and results
in υ2 = υ1[a 7→ υ1(a)\{0}] (where \ denotes multiset
difference), and γ2 = γ1 + Wr(a).

• Label β = clk denotes a clock transition. It is enabled
if no end transition is enabled and results in γ2 = γ1,
υ2 = {(a, υ1(a) 	 1)|a ∈ A} with {} 	 1 = {} and
υ1(a) 	 1 for υ1(a) 6= {} a multiset of natural num-
bers containing the elements of υ1(a) (which are all
positive) reduced by one.

Definition 6. (Execution) An execution of an SDFG is

an infinite alternating sequence of states and transitions s0

β0→

s1

β1→ . . . from some designated initial state s0.

Note that even a deadlocked SDFG (no actor is firing or
ready to fire) has an infinite execution as time always pro-
gresses.

4. STORAGE REQUIREMENTS
As mentioned in Sec. 2, channels have unbounded storage

space. However, in practice storage space must be bounded.
Bounded storage space for channels can be realized in dif-
ferent ways. One option is to use a memory that is shared
between all channels. The required storage space for the
execution of an SDFG is then determined by the maximum
number of tokens stored at the same time during the exe-
cution of the graph. Murthy et al. use this assumption to



schedule SDFGs with minimal storage space [12]. This is
a logical choice for single-processor systems in which actors
can always share the memory space. A second option is to
use a separate memory for each channel, so empty space in
one cannot be used for another. This assumption is logi-
cal in the context of multiprocessor systems, as memories
are not always shared between all processors. The chan-
nel capacity must be determined per channel over the en-
tire schedule, and the total amount of memory required is
obtained by adding them up. Minimization of the mem-
ory space with this variant is considered in [1, 5]. Hybrid
forms of both options can be used [7]. In this paper, we
assume channels cannot share memory space. This gives a
conservative bound on the required memory space when the
SDFG is implemented using shared memory. In that case,
the SDFG may require less memory, but it will never require
more memory than determined by our method.

The maximum number of tokens which can be stored in a
channel (channel capacity) is called a storage distribution.

Definition 7. (Storage distribution) A storage distri-
bution of an SDFG (A,C) is a channel quantity δ that as-
sociates with every c ∈ C, the capacity of the channel.

The storage space required for a storage distribution is called
the distribution size.

Definition 8. (Distribution size) The size of a storage
distribution δ is given by: |δ| =

P

c∈C
δ(c).

A possible storage distribution for the SDFG shown in Fig. 1
would be δ(α) = 4 and δ(β) = 2, denoted as 〈α, β〉 7→ 〈4, 2〉.
It has a distribution size of 6 tokens.

In an SDFG state, a channel (p, q) from actor a to ac-
tor b does not contain an arbitrary number of tokens. As-
sume that the channel contains in the initial state of the
execution d tokens. After n firings of a and m firings of
b, the channel contains n · Rate(p) − m · Rate(q) + d to-
kens. This is equal to k · gcd(Rate(p),Rate(q)) + d mod
gcd(Rate(p),Rate(q)) tokens with k = (n · Rate(p) − m ·
Rate(q)+d)÷gcd(Rate(p),Rate(q)). The number of tokens
in a channel, and hence the storage space which can be used
usefully, depends via k on the gcd of the rate at which the
actors a and b produce and consume tokens. This gcd is
called the step size of the channel.

The bound on the storage space of each channel can be
modeled in an SDFG (A, C) by adding for channel (p, q) ∈ C
from an actor a ∈ A to an actor b ∈ A a channel (qδ , pδ) from
b to a with Rate(p) = Rate(pδ) and Rate(q) = Rate(qδ).
The number of initial tokens on the channel (qδ, pδ) models
the storage space of the channel (p, q). Subscript ‘δ’ denotes
elements used to model storage space. The SDFG which
models the storage distribution δ in an SDFG (A,C) is de-
noted (Aδ, Cδ). Fig. 3 shows the SDFG which encodes the
storage distribution 〈4, 2〉 for our running example. Note
that no storage space is allocated for the self-loops on the
actors. These self-loops are introduced to model absence of
auto-concurrency and will not require storage space in a real
implementation and can thus be ignored.

At the start of a firing, an actor consumes its input to-
kens. This includes the tokens it consumes from the chan-
nels which model the storage space of channels to which the
actor will write. The consumption of these tokens can be
seen as allocation of storage space for writing the results of
the computation. At the end of the firing, the actor pro-
duces its output tokens. This includes the production of
tokens on channels which model the storage space of chan-
nels from which the actor has read tokens at the beginning
of the firing. The production of these tokens can be seen as
the release of the space of the input tokens. In other words,
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Figure 3: SDFG with storage distribution 〈4, 2〉.

the model assumes that space to produce output tokens is
available when an actor starts firing and the space used for
input tokens is released at the end of the firing. The cho-
sen abstraction is conservative with respect to storage and
throughput if in a real implementation space is claimed later,
or released earlier or data tokens are written earlier.

5. THROUGHPUT
Throughput is an important design constraint for embed-

ded multi-media systems. The throughput of a graph refers
to how often an actor produces an output token, which de-
pends on the execution of the SDFG. There exists one type
of execution, namely self-timed execution [18], which gives
maximal throughput. In a self-timed execution, clock tran-
sitions occur only when no start transitions are enabled. It
requires that each actor fires as soon as it is enabled.

Definition 9. (Throughput) The throughput of an actor
a for the self-timed execution σ of an SDFG is defined as
the average number of firings of a per time unit in σ.

In this paper, we focus on throughput which can be achieved
within bounded storage space. Throughput achieved with
infinite storage space cannot be implemented and is there-
fore not considered. A connected SDFG incorporating a
storage distribution (which is by definition finite) is always
strongly connected. In that situation, the fixed rates of the
actor ports ensure that the number of times actors fire with
respect to each other (repetition vector [6]) is constant. In
other words, the throughput of each pair of actors in a graph
is related to each other via a constant. In the remainder,
we assume that some arbitrary actor has been selected to
compute throughput.

To compute the throughput of actor c of our example (see
Fig. 3), we first look at the transition system of the self-
timed execution as shown in Fig. 4. All clock transitions
are shown explicitly. Between clock transitions, there can
be multiple start and/or end transitions enabled simultane-
ously. These start and end transitions are independent of
each other. Independent of the order in which they are ap-
plied, the final state before each clock transition, and the
first state after each clock transition, are always the same.
Therefore, all start and end transitions are shown as one an-
notated step. The transition system consists of a finite se-
quence of states and transitions, called the transient phase,
followed by a sequence of states and transitions which is re-
peated infinitely often and is called the periodic phase. In
our example, actor c ends its firing for the first time after
9 clock transitions in the gray state. At that moment, the
actor is in the periodic phase of the schedule and fires each
7 time units. The periodic phase is repeated indefinitely.
Hence, the average time between two firings over the whole
schedule converges to the average time between two firings
in the periodic phase. So, the throughput of c is 1/7.

6. THROUGHPUT CALCULATION
Theorem 1. The state-space for any SDFG (A, C) with stor-
age distribution δ contains always exactly one cycle.

The theorem states that the state-space of any SDFG with
bounded storage space for all channels consists of a tran-
sient phase followed by a periodic phase. Def. 9 defines the
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Figure 4: SDF state space of the example SDFG.

throughput of an actor over an execution which contains in-
finitely many transitions. The periodic phase is repeated
indefinitely, while the states in the transient phase are vis-
ited only once. Hence, the average time between two firings
over the whole execution converges to the average time be-
tween two firings in the periodic phase. So, the throughput
can be computed from the periodic phase while ignoring the
transient phase.

Proposition 1. The throughput of an actor a in an SDFG
with some storage distribution δ is equal to the number of
firings of a in one period of the periodic phase divided by the
number of clock transitions in the period.

The throughput of an actor in an SDFG can be computed
by executing the SDFG in a self-timed manner while re-
membering visited states until a state is revisited. At that
point, the periodic phase is reached and the throughput can
be computed using Proposition 1. The number of states
that must be remembered can be reduced. We can enforce
deterministic execution by choosing a fixed order among si-
multaneously enabled transitions in the transition system
without affecting the throughput. Thus to detect the cycle,
only the states that represent the end of a firing of some ar-
bitrary actor must be kept. To detect deadlock, it must also
be checked whether a clock transition remains in the same
state. It is not necessary to store this state. To compute
the throughput, we must additionally store the number of
clock transitions between each two stored states. For our
example (see Fig. 4), only the gray state must be stored as
this is the only state in which a firing of c ends. More details
on throughput analysis for SDFGs can be found in [8].

7. STORAGE DEPENDENCIES
The maximal throughput of an SDFG is limited by chan-

nel capacities. In the self-timed execution of the SDFG an
actor may, for example, be waiting for tokens on a channel
cδ (modeling the storage space of channel c). Adding tokens
to cδ (i.e. increasing the storage space of c) might enable
the actor to fire earlier and possibly increase the maximal
throughput of the SDFG. The dependency of an actor firing
on tokens produced by the end of another firing is called a
causal dependency.

Definition 10. (Causal Dependency) A firing of an ac-
tor a causally depends on the firing of an actor b via a chan-
nel c if the firing of a consumes a token from c produced by
the firing of b on c without a clock transition between the
start of the firing of a and the end of the firing of b.

If a causal dependency appears in the periodic phase of the
execution, the actor will repeatedly (infinitely often) not
be able to fire earlier which on its turn may influence the
throughput. Throughput may increase if these dependen-
cies are resolved. All causal dependencies between the actor
firings of the periodic phase can be captured in a causal
dependency graph. It is sufficient if only the dependencies

b1a2b0

c0

a1 a0

Figure 5: Dependency graph of the example SDFG.

between actor firings in one period of the periodic phase are
considered as the dependencies are equal in all periods.

Definition 11. (Dependency Graph) Given an SDFG
(Aδ, Cδ) incorporating a storage distribution δ and a se-
quence of states and transitions p corresponding to a period
of the self-timed execution of (Aδ, Cδ) (starting at some ar-
bitrary state in the period). The causal dependency graph
(D, E) contains a node ak for the k-th firing in p of actor
a ∈ Aδ. The set of dependency edges E contains an edge
if and only if there exists a causal dependency between the
corresponding firings.

The dependency graph for the running example is shown
in Fig. 5, assuming the gray state as the start state. The
throughput of an SDFG is limited by an infinite sequence of
causal dependencies between the actor firings, captured by
a causal dependency cycle in the dependency graph.

Definition 12. (Causal Dependency Cycle) A causal
dependency cycle is a simple cycle in the causal dependency
graph.

A causal dependency cycle is a sequence of actor firings that
causally depend on each other, starting and ending with the
same actor firing. Causal dependencies caused by channels
which model storage space are of interest to us as adding
more tokens to these channels (i.e. increasing the storage
space of the corresponding channel) may resolve causal de-
pendency cycles and increase throughput.

Definition 13. (Storage Dependency) Given an SDFG
(Aδ, Cδ) incorporating a storage distribution δ and its depen-
dency graph ∆. A channel c ∈ Cδ has a storage dependency
in ∆ if and only if there exists a causal dependency in some
dependency cycle of ∆ via channel cδ.

8. DESIGN-SPACE EXPLORATION
Sec. 6 presents a technique to find the throughput for a

given storage distribution. Using this technique, it is possi-
ble to find the trade-offs between the distribution size and
the throughput, i.e., the Pareto space. Fig. 6 shows this
Pareto space for our example. It shows that storage distri-
bution 〈4, 2〉 is the smallest distribution with a throughput
for actor c larger than zero. The throughput of c can never
go above 0.25, as actor b always has to fire twice (requiring 4
time steps) for one firing of c. With a distribution size of 10
tokens (or more), the maximal throughput can be achieved.
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Figure 6: Pareto space for our example.

Definition 14. (Minimal Storage Distribution) A stor-
age distribution δ with throughput τ is minimal if and only
if for any other storage distribution δ′ with throughput τ ′,
|δ′| < |δ| implies τ ′ < τ and |δ′| = |δ| implies τ ′ ≤ τ .

Distributions 〈4, 2〉, 〈5, 3〉, 〈6, 2〉, 〈6, 3〉 and 〈7, 3〉 in our ex-
ample are minimal, but distribution 〈5, 2〉 is not.

Algorithm 1 is used to find all minimal storage distribu-
tions for an SDFG. The algorithm starts the design-space
exploration from a distribution δ. It computes the storage
dependency graph ∆ and throughput τ for this distribu-
tion. The distribution-throughput pairs are kept in a set D.
The algorithm continues by recursively increasing the stor-
age space of each channel c which has a storage dependency
in ∆. The storage space of c is increased by the step size of
the channel as explained in Sec. 4. All Pareto points for an
SDFG are found using the following theorem.

Theorem 2. The set of all storage distributions contained
in D which is constructed using Algorithm 1 starting from
D = ∅ and the storage distribution δ0 = 〈0, . . . , 0〉 contains
all minimal storage distributions.

The theorem shows that set D contains all minimal storage
distributions. However, it may also contain non-minimal
distributions. Sorting all distributions in D according to
their throughput and a single traversal through the sorted
list is sufficient to extract all Pareto points from D.

In practice it is not necessary to start from the distribution
〈0, . . . , 0〉. For each channel, a lower bound on the storage
space required to avoid deadlock (i.e. throughput equal to
zero) can be computed [1, 12].

Algorithm 1 Find all minimal storage distributions

Input: An SDFG G with a storage distribution δ
Result: A set D of pairs (storage distribution, throughput)
1: procedure findMinStorageDist(G, δ)
2: Create SDFG Gδ which models δ in G
3: Compute throughput τ and dependency graph ∆ of Gδ

4: D ← D
S

(δ, τ)
5: Let S be the set of storage dependencies in ∆
6: for each channel c in S do
7: δn ← δ
8: δn(c)← δ(c) + step(c)
9: D← D

S

findMinStorageDist(G,δn)

9. ABSTRACT DEPENDENCY GRAPH
The number of nodes in a dependency graph can be large

as it contains a node for each actor firing which occurs during
the periodic phase. As a result, cycle detection can be very
time consuming. An abstract version of the dependency
graph can be constructed in which the number of nodes is
equal to the number of actors in the SDFG, which enables
faster cycle detection.

Definition 15. (Abstract dependency graph) Given
an SDFG (Aδ, Cδ) incorporating a storage distribution δ and

its dependency graph (D, E). The abstract dependency graph
(Da, Ea) contains an abstract dependency node da ∈ Da for
each actor a ∈ Aδ. Each dependency edge (ak, bl) ∈ E has
a corresponding edge (da, db) in Ea.

In practice, the abstract dependency graph can be con-
structed by traversing through the cycle in the state-space
once. An important property of the abstract dependency
graph is that it maintains all storage dependencies present
in the dependency graph. So, Algorithm 1 can still be used
to find all minimal storage distributions.

Theorem 3. The set of storage dependencies of an abstract
dependency graph contains all storage dependencies of the
corresponding dependency graph.

10. IMPLEMENTATION
We developed a tool, called SDF3 [20], that implements

among other things the techniques presented in this paper.
It takes an XML description of an SDFG as input and adds
channels to model storage space. The result is C++ code
of a program which performs the actual design-space explo-
ration. This program follows the structure of Algorithm 1
starting from the storage distribution δ given by the lower
bounds for storage space of the channels. It sets the initial
state of the SDFG according to storage distribution δ. Using
the technique described in Sec. 6, the throughput is com-
puted, and as a byproduct the abstract dependency graph.
A cycle detection algorithms is then used to find all storage
dependencies. The algorithm recursively enlarges all chan-
nels with a storage dependency. During this process, an
increase of some channels, in different orders, can result in
the same storage distribution. To avoid that such storage
distributions and their extensions are explored more than
once, a dynamic programming approach is used. Instead of
the set D, the program maintains a sorted list of all storage
distributions it has seen. This increases the speed of the dy-
namic programming and it allows simple extraction of the
minimal storage distributions from the list.

11. EXPERIMENTAL RESULTS
We have performed experiments to see how our approach

performs in practice on a number of real DSP and multime-
dia applications modeled as SDFGs. From the DSP domain,
the set contains a modem [5], a satellite receiver [16] and a
sample-rate converter [5], and from the multimedia domain
an MP3 decoder and an H.263 decoder. We also used our
own example SDFG shown in Fig. 2 and the often used bi-
partite SDFG from [5]. For each of the SDFGs, the complete
design-space was explored. This resulted in a Pareto space
showing the trade-offs between the throughput and distri-
bution size for each graph.

The results of the experiments are summarized in Tab. 1.
It shows the number of actors and channels in each graph
and the minimal distribution size for the smallest positive
throughput, the maximum throughput that can be achieved
and the distribution size needed to realize this throughput.
It also shows the number of Pareto points and the number
of minimal storage distributions that were found during the
design-space exploration. The results show that one Pareto
point of our example graph contains two different minimal
storage distributions. In all other situations, each Pareto
point contains a single storage distribution.

An upper bound on the storage space required for each
channel to achieve maximal throughput with finite chan-
nel capacities can be found [11]. This upper bound and the
lower bound explained in Sec. 8, can be used to compute the
number of different storage distributions in the design-space
(see row ‘#Distr. in space’ of Tab. 1). The next row shows



Table 1: Experimental results.
Example Bipartite Sample Modem Satellite MP3 H.263 H.263 H.263 H.263

Rate (q: 3) (q: 9) (q: 27)
#actors/ #channels 3/2 4/4 6/5 16/19 22/26 13/12 4/3 4/3 4/3 4/3
Min. throughput > 0 1/7 0.04 0.15 0.03 0.18 7·10−3 5·10−5 5·10−5 5·10−5 5·10−5

Distr. size 6 28 32 38 1542 12 4753 4753 4753 4753
Max. throughput 1/4 0.06 0.17 0.06 0.23 8·10−3 1·10−4 1·10−4 1·10−4 1·10−4

Distr. size 10 35 34 40 1544 16 8006 8006 8012 8021
#Pareto points 4 8 3 3 2 3 3254 1086 364 123
#Min. distr. 5 8 3 3 2 3 3254 1086 364 123
#Distr. in space 27 1·108 9·1012 1·1010 2·1065 4096 3·1010 3·1010 3·1010 3·1010

#Distr. checked 7 51 3 4 4 7 292·103 28720 3613 558
Overestimation - - - - - - - 0% 3·10−4% 2·10−3%
Max. #states visited 21 652 6·106 134 10377 33579 8·106 8·106 3·106 905657
Max. #states stored 2 20 5328 2 241 212 1124 375 125 43
Exec. time 1ms 1ms 1ms 2ms 7ms 2ms 53min 5min 36ms 7ms

the number of storage distributions explored by the algo-
rithm. The results show that the algorithm explores only
very few distributions from the space. For most SDFGs, it
only explores the minimal storage distributions. This shows
that the algorithm successfully prunes the design-space.

The algorithm computes the throughput for each storage
distribution it tries. This is done via a self-timed execution
of the SDFG (see ‘Max. #states visited’ of Tab. 1) in which
a selected number of states must be stored (see Sec. 6 and
‘Max. #states stored’ of Tab. 1).

All SDFGs, except the H.263 decoder, show a run time
in the order of milliseconds to explore the complete design
space. The run time for the H.263 decoder is large due to
the large number of Pareto points contained in the space.
However, the throughput of most of the Pareto points is
close to each other. In practice, it is not interesting to find
all these points. By quantizing the size with which the stor-
age space is increased (line 8 of Algorithm 1), the number
of Pareto points can be limited. Several experiments have
been performed in which the step size of the channels in
the H.263 decoder was multiplied with a quantization fac-
tor of 3, 9 and 27. The results for these experiments are
shown in the last three columns of Tab. 1. It shows that the
quantization drastically improves the run time of the design-
space exploration at the cost of a reduced number of Pareto
points found. Quantization of the step size can also lead
to overestimation of the required storage space for a given
throughput. The experiments show that the overestimation
for the H.263 decoder is very small (see row ‘Overestima-
tion’). In fact, only the storage distribution which achieves
maximal throughput is overestimated.

From the experiments, we conclude that it is feasible to
perform a design-space exploration for reasonable applica-
tion kernels.

12. CONCLUSION
We have presented a method to explore the trade-offs be-

tween the throughput and memory usage for SDFGs. It dif-
fers from existing buffer sizing methods as it can determine
exact minimum memory bounds for any achievable through-
put of the graph. Other methods can only determine an
upper bound on the minimal memory requirement for the
lowest or highest throughput of the graph. The current ex-
periments show that, despite the complexity of the problem,
it is possible to perform a design-space exploration for real
application kernels. If run times nevertheless become a prob-
lem, our techniques can be combined with approximation or
heuristic techniques to prune the design-space. A simple ex-
ample of such an approximation algorithm was implemented
and tested on an H.263 decoder with good results. Our ob-
jective is to integrate this work in a predictable design flow
for systems-on-chip based on SDFGs in the style of [15].
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