
MNEMEE – An Automated Toolflow for Parallelization and Memory
Management in MPSoC Platforms

Arindam Mallik1, Stylianos Mamagkakis1, Christos Baloukas2, Lazaros Papadopoulos2, Dimitrios Soudris2, Sander Stuijk3,
Olivera Jovanovic4, Florian Schmoll4, Daniel Cordes5, Robert Pyka5, Peter Marwedel5, François Capman6, Séverin Collet6,

Nikolaos Mitas7, Dimitrios Kritharidis7
1IMEC vzw, Belgium (arindam, mamagka)@imec.be; 2Institute of Communication and Computer Systems, Greece

(dsoudris@microlab.ntua.gr, cmpalouk@ee.duth.gr); 3Eindhoven University of Technology, Netherlands (s.stuijk@tue.nl);
4TU-Dortmund, Germany (florian.schmoll@tu-dortmund.de, olivera.jovanovic@udo.edu); 5Informatik Centrum Dortmund,

Germany (marwedel, pyka, cordes)@icd.de ; 6THALES Communications, France (francois.capman,
severin.collet)@fr.thalesgroup.com; 7INTRACOM Telecom, Greece (nmitas, dkri)@intracom.gr

1. INTRODUCTION
Mobile, intelligent devices that are able to deliver communication
services and multimedia content anytime, anywhere are the
dominant players in the field of embedded systems. These systems
combine many different streaming applications (e.g., H.264-AVC,
JPEG2000, WiMax) in a single system. The basic characteristic of
these applications are typically large computational requirements
and intensive data transfer and storage needs. As a result, the
primary platform for such applications is Multiprocessor Systems-
on-Chip (MPSoCs). These MPSoCs can deliver the computational
power required by novel applications. Modern MPSoCs contain a
complex memory hierarchy that allows applications to meet their
data transfer and storage requirements. However, it brings the
additional challenge to the system designers to efficiently map
applications onto processors and memories. The design choices
have a large impact on the energy consumption and memory
footprint of the final system. This in the end has a direct impact on
the system cost and the battery lifetime of the system, i.e., the user
experience.

The basic constraints for MPSoC mapping can be categorized as
follows:

• Parallelization of the sequential application code.

• Optimization of the static and dynamic data structures for
efficient and intelligent utilization of the memory hierarchy.

• Mapping of the parallelized source code onto the
computational and storage resources available in the MPSoC
platform.

The MNEMEE project [1] addresses the aforementioned
challenges by introducing a novel tool flow that integrates several
state-of-the-art source-to-source optimization methodologies and
tools. It provides a methodology to automatically parallelize the
source code of an application. It also optimizes the static and
dynamic data structures in the source code such that they can
efficiently use the memory hierarchy in an MPSoC. Finally, the
tool flow maps the parallelized source code onto the processors
and memories in an MPSoC. Many of the methodologies that are
used in the tool flow are based on multi-objective exploration
strategies. This allows designers to make design trade-offs and it
makes product customization at design-time much easier. The
MNEMEE tool flow provides a completely automated trajectory
to map sequential applications onto an MPSoC while exploiting
its memory hierarchy. The primary objective is to reduce the
energy consumption and design-time of the new embedded
system.

2. MNEMEE TOOLFLOW
The MNEMEE tool flow is shown in Figure 1. The flow takes
sequential C source code of an application as input. In several
steps it parallelizes and optimizes this C code for implementation
onto an MPSoC.

Figure 1 - MNEMEE tool flow

The first step optimizes, based on the access pattern, the dynamic
data structures in the original source code. It changes the
implementation of all dynamic data structures like dynamic
arrays, linked lists and trees, based on the Dynamic Data Type
Refinement (DDTR) methodology [2]. The parallelization tool [3]
receives as input the sequential source code that has already been
optimized in step 1. Step 2 must decide how the sequential
application source code will be parallelized. It uses an integer
linear programming (ILP) based approach to partition the
application into several concurrently executed tasks. Step 3
implements this parallelization, i.e., it transforms the source code.
The result of the optimization is a transformed parallelized

application with data copies and block transfers explicitly
expressed in the source code, automatic handling of
synchronization of data, and a mapping of the data and copies to
the various memory layers [4]. Step 4 performs a similar
optimization on the dynamic data structures. The next step maps
the parallelized application onto the processors and memories in
the MPSoC. For the mapping step, the toolflow offers two
alternatives. The user can exploit the dynamic behavior of an
application in order to save resources using the scenario-aware
mapping techniques [5]. Alternatively, the main objective for
mapping could be to optimize the energy consumption of the
memory subsystem by opting for the memory-aware mapping.
The scratchpad memory allocation tool (step 6) is the last step in
the MNEMEE tool flow. It finalizes the mapping decisions for the
data objects that are used in the application. Earlier tools have
provided hints on the mapping of the data structures onto the
memories. The step can take full advantage of all mapping
decisions and optimizations performed in earlier steps of the flow.
The tool flow combines a large number of different tools in a
single framework. To achieve the required level of integration, the
tool flow has been build using an existing compiler development
framework, ICD-C, in combination with the MACC framework.
The latter framework offers a structured method to integrate
different optimization and analysis tools. This framework was
partially developed in this project [6]. Furthermore, a graphical
user interface was developed to enhance the usability of the tool
flow.
Since every step of the tool flow is fully automated, it enables the
designer to perform an optimal non-overlaying memory allocation
with almost no effort while significantly reducing the design time
for embedded systems.

3. USE CASES FOR INDUSTRY
The evaluation of an automated toolflow can only be successfully
evaluated by actual use of it in an industrial setup. For the
MNEMEE toolflow, it has been evaluated through the
development of two industrial partners for different target
application domains, namely multimedia and communications.
Both examples demonstrate the integration of the MNEMEE tools
into their design flow, emphasizing the automation achieved.

Thales Communications, France (TCF)’s targeted application is
based on NATO standard STANAG 4591 implementing the
enhanced Mixed Excitation Linear Predictive (MELPe) algorithm
at 2400, 1200 and 600 bit/sec. The speech signal is sampled at 8
kHz. At 2400bits/s, the frame length of the input signal is 22.5 ms,
where at 1200 bits/sec and 600 bits/sec three and four consecutive
frames (respectively) are grouped into a super-frame. The
resulting super-frame is jointly quantized to obtain high coding
efficiency. The targeted functionality is an integrated real-time
solution of the different modes allowing dynamic switches
between the different rates on the selected hardware platform. The
target platform is an OMAP L137 provided by Texas Instrument
which is a heterogeneous MPSoC with an ARM processor and a
DSP.

In the framework of MNEMEE, Intracom Telecom (ICOM)
targets the IEEE 802.16e system, widely known as Mobile
WiMAX. IEEE 802.16e is a broadband wireless solution that
enables convergence of mobile and fixed broadband networks
through a common wide-area broadband radio access technology
and flexible network architecture. With a fast air link, its
asymmetric downlink/uplink capability, a fine resource

granularity and a flexible resource allocation mechanism, Mobile
WiMAX is designed to meet QoS requirements for a wide range
of data services and applications. The selected platform for
Intracom is MSC8144 processor, a high-performance multicore
DSP from Freescale that targets wireline and wireless
infrastructure applications. This multicore DSP combines four
fully-programmable StarCore™ DSP cores, each running at up to
1 GHz with an architecture highly optimized for voice, fax, video,
and data compression processing. An internal QUICC
Engine™ dual-RISC packet-processor supports multiple
networking protocols to guarantee reliable data transport over
packet networks while significantly offloading such processing
from the DSP cores.

Henceforth, both homogeneous and heterogeneous MPSoC
platforms were used for the MNEMEE toolflow evaluation. Also,
the different nature of application domain helped to look at both
functional and data-level parallelization.

3.1 Experimental Results
For TCF, optimization tools as designed and developed within
MNEMEE project are of great importance in order to fully benefit
from emerging MPSoC architectures. If it remains a challenge to
provide a fully automated optimization tool flow with optimal
performance, the results obtained within MNEMEE demonstrate
that a significant step has been achieved. In the case of ICOM,
participation in the MNEMEE project enabled the company to
have early access to innovative technology that can have a real
impact in the design of contemporary complex embedded
systems. The benefits offered by the tools have been evaluated
using the platform described earlier. In some cases, designers had
to use analytical models to estimate energy consumption as those
numbers were not directly available from the platform. The
evaluation showed significant gains in design time, memory
bandwidth, memory footprint, and energy consumption as
summarized in Table 1. The benefits observed were dependent on
the applications as well as the platform used. The details of the
results are available in the project homepage [1].

Table 1: Summary of results for use-cases

 TCF ICOM

Memory Footprint 30 % ~1%

Memory Bandwidth No gain 17%

Energy Consumption 52 % Not measurable

Design Time 76 % 38%

4. REFERENCES
[1] MNEMEE Project (IST-216224) - http://www.mnemee.org/.
[2] C. Baloukas et al., “Optimization methodology of dynamic data

structures based on genetic algorithms for multimedia embedded
systems,” in Journal System Software, 82, 4 (April 2009), p. 590-602.

[3] D. Cordes, P. Marwedel and A. Mallik. Automatic Parallelization of
Embedded Software Using Hierarchical Task Graphs and Integer Linear
Programming, CODES+ISSS'2010, October 2010

[4] Y. Iosifidis, A. Mallik, et al., “A Framework for Automatic
Parallelization, Static and Dynamic Memory Optimization in MPSoC
Platforms” in the Design Automation Conference, DAC 10, June 2010

[5] Stuijk, M.C.W. Geilen and T. Basten, “A Predictable Multiprocessor
Design Flow for Streaming Applications with Dynamic Behaviour” in
DSD 10, September 2010.

[6] R. Pyka, F. Klein, et al. “Versatile System-level Memory-aware Platform
Description Approach for embedded MPSoCs”, LCTES 2010, April 2010

