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Abstract. Synchronous Data Flow Graphs (SDFGs) have proved
to be a very successful tool for modeling, analysis and synthe-
sis of multimedia applications targeted at both single- and multi-
processor platforms. One of the most prominent performance con-
straints of concurrent real-time applications is throughput. For
given actor execution times, throughput can be verified by ana-
lyzing the SDFG models of such applications, for instance using
maximum cycle mean analysis or state space analysis. In various
contexts, such as design space exploration or run-time reconfigura-
tion, many fast throughput computations are required for varying
actor execution times.

We present methods to compute throughput of an SDFG where
actor execution times can be parameters. The throughput of these
graphs is obtained in the form of a function of these parameters.
Recalculation of throughput is then merely an evaluation of this
function for specific parameter values, which is much faster than
the standard throughput analysis. We propose three different algo-
rithms for parametric throughput analysis and evaluate these algo-
rithms experimentally, showing the feasibility of the approach and
showing that a divide and conquer algorithm performs best.

1 Introduction
Synchronous Data Flow Graphs (SDFGs, [10]) are a use-

ful means for modeling and analysis of applications such as
DSP applications and concurrent real-time multimedia sys-
tems [10, 14, 16, 19]. SDFGs have been used for both single
and multiprocessor platforms. The main aim in such systems
is realizing a predictable performance. SDFGs are equipped
with several timing analysis techniques, which are used for
evaluating performance metrics of such applications, most
importantly throughput.

An SDFG is a graph where nodes are called actors and
edges are called channels. Actors typically model applica-
tion tasks. The worst case execution times of tasks are as-
signed to actors as their execution times and edges model
data communication and control dependencies.

Throughput analysis is a crucial indicator of performance
used both at design time (e.g., in design space exploration,
DSE) and run-time (e.g., resource management). In DSE
many different settings of the system are explored [17, 18],
which leads to many throughput calculations. At run-time,
prediction of throughput is required for proper assignment
of resources to applications during reconfigurations [15]. In
both cases, throughput calculations need to be as fast as pos-
sible with very strict time and resource requirements for run-
time applications. Another application example is the study
of the impact of variation of execution times under produc-
tion process variations on throughput [5].

Throughput analysis has been studied in the literature
[2, 7] and different methods have been proposed. The ex-
ecution times of actors are assumed to be fixed numbers in
all of the proposed methods. Therefore, any change in the
execution time of one or more actors of an SDFG leads to
a recomputation of the throughput from scratch. However,
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Figure 1. An example SDFG Gex .
calculating the throughput is expensive in many cases, and
has exponential time complexity in the worst case.

In this paper, we consider parametric SDFGs, a general-
ization of SDFGs where actors can have parameters as their
execution times. We study three algorithms to calculate the
throughput of a parametric SDFG as a simple function of the
parameters. The resulting function gives the throughput of
the SDFG for any value in the range of the parameters. The
first two algorithms are variants of the standard throughput
analysis algorithms for SDFGs for parametric actor execu-
tion times. The third algorithm is based on a divide and con-
quer (DC) strategy. In the experimental results, we compare
the advantages and the drawbacks of these algorithms. The
DC algorithm turns out to be the most efficient in practice.

Section 2 introduces synchronous data flow graphs, and
their parametric extension. Sections 3, 4 and 5 explain the
different methods for finding the throughput of parametric
SDFGs. Comparison of the methods is done in Section 6.
Section 7 concludes. Proofs can be found in [8].

2 Synchronous Data Flow Graphs (SDFGs)
2.1 Basic Definitions

SDFGs are a natural means to capture concurrent DSP
and multimedia applications. Tasks are modeled as actors
and channels represent data dependencies. The execution of
an actor is referred to as a firing, the data items communi-
cated between actors are modeled by tokens, and the amounts
of tokens produced and consumed in a firing are referred to
as rates. Channel capacities are unbounded, i.e., channels
can contain arbitrarily many tokens (but limited capacities
can be modelled in the graph). To make SDFGs amenable to
timing analysis, usually fixed execution times are associated
to actor firings.

Fig. 1, shows an example of a timed SDFG with two ac-
tors, a and b, with execution times 2 and 3 respectively, an-
notated inside the actors. The channel rates in this example
are all one. Tokens in channels are shown by black dots.

We assume a set Ports of ports, and with each port p ∈
Ports we associate a positive finite rate Rate(p) ∈ IN \{0}.
An actor a is a tuple (In ,Out, τ) consisting of a set In ⊆
Ports of input ports (In(a)), a set Out ⊆ Ports of output
ports (Out(a)) with In ∩ Out = ∅ and τ ∈ IR representing
the execution time of a (τ(a)). An SDFG is a tuple (A, C)
with a finite set A of actors and a finite set C ⊆ Ports2 of
channels. The source of every channel is an output port of
some actor; the destination is an input port of some actor. All
ports of all actors are connected to precisely one channel.

The execution of an actor is defined in terms of firings.
When an actor a starts its firing, it removes Rate(q) tokens
from all (p, q) ∈ C, q ∈ In(a). The firing then continues
for τ(a) time and when it ends, it produces Rate(p) tokens



on every (p, q) ∈ C, p ∈ Out(a). An SDFG with all port
rates equal to one is called a Homogenous Synchronous Data
Flow Graph (HSDFG). Any SDFG can be converted [16] to
an equivalent HSDFG. However, this conversion may lead to
an exponential explosion in the size of the SDFG [13].

Not all SDFGs with arbitrary rates are of practical in-
terest, but only those which comply with an easy to verify
condition called consistency [10]. Inconsistent graphs either
deadlock or are unbounded [6].

2.2 Throughput
An SDFG can have more than one execution. Firing every

actor as soon as it gets enabled, self-timed execution, leads
to the highest achievable throughput [16].

Definition 1 [Actor Throughput] The throughput Th(a) of
an actor a of an SDFG is defined as the average number of
firings of a per time unit in the self-timed execution.

For brevity, we focus on strongly connected SDFGs. The
extension of the results to general graphs can be done by
combining the results of the strongly connected components
of the SDFG [6].

In the literature, there are two different methods for cal-
culating throughput of an SDFG.

HSDFG method: It is proven in [11] that the through-
put of an SDFG is equal to the inverse of the maximum cy-
cle mean (MCM) of the equivalent HSDFG [16]. The cycle
mean λ of a cycle of an HSDFG is defined as the total execu-
tion time of the cycle over the number of tokens in that cycle.
There are efficient algorithms for calculating the MCM of an
HSDFG (see [2] for an experimental survey). However, the
conversion of an SDFG to an equivalent HSDFG may lead
to an exponential explosion in the size of the graph.

State-space method: Self-timed execution of an SDFG
ends in a repetitive sequence of actor firings, the periodic
phase of execution. The throughput of an actor can be calcu-
lated by dividing the length of the period by the number of
firings of the actor in one period.

[7] compares both methods experimentally showing that
the state-space method outperforms the HSDFG method.

2.3 Parametric SDFGs
A parametric SDFG is an SDFG with at least one actor

with a parameter as its execution time. For example, Gex

of Fig. 1 becomes a parametric SDFG, Gpar
ex , if we assume

that the execution times of a and b are given by parameters
p and q. We are interested in the throughput of a paramet-
ric SDFG in the form of a function of the parameters. The
domain of this function, the set of values that the parameters
can take, is called the parameter space of the graph, which is
d-dimensional when the number of parameters is d. Evaluat-
ing this function for a point in the parameter space is compu-
tationally much cheaper than redoing any of the traditional
throughput calculations for those parameter values.

We know that the throughput of an SDFG corresponds
to the inverse of the maximum cycle mean of its equivalent
HSDFG. The cycle mean of each cycle equals the sum of the
execution times of actors in the cycle divided by the num-
ber of tokens on the cycle. Consequently, any cycle mean
in a parametric HSDFG is a linear combination of param-
eters with positive coefficients plus a constant, represent-
ing the non-parameterized actors in the cycle, which is 0

when there are no such actors. We call these linear com-
binations cycle mean expressions. 1/3p + 1/3q + 0 is a
cycle mean expression of Gpar

ex . A cycle mean expression
is represented by a vector e whose elements are the coef-
ficients of the linear expression, e.g., (1/3, 1/3, 0) in the
example. If cycle c has cycle mean expression ec, then its
cycle mean, λc, for each point p ∈ IRd in the parameter
space can be calculated by λc(p) = ec · (p, 1), where “·”
is the inner product of two vectors. For example, for Gpar

ex ,
λ(1, 2) = (1/3, 1/3, 0) · (1, 2, 1) = 1. We denote the eval-
uation of a point p in a cycle mean expression ec, by ec(p).
The maximum cycle mean of an SDFG for each point p in
the parameter spaces denoted by λ∗(p), can be calculated via
λ∗(p) = maxc∈cycles(G) ec(p).

Note that λ∗ is a continuous function as it is the com-
position of continuous functions max and ec. Any expres-
sion that has the maximum cycle mean value for some point
is called a maximum cycle mean expression (mcme). Any
mcme that has the maximum cycle mean value for some
point for which no other mcme has the maximum value is
a dominating mcme. It can be shown that the dominating
mcmes are sufficient to compute λ∗. The other cycle mean
expressions, including the other mcmes, are called redundant
expressions.

Definition 2 [DCMS] Given an HSDFG, the dominating cy-
cle mean set (DCMS) is the set of dominating mcmes.

Note that when we talk about the DCMS of an SDFG we re-
fer to the DCMS of its equivalent HSDFG. Conversion of a
parametric SDFG to an equivalent HSDFG can be done us-
ing the algorithm for non-parametric graphs, since execution
times have no impact on the conversion algorithm. We can
now express λ∗ as λ∗(p) = maxe∈DCMS e(p).

Thus, throughput analysis for a parametric SDFG can be
done by finding its DCMS. This minimum set can be ob-
tained from the set of all expressions/mcmes by removing
all redundant expressions. Checking the redundancy of an
expression is equivalent with checking the infeasibility of
a linear system [4]. However, since in our case all the co-
efficients of expressions are positive, there is a fast way to
remove a large part of the redundant expressions. An ex-
pression is redundant if all of its coefficients are less than
or equal to those of another expression. In other words, if
we look at the vectors e of the expressions, then all points
(expressions) are dominated by the pareto set of points and
all non-pareto points are redundant expressions. We denote
e1 4 e2 to express that e1 is dominated by e2. A pareto
dominance test is much easier than the general redundancy
checks. Although finding the pareto set of expressions of-
ten removes a large part of the redundant expressions, the
pareto set is not necessarily the DCMS. For example, sup-
pose our set of expressions is {p, q, (p + q)/3}, or, in terms
of vectors {(1, 0, 0), (0, 1, 0), (1/3, 1/3, 0)}. Even though
(1/3, 1/3, 0) is a pareto point (it is not dominated by either
(1, 0, 0) or (0, 1, 0)), there is no point in the parameter space
where (p + q)/3 has a larger value than all other expres-
sions, making it redundant. Nevertheless, pruning the set of
expressions via a pareto dominance test before applying any
general redundancy test is worthwhile.

Existing methods of calculating throughput for SDFGs
are not directly applicable to parametric SDFGs. The ef-
ficient MCM analysis algorithms which work on HSDFGs
cannot be applied on parametric SDFGs. The conversion of



SDFGs to HSDFGs can easily be adapted though. Therefore,
a naive MCM analysis leads to enumerating all simple cycles
of the HSDFG and collecting the expressions in the DCMS.
Also, the state-space method of [7] cannot be directly used
for parametric throughput analysis, but it can be generalized.
In the remainder, we introduce two variations of the existing
methods and one new method for calculating the throughput
of a parametric SDFG.

3 HSDFG Method
This section shows how a parametric throughput can be

calculated using the conversion of an SDFG to an HSDFG.
The MCM of an HSDFG can be found by enumerating all
simple cycles. The cycle mean of each cycle can be calcu-
lated by summing up all of the execution times of actors in
the cycle and dividing it by the number of tokens on the cy-
cle. Finally, the DCMS of the parametric HSDFG is obtained
by removing the redundant expressions as explained in Sec-
tion 2.3. While enumerating the cycles and calculating their
cycle mean expressions only the pareto points are kept.

The example in Fig. 1 is already an HSDFG, so no con-
version is needed. This graph has three simple cycles (a, a),
(b, b) and (a, b, a) with one, one and three tokens respec-
tively. Therefore, the cycle mean expressions are p, q and
(p + q)/3. Since all expressions are pareto points in the pa-
rameter space, no points get eliminated in the pareto test.

In the next step of the algorithm, we see that (p + q)/3
is redundant. This follows from the infeasible linear system
{(p + q)/3 > p, (p + q)/3 > q}. Therefore, DCMS (G) =
{p, q} and λ∗(p, q) = max{p, q}.
Algorithm HSDFG method(G)
Input: A strongly connected parametric SDFG G
Output: DCMS of G
1. DCMS = ∅
2. Convert G to equivalent HSDFG H
3. for each simple cycle c in H
4. do if ec 64 ei for all ei ∈ DCMS
5. then remove all ei from DCMS for which ei 4 ec

6. insert ec in DCMS
7. Remove redundant expressions from DCMS
8. return DCMS

Note that finding the minimum set of dominating expres-
sions in the whole parameter space (Line 7 of the algorithm)
has been solved efficiently in the context of determining the
upper envelope of pairwise linear functions [3]. Since the
time spent on this part of the algorithm is negligible com-
pared to the first part, we used the straightforward redun-
dancy check explained above in our experiments.

4 State-Space Method
State-space-based throughput calculation for SDFGs [7]

avoids the conversion to HSDFGs. This section generalizes
the state-based method to calculate the throughput of a para-
metric SDFG.

4.1 State Space
The behavior of an SDFG can be defined in terms of a

state transition system.
Definition 3 [State] The state of a timed SDFG (A, C) is a
tuple (γ, υ). γ associates with each channel the amount of
tokens present in that channel in that state. To keep track
of time progress actor status υ : A → IN IR associates with
each actor a ∈ A a multiset of numbers representing the
remaining times of different active firings of a.

An actor consumes its required input tokens at the start of its
firing, as soon as sufficient tokens are available. Output is
produced at the end of the firing. Since channels have infi-
nite capacity, sufficient space is always available. If we are
interested in throughput, and not for example in functional
analysis, we abstract from the actual communicated data.

In Fig. 1, the initial state is ((1, 1, 1, 2), ({}, {})), where
the first vector shows the token distribution of channels,
starting from the self-loop channel of a and continuing coun-
terclockwise. The second vector, υ, is the vector of multi-
sets of the remaining execution times of a and b. Initially,
both multisets are empty. At this point, both a and b are
enabled and they start their firings, changing the token dis-
tribution vector to (0, 0, 0, 1) and the vector of remaining ex-
ecution times υ to ({2}, {3}). No more actor firings can
occur before actor a finishes. So the time goes forward
for 2 time units. Completing the firing of a leads to state
((1, 1, 0, 1), ({}, {1})). Firing actor a once again then re-
sults in ((0, 1, 0, 0), ({2}, {1})), after which time progresses
for 1 time unit, b completes its firing, and so on.

We generalize this model to parametric SDFGs. In the
state space of a parametric SDFG, υ contains parametric
elements. Since the relations between parameters are not
known, we cannot always be sure which firing finishes first.
The next example shows how we solve this problem.

The parametric state space of Gpar
ex with execution times

p and q for actors a and b is given in Fig. 2. To simplify
the figure, the details of states are not shown. Each dot rep-
resents a state. The start and end of firings in each state is
denoted by the actor name with subscript s or e respectively.
For example as shows the start of a firing of actor a.

After starting firings of a and b, υ changes to ({p}, {q}).
At this stage, a time step equal to the smallest among all el-
ements in the multisets of υ must be taken, but the relation
between p and q is unknown. Therefore, we split the param-
eter space into two exclusive parts with p < q and p > q.
For each of these parts, the state space continues in a sepa-
rate branch. Since our final goal is finding λ∗ and since λ∗ is
continuous, we do not need to consider the case p = q as the
cycle means of this part of the parameter space are covered
by expressions obtained by both the cases p < q and p > q.

In case p > q, the vertical arrow in the figure, after a time
step as large as q, b finishes its firing. So γ and υ become
(0, 0, 1, 2) and ({p − q}, {}). The execution proceeds by a
time step as large as p−q which leads to the end of the firing
of a and consequently the start of new firings of actors a and
b, changing υ to ({p}, {q}). Since in this branch we already
assumed that p > q, no new partitioning of the parameter
space is needed and the execution proceeds by a time step as
large as q. The state space in this branch ends in a periodic
phase repeating the last two steps. From the periodic phase,
we can compute the throughput. The length of the period is
(p−q)+q = p and during the period only one firing of actors
a and b occurs. Therefore, the throughput is 1/p if p > q.

We proceed for the case where p < q. After a time step as
large as p, actor a finishes its firing and starts a new firing. So
γ and υ become (0, 1, 0, 0) and ({p}, {q− p)}) respectively.
At this state, the parameter space needs to be split again into
two parts: p < q−p and q−p < p. Note that the state space
only continues if the newly added constraints do not conflict
with the previously made assumptions in the earlier states. In
this case, both p < q − p and q − p < p are compatible with
p < q. The case p < q − p (2p < q) gets periodic in a few
steps with throughput 1/q. The other case requires a new



partitioning of the parameter space. Each branch continues
till either it ends up in the periodic phase or the constraint set
contains conflicting constraints. As shown in the figure the
state space of the example continues to repeat a similar pat-
tern. All subsequent branches have the same throughput 1/q.
We can conclude that, as before, DCMS (Gpar

ex ) = {p, q} for
the whole parameter space.

From the example, we can see that the multisets in υ con-
tain linear combinations of parameters throughout the exe-
cution of the graph. We also observe that the equations par-
titioning the parameter space need to be stored in the states.

Definition 4 [Parametric State] The state of a parametric
SDFG (A, C) is a tuple (γ, υ, Φ). γ associates with each
channel the amount of tokens present in that channel in that
state. Actor status υ : A → INT associates with each actor
a ∈ A a multiset of linear combinations of actors execution
times, each such combination formally denoted by a vector t
in T = ZZd containing the coefficients of the linear expres-
sion t > 0. The state constraint set Φ is a subset of T , which
contains all of the assumptions on the parameters made so
far.

In Fig. 2, the horizontal branches of the state space
continue to partition the parameter space into ever smaller
pieces. The further splitting of the parameter space does not
result in the infeasibility of the system of inequalities. This
shows that the state space can be infinite for graphs with pa-
rameters that can have real values.

To make the state space finite, we confine the state space,
by considering only integer values for parameters. Further-
more, we bound the parameter values by lower- and upper-
bounds. These two assumptions do not impose any limitation
in practice as integers can be as exact as needed by choos-
ing smaller units for execution times. Ranges can also be as
wide as required. Choosing the values of parameters from
bounded integers make the state space finite.

4.2 Throughput Calculation
Algorithm coverStateSpace shows the state-space method

for the throughput calculation of a parametric SDFG. It
receives a parametric SDFG G and an initial state s =
(γ, υ, Φ) as arguments and returns the DCMS of G. It works
recursively in a depth first search fashion, branching the pa-
rameter space as explained.

The algorithm uses procedure nextState which accepts pa-
rameter expression t (an element of a multiset in υ) as a
clock step, thereby assuming that t is the minimum time that
should elapse before any event can occur. Then, nextState
returns the next state n = (γn, υn, Φn) if Φn contains
integer solutions within the given parameter bounds. For
cases where Φn lacks integer solutions or it has no solution
INT INF and INF are returned respectively. nextState also
marks the current state as a branching state (BS) or a non-
branching state depending on whether the parameter space is
split.

If the algorithm is invoked for state s, for every element
t ∈ ∪a∈Aυ(a), a new branch is explored, the procedure
nextState is called and the new state n = (γn, υn, Φn) is cre-
ated. We know that none of the states in the periodic phase
can be branching since the constraints in the sets of the recur-
rent states should be identical. Therefore, the search for the
recurrent state only occurs in nBList , which stores the non-
branching states visited since the last branching state. If Φn

is feasible and n is non-branching, then the algorithm checks
whether the state is recurrent (has already been visited) by
comparing it with already stored non-branching states in
nBList . If the state is recurrent, the algorithm calculates
the cycle mean expressions, by calling calcCMExp. The ob-
tained expression, which is always a dominating mcme, is
stored in DCMS. Then the algorithm returns and continues
at the last stored branching state if any is left. If n is not
recurrent, it is stored in nBList and the algorithm is invoked
recursively for n.

In case n is a branching state and integer solutions are left,
the algorithm is invoked recursively after clearing nBList . If
Φn is not infeasible but contains no integer solutions, some
integer solutions may still exist on the border of Φn. Since
we only consider strict conditions in Φn, we need to account
for these points too. For finding mcmes of these points, the
Divide&Conquer algorithm that is explained in the next sec-
tion is called. This algorithm finds the mcmes of all points in
the region including integer solutions on the border of Φn.

The state equivalence check used in the algorithm is a syn-
tactical check except for the constraint sets which are com-
pared based on their integer solutions within the parameter
ranges.
Algorithm coverStateSpace(s, G)
Input: A parametric state s = (γ, υ, Φ)
Input: A strongly connected parametric SDFG G = (A, C)
Output: DCMS of G
1. for all t ∈ ∪a∈Aυ(a)
2. do n = (γn, υn, Φn) = nextState(t, s, G);
3. if (n 6= INT INF and not BS )
4. then if (n ∈ nBList )
5. then e = calcCMExp(nBList , n);
6. insert(e,DCMS );
7. else push(nBList , n);
8. coverStateSpace(n, G);
9. else if (n 6= INT INF )
10. then reset(nBList );
11. coverStateSpace(n, G);
12. else if (n 6= INF )
13. then Divide&Conquer(G, Φ);

5 Divide-and-Conquer Method
If we have a closer look at the parts of the parameter space

that share the same mcme, we observe that these parts form
convex polyhedra.

Proposition 5 {p ∈ IRd | λ∗(p) = e(p)} is a convex poly-
hedron for any mcme e.

We call these convex polyhedra throughput regions. Fig. 3
shows two throughput regions for the running example, cor-
responding to e1 = q and e2 = p within a rectangular area
between corner points v1, . . . , v4. The following corollary
directly follows from Proposition 5.
Corollary 6 If for every corner point v of an arbitrary poly-
hedron of the parameter space, λ∗(v) = e(v) for some mcme
e, then for every point p in that region, λ∗(p) = e(p).
Hence, the parameter space is composed of throughput re-
gions. Suppose e is the mcme of an arbitrary interior point
of a convex polyhedron C. By comparing the evaluation of e
for every vertex (corner point) of C and the actual maximum
cycle mean value of that vertex, we can detect whether C is
a subset of a single throughput region or whether it is cov-
ered by parts of more regions. If for any vertex, these two
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Figure 3. Divide-and-Conquer Method.

compared values are different, then C is covered by more
than one throughput region; otherwise it is part of a single
throughput region (namely that of dominating mcme e). This
idea can be used in a divide-and-conquer method if we add
a partitioning strategy, to be applied after detecting a region
with more than one mcme. Partitioning continues till all the
created regions have a single mcme. All obtained mcmes
together form the DCMS.

Since λ∗ is continuous, the mcmes of two neighboring
regions are valid for all points on the border of the re-
gions. This means that for any two neighboring regions with
mcmes e1 and e2, their border is characterized by the equa-
tion e1(p) = e2(p). We address this (hyper) plane as the
splitting plane. In other words, if we have two mcmes for
two neighboring regions, we can directly calculate the bor-
der of the two regions. The following proposition shows that
a splitting plane obtained from two mcmes of a region always
passes through the region and splits the region into smaller
ones.
Proposition 7 Let e1 and e2 be mcmes associated to points
p1 and p2 respectively. If e1(p1) 6= e1(p2) and e2(p1) 6=
e2(p2), then points p1 and p2 are on opposite sides of the
plane characterized by equation e1(p) = e2(p).
Using Proposition 7 and Corollary 6 we have our complete
algorithm if we can find the mcme of a point in the parame-
ter space. This is achieved by adapting the state-space explo-
ration of Section 4. The difference with the generic paramet-
ric state-space method is that the evaluation of the expres-
sions in the constraint set are known when searching for an
mcme for a concrete point and no branching is required.

Some points in the parameter space may have more than
one mcme, if different HSDFG cycles happen to be simulta-
neously critical. In that case, we may get an expression from
this method that does not correspond to any real cycle mean
expression of the graph because it contains fragments of dif-
ferent cycles. However, our partitioning strategy only works
if the expressions relate to real cycle means. So we need
to avoid obtaining such expressions. We show that this is a
‘coincidence’, that only happens on the border of throughput
regions and can be avoided by selecting a random point from
the parameter space.
Proposition 8 A randomly selected point from the parame-
ter space has only one mcme with probability one.

Every convex region can be represented in two different
ways using half spaces (H-representation) or vertices of the
convex region (V-representation) and these two representa-
tions are convertible in a very efficient way [4]. In our algo-
rithm, we use both representations, the V-representation for

finding the vertices, and the H-representation for calculating
the splitting plane. Algorithm Divide&Conquer, given be-
low, receives G and a convex region CR as input. Initially,
CR is a d-dimensional box obtained by the ranges of the pa-
rameters. In Line 4 and 5, all the cycle mean values of all
the vertices of CR are checked for the validity of the mcme
obtained for a random point rp in the interior of CR. Th(vi)
is the throughput of G for point vi, obtained using a standard
throughput calculation. In case the mcme of rp is not valid
for a vertex vi, then the splitting plane obtained from mcmes
of vi and rp splits CR (illustrated in Fig. 3 for the example
with v3 in the role of vi) by adding half-spaces characterized
by vectors erp−evi

and evi
−erp to CR. Then the algorithm

is invoked for both subregions in Lines 9 and 10. Procedure
ranCornerExpr receives a vertex vi, expression erp , and rp.
It produces the mcme valid in vi which will be different from
erp . Note that inside this procedure, instead of using vi it-
self which is typically on the border between throughput re-
gions, for the reason explained, a randomly selected point
in its neighborhood on the line through vi and rp is used
instead. The algorithm is guaranteed to terminate, because
there is a finite number of mcmes and hence a finite num-
ber of borders between regions exists that can be used for
splitting.

Algorithm Divide&Conquer(G, CR)
Input: A strongly connected parametric SDFG G
Input: A convex region CR
Output: DCMS of G
1. Let rp be a random point in CR;
2. erp ← findMCME (G, rp);
3. insert(erp ,DCMS);
4. for all vertices vi ∈ CR
5. if (erp(vi) 6= 1/Th(vi))
6. then evi

= ranCornerExpr(vi, erp, rp);
7. CR1 ← CR ∪ {erp − evi

};
8. CR2 ← CR ∪ {evi

− erp};
9. Divide&Conquer(G, CR1);
10. Divide&Conquer(G, CR2);

6 Experiments
We have evaluated the execution times of our algorithms

using SDFG models of seven real applications. We used
the benchmark of [7], consisting of an H.263 decoder, an
MP3 decoder, a modem, a satellite receiver, and a sample-
rate converter. We further added an H.263 encoder [12] and
an MP3 playback application [19]. In Divide&Conquer, the
CDDLib library [4] is used for all polyhedra operations. In
coverStateSpace, all operations related to linear inequality
systems have been done using LPSolve [1]. All experiments
were performed on a P4 PC running at 3.4 Ghz.



Table 1. Experimental results
#pa #act rep 110% 150%

st[s] dc[s] #e st[s] dc[s] #e
H.263 decoder 4 4 1190 0.854 0.590 1 0.862 0.589 1
H.263 encoder 5 5 201 0.119 0.212 1 0.241 0.211 1
modem 7 16 48 51 0.568 1 168 0.570 1
MP3 decoder 8 14 14 0.196 0.889 1 0.253 0.896 1
MP3 playback 1 4 10601 8.643 1.268 1 17 8.177 2
sample-rate conv. 4 6 612 102 1.040 2 266 1.246 2
satellite rec. 9 23 4515 - 480 3 - 450 3

In each graph, to each actor with varying execution times
a parameter has been assigned. Actors with constant exe-
cution times received fixed execution times. In cases where
more than one copy of an actor existed in the SDFG, the
same parameter was dedicated to all copies. Two experi-
ments with the same parameter set and different ranges for
the parameters have been carried out. We used two dif-
ferent ranges for parameters with the same lower-bounds
and upper-bounds as large as 110% and 150% of the lower-
bounds. These ranges were chosen in line with the worst-
case estimates of the execution times of the benchmarks, if
any were given. The results of these experiments are shown
in Table 1 in two different columns. For each experiment,
for each graph, the time for both the state-space method (st)
and divide-and-conquer (dc) in seconds, as well as the num-
ber of expressions in the DCMS (#e) are shown. In all cases,
only very few dominating mcmes (up to 3) have been found,
which is a good indication for the simplicity of the resulting
throughput expression.

The number of parametric execution times (#pa), the
number of actors (#act) and the sum of their repetition vec-
tor entries (rep, which is also the number of actors in the
equivalent HSDFG) of each graph is shown. Since the num-
ber of cycles in the equivalent HSDFG directly corresponds
to the number of different cycle mean expressions, the sum
of repetition vector entries is an important indication for the
expected run-time, besides the actor and parameter counts.

We only compared the Divide&Conquer and coverStateS-
pace algorithms. The reason is that the HSDFG method
works on the HSDFGs, and even though we have imple-
mented the fastest cycle enumeration algorithm [9], the algo-
rithm takes generally too long. It only worked for the MP3
decoder for which it only took few a milliseconds to compute
the DCMS.

The two methods compared in Table 1 are fast in most
cases. The divide-and-conquer method is fast in all the cases.
It is also less sensitive to the ranges of parameters than the
state-space method. However, its execution time does scale
up exponentially with an increasing number of parameters.
However, typically, in practical applications only a few pa-
rameters are needed since the number of actors with varying
execution times is limited and the variations can be captured
by he same underlying parameters.

The state-space method works very fast for applications
like the H.263 decoder, the H.263 encoder, the MP3 play-
back and the MP3 decoder, which have a few actors with
large execution times. In a few cases, it is faster than divide
and conquer. On the other hand, it performs poorly on graphs
whose actors have approximately equal execution times. For
example, for the satellite receiver, the algorithm took more
than a few hours.

Summarizing, the results show that a design-time para-
metric throughput analysis is feasible. Considering the re-
sults in, for example, the context of a run-time resource-
or quality management application as proposed e.g. in [15],
it is clear that the processing time and memory usage of a

throughput calculation for concrete values of the execution
time parameters, consisting of an evaluation of the maxi-
mum value of the obtained dominating mcmes, are negligi-
ble compared to the processing time and memory usage of
the typical streaming application. They are in general also
small compared to the processing time and memory usage
of a traditional throughput calculation, which is typically too
expensive to perform at run-time.

7 Conclusion
We have extended throughput analysis of SDFGs to para-

metric SDFGs so that actors can have parameters as their
execution times. The throughput of such graphs is a function
of the parameters. Evaluating these functions is much faster
than traditional throughput analysis methods. We adapted
existing methods for computing throughput to parametric
SDFGs and proposed a new, faster, algorithm.
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