
Efficient Synchronization Methods for LET-based
Applications on a Multi-Processor System on Chip

Gabriela Breaban∗, Sander Stuijk∗, Kees Goossens∗†
∗Eindhoven University of Technology, The Netherlands

{g.breaban,s.stuijk,k.g.w.goossens}@tue.nl
†Topic Embedded Products, The Netherlands

Abstract—Distributed control applications cover a wide range
of areas such as automotive, avionics, and automation. The
Logical Execution Time (LET) Model of Computation (MoC)
was proposed as a formal method to describe the functional and
timing behavior of such applications. However, modern Multi-
Processor Systems on Chip (MPSOC) do not have a shared
notion of time between processors, due to their use of Globally
Asynchronous Locally Synchronous (GALS) architecture. In this
paper we propose two methods (based on FIFO channels and
barriers) to implement time and data synchronization on a
MPSOC. While a barrier synchronizes the execution flows of
tasks at predefined points in their executions, a FIFO is an
asynchronous data communication method between two tasks.
First, they are used to implement LET applications. Next,
we show how dataflow applications and mixed LET-dataflow
applications are supported too. We implemented both methods
on a MPSOC prototyped on a FPGA, and show that the data
synchronization outperforms the related work by 67% in terms
of software overhead.

I. INTRODUCTION

Distributed control applications with real-time constraints
consist of sensors, actuators and a set of computation tasks.
While a traditional distributed system is composed of sev-
eral computation nodes implemented on separate chips and
communicating over a network (e.g. CAN, Ethernet), a Multi-
Processor System on Chip (MPSOC) is also distributed since
the processors communicate via a Network on Chip (NoC) .
The difference however between them is that in the latter one,
processors can use a shared on-chip memory to communicate.

Model-based design [1], [2] introduced a higher level of
abstraction in the systems design flow by using a MoC to
describe the application behavior prior to its implementa-
tion. LET is a MoC for control applications that abstracts
from the physical execution time of application tasks, which
is hardware dependent, and instead characterizes the tasks
relative to the instants when the inputs are read and the
outputs are written [3]. The time between the instant when
the inputs are read and the instant when outputs are written
is called logical execution time. It is fixed and independent
of any physical implementation. This requirement makes the
timing and functional behavior of the application portable and
reproducible, a property which is called time safety.

Several programming models are build based on the LET
paradigm. Giotto [4] requires the LET to be ensured for all
application tasks. PTIDES [5] extends the Discrete Event (DE)
MoC to add the notion of real time at I/O boundaries.

Following the model-based design methodology, every im-
plementation of an application has to preserve the semantics
of the chosen MoC, that is, the behavior of the implemented
application has to be consistent with the behavior specified by
the MoC. The LET semantics require every implementation
to be time safe. A time safe implementation requires a global
notion of time and deterministic inter-task communication.
Achieving a global notion of time poses significant challenges
for GALS MPSOCs, that often feature Dynamic Voltage and
Frequency Scaling (DVFS) and experience clock drift. Next
to this, deterministic communication demands that the data
accessed by multiple parties is handled in a safe manner
that ensures its consistency and timely access. Time and data
synchronization are usually addressed separately. Global time
is obtained via clock synchronization [6], [7], which scales for
large distributed systems, but incurs hardware and/or software
costs for each processor. As for consistent data communica-
tion, the methods reported in literature for multi-processor
systems include lock-based [8] methods and transactional
memory [9] that typically require hardware support.

A. Contribution

LET semantics
LET+DF
semantics semantics

Dataflow (DF)+ DF + LET

Timed

Barrier

Untimed

FIFO

Time and Data

Barriers

DF Graph with

Clock Actor

+ data + time

Up/Down Sample

Barrier

Up/Down Sample

Actor

+ up/down

sample

+ up/down

sample

Time predictable platform

Implementation

Software

Implementation

Hardware

MoC

Fig. 1. Design Flow for LET-Dataflow applications

In this paper we propose two software-only methods that
implement time and data synchronization for a LET-based
application running on a MPSOC. Both methods accommodate
both LET and Dataflow semantics and can support up- and
downsampling scenarios. In this way, the LET semantics can



be ensured for the (I/O) tasks that require strict timing guaran-
tees, while the other tasks, such as intermediate computation
tasks can be started and finished when the data is ready. Our
methods target a single GALS multi-processor platform on
which the processors communicate via shared memory using a
NoC. Figure 1 summarizes and positions the proposed methods
in the design flow context. We evaluate both methods by
conducting experiments on a FPGA platform.

B. Related work

The LET paradigm was not addressed for multi-core sys-
tems until recently. Kluge et al. present in [10] an OS extension
that supports the LET communication semantics, while the
time synchronization is achieved via the NoC. Our contribution
differs since we address time synchronization at SW level on
one hand, thus without any HW cost, and, on the other hand,
we support a more flexible realization of LET that allows tasks
to start or stop based on data.

PTIDES [5] is an actor-based event-triggered MoC that
enforces the LET semantics only for sensors and actuators,
while intermediate computation actors are executed based on
the DE semantics. It was integrated in the Ptolemy simulation
framework that provides also code generation for PTIDES
models. It resembles our work as it combines different MoC
semantics (event-triggered and LET) from the specification
down to the implementation. However, our methods combine
the LET and Dataflow semantics and offer a rather lightweight,
not yet automated implementation.

For time synchronization, both SW [11] and HW [12]
implementations of clock synchronization have been reported
in the literature. The precision of the synchronization depends
on the precision of the timestamps. One disadvantage is that
the implementation can be subject to unpredictable message la-
tencies [13]. Time synchronization is obtained in our methods
via time-predictable communication between a selected time-
aware processor and the client processors. Our methods are
purely SW based and, as expected, have a coarser granularity.

The time-triggered paradigm was originally conceived for
the time-triggered architecture [14]. The implementation of
this paradigm on a multi-processor system needs to address
data consistency for the shared memory. The lock-based and
wait-free mechanisms [15] proposed in literature solve this
problem for a set of tasks scheduled based on static priorities.
However, the capability to preserve the LET semantics is
not addressed. Our methods, in turn, preserve both the LET
semantics and the dataflow, depending on the characterization
of each task.

The integration of timing requirements into the Dataflow
MoC has been previously addressed in works such as [16],
[17]. Moreira et al. [16] define a maximum production pe-
riod for each actor and propose a scheduling strategy that
improves the processor usage while meeting the maximum
period constraints per actor. However, all actors are started
based solely on the presence of data while the absolute notion
of time is not explicitly considered, as in our method. In [17]
the authors extend the Synchronous Dataflow (SDF) model to

accommodate for a callback-based architecture and minimize
the jitter of the produced output. Both works target multimedia
applications that have throughput-centric requirements rather
then deadline-centric, as in LET .

II. BACKGROUND

While the LET formalism is suitable for describing appli-
cations that access periodically I/O devices such as sensors
and actuators and have fixed periods and deadlines, the static
dataflow formalism introduced by Lee and Messerschmitt [18]
and its derivations accommodate streaming applications in
which the tasks are triggered by the data arrival and for
which the real-time requirements are centered on the average
throughput, rather then fixed periods/deadlines. A dataflow
graph consists of a set of actors connected by arcs. An actor
models a computation process and an arc models communi-
cation between processes. The execution of an actor is called
firing. An actor fires as soon as it is enabled, that is, when
the amount of data tokens present on each of its input arcs
is at least equal to the consumption rate of the arc. Then the
actor will run for a finite amount of time and at the end it
will produce on each output arc an amount of tokens equal to
the arc production rate. In the Cyclo Static Dataflow (CSDF)
variant, the actor firings follow a repetitive cycle composed of
a number of phases, each one characterized by its own rate
and execution time. For a more detailed explanation of the
dataflow semantics, we refer the reader to [18] and [19].

Imposing either of these two formalisms can be unnecessar-
ily strict since there are applications that exhibit mixed data
and time-triggered characteristics (e.g. data-intensive control,
image-based control [20]). This motivates us to find a task
characterization that combines both formalisms.

We will describe the properties of the input application tasks
based on the running example shown in Figure 2 that we also
use for experimental evaluation. Due to space limitations, the
following description is informal.

44

1

0 12 24

5

3

2

1

1

2 2

2

44

1

5

3

2

1

1

2 2

2

126 18

Fig. 2. Running Example - Task Timeline

A control application typically consists of sensors, actuators
and a set of software tasks that process the sensors readings
and/or compute the actuator updates. Our example contains
two sensors, s1 and s2, two actuators, a1 and a2 and five



tasks, t1 to t5. The application requirements determine the
period with which the time-driven tasks are activated and the
deadlines by which they have to finish execution. A data-driven
task can perform an intermediate computation when it receives
the inputs from an upstream task and then produce the outputs
as soon as it finishes. We call this a dataflow task. Hence the
start and stop condition of a task can be either time or data
driven. We account for all possible combinations between start
and stop conditions. Table I summarizes the task classification.
In the example, the time-driven start/stop condition is shown
by a solid bar, while the lack of a bar denotes a data-driven
start/stop condition. All four tasks types are included and also
the corresponding task dependencies: the arrows labelled ‘td’
denote a dependency between a task finishing on time and a
task starting on data, the ‘dd’ ones denote the data to data
dependency, the ‘tt’ arrows a time to time dependency and the
‘dt’ ones a data to time dependency. An additional concept
shown in the figure is the task state, denoted by an arrow
between two successive task invocations and it is illustrated
for tasks t1 and t4.

TABLE I
TASK CLASSIFICATION

Start Condition Stop Condition
Time Data

Time Pure Time-triggered (Giotto) Periodic task w/o deadline
Data Data-driven task w/ deadline Dataflow task

The lowest common multiple of all task periods represents
the hyper-period, relative to which we can express the ex-
ecution frequency of each task. The relative task frequency
is fixed and defined at design time. The hyper-period repeats
indefinitely during the application execution. In the example,
the hyper-period is 12 and the task frequencies are all 1 except
for t4, which has a frequency of 2.

Each pair of communicating tasks follows the LET seman-
tics which require that the data read by the receiver is the most
recent value written by the sender.

For a pair of communicating tasks running at different
frequencies, the data at the receiver task can be either dropped
or read multiple times. The former case is called down-
sampling and it happens when the receiver runs slower than the
sender, and the latter case is called up-sampling and it happens
in the opposite situation. In the example, down-sampling is
shown between t4 and t5 and up-sampling between t5 and t4.

The read operations for the task inputs and the write
operations for the task outputs, are handled by read and
write drivers, respectively, which transport the data and, when
needed, perform a format conversion (e.g. from the sensor data
format to the task input format).

The HW platform choices can range, in general, from
a single-processor platform to a network of multi-processor
platforms, depending on the application needs. Maintaining a
common notion of time becomes necessary when concurrent
tasks execute on different processors, located on the same or
different chips.

III. THE SYNCHRONIZATION METHODS

The proposed synchronization methods take as input a
control application described by a task characterization as the
one presented in the previous section. Our methods only target
a single GALS MPSOC platform for which the clocks have
been classified in terms of drift and we select the processor
with the most reliable clock as the time-aware processor with
which all the processors that need to access time, synchronize
using blocking data communication. The advantage is that we
don’t need to run a clock synchronization algorithm on each
processor. The disadvantage is that such a technique can only
be applied if the communication overhead is relatively low, to
be able to obtain a reasonable synchronization accuracy. This
is possible on a multi-processor platform, but for an actual
distributed system consisting of a higher number of computa-
tion nodes connected by a network, the communication delays
will be considerably higher and a distributed clock distribution
algorithm would be a better option.

The time-predictable inter-processor communication is en-
abled by the Time Division Multiplexing (TDM) NoC [21]
which provides low communication jitter. It achieves this
by using pipelined TDM schedule for the packets, logical
TDM slot synchronization between the communicating nodes,
a fixed 2 cycles delay per router and a small TDM slot size
of 2 words. These design choices determine a bounded and
stable communication latency.

We devise two methods for implementing time and data
synchronization. Both methods assume a MPSOC with a
single trusted clock source that is distributed using either
barriers or FIFOs. Both data- and time-triggered execution
of tasks is supported. We assume the existence of a feasible
mapping and static order schedule for the input application
and then derive the design parameters for each method that
satisfy the timing requirements. The static order schedule is
chosen due to its simplicity and composability.

Figures 3 and 4 show the result of applying the methods to
the running example. It is important to note that our methods
are meant to be applied to the application as described by the
MoC , prior to the selection of a HW platform, mapping and
schedule. Thus the two figures do not incorporate such details.

A. The Dataflow Method

This method models the input application as a dataflow
graph that is afterwards implemented in software according to
the dataflow semantics. The LET semantics are modeled in the
graph and are thus implicitly realized by the implementation.

We derive a CSDF application wrapper for the input ap-
plication based on the tasks characterisation presented in
Section II, using the algorithm 1. For each actor in the graph,
the production rates on every output arc and the consumption
rates on every input arc, respectively, are equal for all CSDF
phases. We use the following notations in the algorithm: H is
the hyper-period duration, Tti is the period duration for task
ti, rp and rc represent production and consumption rates.

The timeStep actor and the ti Delay actors in the algorithm
above are time-aware actors and are mapped to the time-aware



Algorithm 1 Create CSDF application

for all task ti in application A do
Create a CSDF actor ti with H

Tti
phases

if ti has state then
Add self arc to actor ti with 1 initial token

τstep ← min(Tti)
m← H

τstep
Create a CSDF actor timeStep with m phases
Add state variable s with initial value −τstep
s← finishT ime(timeStep)
Add a self arc to actor timeStep for variable s
executionT ime(timeStep)← s+ τstep
for all task ti in application A do

p← numberOfPhases(ti)
if ti has a time-driven start condition then

Create a CSDF actor tiRdDrv with p phases
Add one arc from tiRdDrv to ti with rp = rc = 1
Add one arc from timeStep to tiRdDrv with rp = 1,

rc =
Tti

τstep
and rc-1 initial tokens

if ti has a time-driven stop condition then
Create a CSDF actor tiWrDrv with p phases
Create a CSDF actor tiDelay with p phases
Add an arc from ti to tiWrDrv with rp=rc=1
Add an arc from tiDelay to tiWrDrv with rp=rc=1

Add an arc from timeStep to tiDelay with rp=1,
rc =

Tti

τstep
and rc-1 initial tokens

for all data dependency from task ti to task tj do
if ti has a time-driven stop condition then

src← tiWrDrv
else

src← ti
if tj has a time-driven start condition then

dst← tjRdDrv
else

dst← tj

if Tti == Ttj then
Add an arc from src to dst with rp=rc=1

if Ttj == n · Tti then
Add a CSDF actor Downsample with 1 phase
Add an arc from src to Downsample with rp=1, rc=n
Add an arc from Downsample to dst with rp=rc=1

and 1 initial token
if Tti == n · Ttj then

Add a CSDF actor Upsample with 1 phase
Add an arc from src to Upsample with rp=rc=1
Add an arc from Upsample to dst with rp=n, rc=1

and n initial tokens

Time

Step

t1

Delay

t5

Delay

t1

Wr Drv

t5

Wr Drv

t3

Rd Drv

t4

Rd Drv

Downsample

2:1

Upsample

1:2

2

2

2

2

2

2

[1,1]
[1,1]

[1,1]

[1,1]

[1,1]

[1,1]

[1,1]

[1,1]

[1,1] [1,1]

Fig. 3. Running Example - Dataflow Method

processor. Then a feasible static order schedule is derived. The
execution time of each tiDelay actor will be determined by its
position in the schedule, the communication time towards the
corresponding tiWrDrv and the execution time of tiWrDrv,
such that the token sent to tiWrDrv will enable the driver
actor to fire and finish execution just before its deadline.

One limitation of this method is that the Downsampling
actor can only model the cases in which out of n produced

samples, all but the last are dropped.
Figure 3 shows the resulting CSDF graph. In the graph, task

t5, with a time triggered start condition, doesn’t have a read
driver. Since a driver is responsible for converting data from
a sensor/actuator format to a task format, it can be dropped
when the task doesn’t communicate with such a device.

B. The Barrier Method

This method uses a barrier synchronization library to
achieve the time and data synchronization for the input control
application. The barrier synchronizes a predefined number of
clients in a blocking manner: each client updates its location in
the barrier data structure and blocks until all the other clients
update their locations. We use two barrier types: data and time
barriers. Figure 4 shows the barriers for the running example.

A data barrier is used to synchronize two tasks that have a
data to data dependency, that is, the sending task has a data-
driven stop condition and the receiving one has a data-driven
start condition. The sending task writes the output data, then
updates the barrier and blocks. The receiving task first updates
the barrier and blocks waiting for the sending task, and then
reads the input data. In our example, there are two data to
data dependencies, from t3 to t2 and from t2 to t1 and the data
barriers for them are labelled ‘data’ in Figure 4.

A time barrier is used to implement a time-driven start or
stop condition. In this case one barrier client will be the time-
aware processor and the other client will be the task. For
a time-driven start condition, the time-aware processor will



Time

Barriers

44

1

0 12 24

3

2

126 18

5

44

1

3

2

5

DownSampling 

2:1 Barrier

Fig. 4. Running Example - Barrier Method

wait for the predefined task period, update the barrier and
block. The processor running the task should have finished
any previous activity and be waiting for the time barrier update
(this is ensured by the schedule). This can be visualized for
tasks t3, t4 and t5 in Figure 4. For a time-driven stop condition,
the barrier update time is anticipated based on the worst
case bounds for the communication time and the write driver
execution time such that the output is made available as close
as possible to the deadline. In the figure, tasks t1 and t5 have
a time-driven stop condition.

For downsampling and upsampling of data, we allocate a
set of consecutive barriers that ensure the synchronization
between the sender and the receiver. For downsampling, the
barriers will synchronize with the sending task on each pro-
duced sample via a data barrier followed by either a data or
a time barrier to synchronize with the receiver on the right
sample depending on its start condition. Figure 4 illustrates
this for tasks t4 and t5. Upsampling is based on the same
principle and it will execute the reverse operations but it is
not shown in the figure for space reasons.

C. Analytical Evaluation

As a quantitative evaluation, we observe that the total num-
ber of connections required for the time and data synchroniza-
tions is almost identical. Both methods require one connection
per timed start/stop condition and per data synchronization
between two tasks running at the same frequency. The only
difference is for the up-sampling 1:n and down-sampling n:1
where the dataflow method uses one dedicated actor with two
communication FIFOs and the barrier uses n+1 barriers. Thus
the barrier has worse scalability than dataflow for up- and
downsampling since the number of barriers is proportional to
the number of dropped or reused samples.

The quality of the time synchronization is given by the
accuracy and the jitter. The synchronization accuracy is
given by the maximum absolute difference between each pe-
riod/deadline time and the actual time when the corresponding
task reads its inputs or writes its outputs. It is determined

by the total number of tasks that share the same start/stop
time and the communication times. The time-aware processor
updates the barriers for each start/stop time sequentially, thus
the accuracy will be given by either the latest task read time
or the earliest task write time. This can be seen in Figure 4
where at time 0, three barriers are executed sequentially and
the last barrier in the sequence, the one for task t5 will cause
the largest time difference with respect to the start period time.
For dataflow, the synchronization will be performed by the
TimeStep actor and the execution order will be reflected by
the order in which each output FIFO is written. The jitter
represents the maximum timing variation of each task actual
read/write times with respect to the reference period/deadline.

IV. EXPERIMENTS

We implemented the 2 methods for the running example
on our multi-processor platform and evaluated them in terms
of SW overhead and memory consumption. For this, we
synthesized a platform consisting of three processor tiles all
running at 100 MHz on a Xilinx ML605 FPGA.

The first required steps for both methods are finding a
mapping and then a static order schedule per processor. To
allow for comparison, the chosen mapping and schedules are
identical for both methods. More specifically, we decided to
map tasks t1 and t3 to the tile 1, tasks t2, t4 and t5 to tile
2 and the timing-aware barriers or actors to tile 3, which is
selected to be the time reference. The task drivers are mapped
on the same tile as the tasks. Tile 3 will run the timeStep,
t1Delay and t5Delay for the Dataflow method and the time
barriers as well as the Down-sampling barriers for the barrier
method. Although the mapping of the tasks t1 to t3 on different
processors is not efficient, given the task dependencies, it’s
purpose is to illustrate and evaluate the use of the data barrier.
The chosen schedules are: {t3RdDrv, t3, t1, t1WrDrv} on tile
1, {t4RdDrv, t5, t4, t2, t4RdDrv, t4, t5WrDrv} on tile 2. As
the Dataflow method uses two actors for upsampling and
downsampling, they need to be added to the schedule on tile
2 and the chosen positions are: Downsample runs after t4 and
Upsample after t5WrDrv. On tile 3 the timeStep actor or the
start time barrier will run twice, at the beginning and the
middle of the hyper-period, followed by the deadline delay
actor or barrier for t1 and then t5, before the end of the
hyperperiod. Since we use a synthetic example, we assign to
each task and driver a constant execution time.

TABLE II
EXPERIMENTAL RESULTS

Synchronization Barrier Method Dataflow Method
SW Overhead (cycles) min max min max
Period Sync 223 2330 1316 6914
Deadline Sync 223 300 1198 1707
Data Sync 362 461 1552 3836

Table II shows the SW overhead for each method in clock
cycles. For the barrier method, we see that the obtained
overheads are in a close range. The maximum value for the
period synchronization is a caused by the schedule on tile 2,



where t5 runs after t4RdDrv and it is delayed by the driver
execution time which was set to 2048 cycles. Similarly, the
variation of the data synchronization barrier is determined by
the specific position in the schedule of the communicating
tasks. For the dataflow method, the overhead is higher due to
the fact that each actor is executed according to the model
of execution (that implements the dataflow semantics) and
handling each communication FIFO involves several checks
and updates of the administration objects in addition to the
actual transfer of data. The large maximum value for the
period synchronization comes from the same scenario as for
the other method, the difference being caused by the higher
data communication times, which are in the range of 1500 to
2500 cycles for dataflow and 200 to 400 cycles for the barrier.

The worst-case cost of around 400 cycles (4µs) per task for
our most efficient method, the barrier, shows that, in terms of
scalability, we can synchronize maximum 10-25 concurrent
tasks per time-aware processor with a accuracy of <100µs.
This is also a maximum feasible task load for a typical multi-
processor platform comprising at most 10 processors. The
accuracy could be improved, when possible, by adding more
time-aware processors having synchronized clocks.

The total data memory consumption is 112 bytes for the
barrier method and 2728 bytes for the dataflow method. The
increased amount for dataflow comes from the size of the
administration structure, that is 96 bytes per FIFO. For both
methods, the data was mapped on the receiver’s local memory
to minimize the access overhead.

From the measurements we observe that the dataflow
method has a higher cost both at run-time and in terms of
memory, making it mostly suitable for applications that include
more data-intensive components than time-triggered ones. The
barrier method has a low cost, thus it fits a wider range of ap-
plications that include time-triggered as well as data-intensive
components. The accuracy of both methods will depend on
the specific application timing requirements: the more tasks
requiring synchronization at the same time instant, the worse
the accuracy. The accuracy, as defined in section III-C is 3307
cycles (33.07 µs) for the barrier method and 6914 cycles
(69.14 µs) for the dataflow method. The jitter for the barrier
method is 123 cycles (1.23 µs) and for the dataflow method is
404 cycles (4.04 µs). Note that the reported accuracy for the
PTP SW implementation [12] is between several milliseconds
to several hundreds of microseconds. While the frequency of
running the PTP synchronization algorithm is normally set at
2s, within our methods the synchronization is performed for
each time-driven start/stop condition.

The closest related work with respect to our methods is [10].
Their OS extension implements the LET semantics for inter-
task communication while the time synchronization is obtained
via the NoC. The reported SW overhead for this extension
ranges from around 1100 (kernel executed from scratch-pad
memory) to 12000 clock cycles (kernel executed from global
memory) and it can be compared with our data synchronization
that has a lower overhead ranging between 362 and 3836
cycles, leading to a reduction of 67%. The measurements for

the related work are obtained on a Patmos 4-core processor
and the main sources of the overhead are the cache misses and
the off-chip memory accesses. In addition, the authors in [10]
do not offer a characterization of jitter.

V. CONCLUSIONS

In this article we presented two methods for data and
time synchronization for a LET -based control application
on a multi-processor platform. Both methods relax the LET
semantics by using dataflow semantics when a strict time-
triggered start/stop condition is not required. We evaluate the
methods using a synthetic example implemented on the FPGA.
The comparison with the related work shows a 67% reduction
of the SW overhead for the data synchronization.

This work was partially funded by projects CATRENE
ARTEMIS 621429 EMC2, 621353 DEWI, 621439 AL-
MARVI.

REFERENCES

[1] K. Balasubramanian et al., “Developing Applications Using Model-
Driven Design Environments,” IEEE Computer Society, vol. 39, no. 2,
2006.

[2] I. Sander et al., “System modeling and transformational design re-
finement in ForSyDe [formal system design],” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23,
no. 1, 2004.

[3] C. M. Kirsch and A. Sokolova, The Logical Execution Time Paradigm.
Springer Berlin Heidelberg, 2012, pp. 103–120.

[4] T. A. Henzinger et al., “Giotto: a time-triggered language for embedded
programming,” Proceedings of the IEEE, vol. 91, no. 1, 2003.

[5] P. Derler et al., “PTIDES: A Programming Model for Distributed Real-
Time Embedded Systems,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2008-72, 2008.

[6] D. Mills, Computer Network Time Synchronization: the Network Time
Protocol on Earth and in Space, 2nd ed. CRC Press, 2011.

[7] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-2008
(Revision of IEEE Std 1588-2002), pp. 1–269, 2008.

[8] H. Cho et al., “Space-optimal, wait-free real-time synchronization,”
IEEE Transactions on Computers, vol. 56, no. 3, pp. 373–384, 2007.

[9] S. F. Fahmy et al., “On scalable synchronization for distributed embed-
ded real-time systems,” in SEUS, 2008.

[10] F. Kluge et al., “Support for the Logical Execution Time model on a
Time-predictable Multicore Processor,” in RTN. ACM, 2016.

[11] K. Correll et al., “Design Considerations for Software Only Implemen-
tations of the IEEE 1588 Precision Time Protocol,” in NIST, 2006.

[12] B. Zhao and N. Wang, “The implementation of IEEE 1588 clock
synchronization system based on FPGA,” in ICICIP, 2014.

[13] P. Martí et al., “Clock Synchronization for Networked Control Systems
Using Low-Cost Microcontrollers,” 2008.

[14] H. Kopetz et al., “The time-triggered architecture,” Proceedings of the
IEEE, 2003.

[15] G. Han et al., “Experimental Evaluation and Selection of Data Con-
sistency Mechanisms for Hard Real-Time Applications on Multicore
Platforms,” IEEE Transactions on Industrial Informatics, vol. 10, 2014.

[16] O. Moreira et al., “Scheduling Multiple Independent Hard-real-time Jobs
on a Heterogeneous Multiprocessor,” in EMSOFT, 2007.

[17] P. Arumi and X. Amatriain, “Time-triggered Static Schedulable
Dataflows for Multimedia Systems,” SPIE The International Society for
Optical Engineering, vol. 7253, no. 1, 2009.

[18] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-
ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[19] G. Bilsen et al., “Cycle-static dataflow,” IEEE Transactions on Signal
Processing, vol. 44, no. 2, pp. 397–408, 1996.

[20] L. Weiss et al., “Dynamic sensor-based control of robots with visual
feedback,” IEEE Journal on Robotics and Automation, vol. 3, 1987.

[21] R. Stefan et al., “dAElite: A TDM NoC Supporting QoS, Multicast, and
Fast Connection Set-Up,” Computers, IEEE Transactions on, vol. 63,
2014.


