
Efficient Tensor Cores support in TVM for Low-Latency Deep learning

Wei Sun, Savvas Sioutas, Sander Stuijk, Andrew Nelson, Henk Corporaal
Eindhoven University of Technology

{w.sun, s.sioutas, s.stuijk, a.t.nelson, h.corporaal}@tue.nl

Abstract— Deep learning algorithms are gaining popularity
in autonomous systems. These systems typically have stringent
latency constraints that are challenging to meet given the high
computational demands of these algorithms. Nvidia introduced
Tensor Cores (TCs) to speed up some of the most commonly
used operations in deep learning algorithms. Compilers (e.g.,
TVM) and libraries (e.g., cuDNN) focus on the efficient usage
of TCs when performing batch processing. Latency sensitive
applications can however not exploit large batch processing.
This paper presents an extension to the TVM compiler that
generates low latency TCs implementations particularly for
batch size 1. Experimental results show that our solution
reduces the latency on average by 14% compared to the cuDNN
library on a Desktop RTX2070 GPU, and by 49% on an
Embedded Jetson Xavier GPU.

I. INTRODUCTION

Deep learning algorithms [14], especially Convolutional
Neural Networks (CNNs), have demonstrated a great ability
to solve challenging computer vision tasks like image clas-
sification, object detection, and semantic segmentation.

Modern autonomous systems such as autonomous driv-
ing vehicles, Cyber-Physical Systems, and unmanned aerial
vehicles have a low latency requirement, which means that
CNNs have to process the input image and produce the
outputs within the shortest possible response time. To this
end, instead of processing larger batch sizes for high data
parallelism to get high throughput, the batch size is typically
small for these latency-sensitive autonomous applications.

Nvidia introduced Tensor Cores (TCs) to meet the in-
creasing computation demands of modern CNNs [17].
Programming convolution layers on a TCs is nontrivial. To
improve the programability of TCs and make them more
accessible to users without enough CUDA expertise, some
effort has been invested to enable automatic code generation
for TCs. [22] extends the Halide DSL [21] to support TCs
for GEMM applications. Recently, the TVM [5] open-source
compiler community [19] added support for convolution on
TCs. However, the current TVM solution can only support
input batch sizes with multiples of eight, which is not suitable
for low-latency applications where the input batch size is
typically one. This paper presents an extension of the TVM
compiler to automatically generate low-latency convolution
code for TCs. Contributions of this work are:

• Implementation description of an extension based on
the TVM open-source compiler stack to automatically
generate low-latency convolution CUDA code for small
input batch sizes.

This work is funded by the NWO Perspectief program ZERO, project P3

• Performance analysis of our solution in comparison to
the Nvidia cuDNN library when targeting TCs.

• Analysis and discussion of the limitations of both our
solution and cuDNN for small and large batch sizes.

II. BACKGROUND

A convolution layer can be expressed as Output =
Conv(Input,Weight). Input stands for the input images
or intermediate feature map from the previous layer. Weight
stands for the weights of convolutional filters learned from
the training phase. The typical data layout of Input and
Weight are (N,C,H,W ) and (Cout, C,Kh,Kw) respec-
tively, where N stands for batch size, C/Cout stands for the
number of Input/Output channels, H/W is height/width of
the input and Kh/Kw is the height/width of the convolu-
tional filters. This data layout is supported by all mainstream
deep learning frameworks including Pytorch [20] and Ten-
sorFlow [1]. Although there are different data layout settings
which can affect the run-time performance of CNNs [15, 16],
this work focuses on this mainstream data layout.

The convolution layer is the most important and expensive
layer in a CNN. How to implement convolution layers
efficiently has been extensively investigated over the past
years [6, 13, 18]. Direct convolution implements convolu-
tion in a straightforward way which consists of 7 nested
loops. Alternatively, Im2col convolution first lowers the
convolution problem into the GEMM problem, which then
can be solved using highly optimized linear algebra software
libraries (e.g. cuBLAS) or a GEMM hardware accelerator
(e.g. Tensor Cores). Explicit im2col convolution will intro-
duce extra memory footprint for the lowered matrices and
additional memory transfers between GPU global memory
and GPU streaming multiprocessors (SMs) shared memory.
In this paper, we will address this extra memory footprint
by introducing implicit im2col, which avoids the explicit
construction of the im2col matrices in memory.

III. RELATED WORK

CuDNN provides highly optimized GPU kernel functions
for TCs developed by experts [12]. However, cuDNN is
closed-source, blocking researchers to study the optimization
techniques exploited in cuDNN functions. Furthermore, a
black-box library prevents layer fusion and joint optimiza-
tions which provide significant performance gains [2].

Recently, automatic code generation for Tensor Cores has
been an active research topic which aims to provide better
programmability and transparency while keeping comparable



363534333231

1 2 4 5 6

7 8

3

9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

1 2 3 7 8 9 13 14 15

2 3 4 8 9 10 14 15 16

3 4 5 9 10 11 15 16 17

4 5 6 10 11 12 16 17 18

7 8 9 13 14 15 19 20 21

8 9 10 14 15 16 20 21 22

9 10 11 15 16 17 21 22 23

10 11 12 16 17 18 22 23 24

22 23 24 28 29 30 34 35 36

1 2 3 7 8 9

2 3 4 8 9 10

3 4 5 9 10 11

4 5 6 10 11 12

gemmK

ge
m

m
M

blkK

bl
kK

blkN

bl
kK

13 14 15

14 15 16

15 16 17

16 17 18

19 20 21

20 21 22

21 22 23

22 23 24

7 8 9 13 14 15

8 9 10 14 15 16

9 10 11 15 16 17

10 11 12 16 17 18

1 2

2 3

GPU block/shared memory warp/ register and TC computationGPU global memory and dummy im2col

blkK

21 3

4 5 6

7 8 9

10 11 12

15

18

19 20 21

22 23 24

25 26 27

2928 30

33

36

1

3

2

4

5

20

8

7

6

9

11

10

29

12

23

19

26

22

21

25

27

24

18

30

28

36

8

7

9

11

10

29

12

26

25

27

30

28

Input[1,2,6,6]

Weight[4,2,3,3]

warp1 1

3

2

4

5

20

6

23

19

22

21

24

1

2 20

19x +

3 7

4 8

3

4 22

21

x +

8 9

9 10
x 5

6

23

24
+

=
=

=

M10

M100

M101

M102

M90

M90M10

+x

=

x +

synchronize; read next chunk

=

M1

M9

initial value: 0
fragA fragB fragC

TileA
TileB

TileC

Shr2Glb

Shr2Reg

Reg2Shr

Glb2Shr

GPU global memory 

Output[1,4,4,4]

Wm

Im

Om

Reshape

bl
kM

blkN

warpN

warpM

tk

tn

tm

1

2

3

M1

4

5

M1 M2

M5 M6

M9

3 4

4 5

1

2 20

19x +

M10

M90

M90

synchronize; read next chunk

Fig. 1. Computation schedule of convolution for Tensor Cores. 1© and 2© show Input tensor, Weight tensor and corresponding implicit im2col
transformations (Im and Wm). 3© and 4© show the computation schedule at block-level and warp-level respectively. 5© is result construction step.

performance to black-box libraries. [22] extended the Halide
Domain Specific Language (DSL) to generate PTX codes
on Tensor Cores which can achieve performance reason-
ably close to manually tuned implementations provided by
cuBLAS. [3] proposes a polyhedral approach based on the
Diesel [8] DSL compiler framework to generate efficient
CUDA kernels for matrix multiplication by using inline
assembly instructions for Tensor Cores. Inspired by Halide
and TVM, [9] proposes the Fireiron scheduling language
for GPUs as well as Tensor Cores, which is claimed to
outperform expert-written advanced matrix multiplication.

The above efforts have demonstrated that compilers are
able to match the performance of vendor libraries developed
by human experts on matrix multiplication applications. This
paper aims at the efficient use of TCs for CNN convolution
layers with small batch sizes. TVM supports multiple DL
frameworks (like Tensorflow [1] and Pytorch [20]) gen-
erating code for multiple HW target platforms, including
GPUs. However, TVM only uses TCs for certain large
batch sizes [19] which cannot be exploited for low-latency
applications.

IV. EXPLOIT TENSOR CORES FOR
LOW-LATENCY INFERENCE

Implicit im2col requires calculating gemm indices at run-
time to access the matrices without restructuring. In com-
parison to explicit im2col, we trade extra computation for

a reduction in memory accesses and storage. This section
explains the computation schedule, memory allocation, and
data movement for implicit im2col convolution with a simple
convolution example as shown in Figure 1, where Input and
Weight tensors are shown in box 1© and 2©. The data in
Input and Weight tensors will be moved directly from GPU
global memory to GPU shared memory as demonstrated in
box 3© without explicitly constructing im2col matrices Im
and Wm. The size of TileA and TileB vary across different
shapes of Input and Weight tensors. For visualization, we
assume the size of TileA and TileB are (8,4) and (4,2).
The matrix multiplication in box 3© is tiled into several sub-
matrix multiplications which can be handled by Tensor Cores
through a set of WMMA CUDA primitives [17] by a GPU
thread warp as demonstrated in 4©. For simplification, we
assume the shape of fragA, fragB and fragC are (2,2).

The partial matrix multiplications computed by Tensor
Cores are first stored in registers before transferring to shared
memory to construct the result TileC in box 3©. Finally, the
Output tensors are constructed in GPU global memory as
shown in box 5©.

To achieve a good performance on a GPU, it is al-
ways crucial to optimize the memory allocation and data
movement across the GPU memory hierarchy from global
memory to registers. The computation schedule demonstrated
in Figure 1 contains two categories of data communication.



1) data movement between Global memory and Shared
memory (Glb2Shr and Shr2Glb): data in Input and Weight
are moved to shared memory in GPU SM. In this step,
vectorization is applied to achieve high memory bandwidth.
A vectorized load/store instruction can perform n load/store
operations in a single instruction, where n is the vectorization
factor. 2) data movements between Shared memory and
registers (Shr2Reg and Reg2Shr), the keypoint to speed-up
GPU shared memory accesses is to avoid shared memory
bank conflicts. This can be achieved by applying a certain
offset when allocating shared memory in GPU blocks at
the cost of extra wasted memory space. For instance, after
applying offset (m), the shape of shared memory for TileA
will increase from (8, 4) to (8, 4+m).

The computation schedule, memory allocation, and vec-
torization together introduce a set of hyper-parameter which
need to be tuned for different input sizes. We expose these
hyper parameters to the auto-tuner [4] of the TVM compiler
to perform design space exploration. Note that this will cause
extra compilation time, but it will not negatively affect the
compiled program during run-time.

V. EXPERIMENTS

This section presents the run-time performance of our
method on convolution layers in ResNet18 [10] and
SqueezeNet [11] on an Embedded Jetson Xavier GPU and
a Desktop RTX2070 GPU. In total we have 33 distinctive
convolution layers which cover most of real-life convolution
settings [7]. Note that this work only discusses the per-layer
performance with the standard NCHW data layout.

We disabled dynamic frequency switching on the Jetson
Xavier board to get stable results. We use the TVM auto-
tuning auxiliary tool [4] for finding the optimal tunable
parameters among the search space when evaluating our
work and the TVM baseline solution. The reported latencies
of the TVM-based solutions are averaged over 1000 measure-
ments using the TVM estimator function. When evaluating
cuDNN1, we use the cudnnFindConvolutionForwardAlgo-
rithm cuDNN built-in API to try all available algorithms
and find the best one with respect to latency. cuDNN also
supports half precision convolution without using TCs, we
filtered out non-tensor-core results by setting mathType as 1.
The selected cuDNN implementation is profiled by the same
TVM estimator to get the latency over 1000 measurements.

We first present the latency achieved by our solution
and cuDNN of the 33 convolution layers with batch size
equal to one on both experimental platforms. The existing
TVM solution can only support large batch sizes which are
multiples of eight, so we are not able to add this baseline for
batch size is equal to one experiment. Secondly, we compare
our method with the existing TVM solution and the cuDNN
library on two representative convolution layers with larger
batch sizes to discuss the limitations of our method.

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

La
te

n
cy

 R
ed

u
ct

io
n

La
te

n
cy

ResNet18+SqueezeNet, RTX2070
ours cuDNN latency-reduction

Fig. 2. Latency (ms) of convolution layers on an Embedded
Jetson Xavier GPU. Format of convolution layer names: Lx(Sx)
(C,H/W,Cout,Kh/Kw, Sh/Sw, Ph, Pw), where Lx stands for
ResNet18 layer x and Sx stands for SqueezeNet layer x.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

La
te

n
cy

 R
ed

u
ct

io
n

La
te

n
cy

ResNet18+SqueezeNet, Jetson Xavier
ours cuDNN latency-reduction

Fig. 3. Latency (ms) of convolution layers on an Embedded Jetson Xavier
GPU

A. Compare to cuDNN under batch size = 1

Figure 2 and 3 show the averaged latency of our work
compared to the cuDNN library on a Desktop RTX2070
GPU and an Embedded Jetson Xavier GPU. On the RTX2070
GPU, our method reduces the latency on average by 14%,
with the best case S20 (60%) and the worst case L2 (-
101%), where minus means our method has a higher latency.
The extreme outliers can be explained by the fact that
cuDNN has perfect pre-configured kernels for these specific
workloads (cuDNN performs much better), or does not have
a suitable function and relies on zero padding (cuDNN
performs worse).

On the Embedded Jetson Xavier GPU, the best case is
L8 (82%) and the worst case is S18 (-37%). Our method
reduces the latency on average by 49% which is 3.5x
better than the latency reduction our method achieved on
the Desktop GPU. One reason is that the cuDNN imple-
mentations rely on the usage of large extra global memory
as indicated by the cuDNN built-in profiling function cud-
nnConvolutionFwdAlgoPerf_t. The RTX2070 GPU has its
dedicated global memory GDDR6, but the Jetson GPU shares
a unified memory LPDDR4x with the CPU. The bandwidth
of dedicated GDDR6 (448GB/s) is higher than that of the
Jetson Xavier LPDDR4x (137GB/s) which results in more
memory access penalty when running on a Jetson Xavier.
Since our solution requires fewer memory accesses, it is less
penalized by this effect.

B. Study large batch sizes under an Embedded Jetson GPU

This section presents additional experiments on large
batches on an Embedded Jetson GPU platform. We present

1cuDNN v7



results for two representative layers to demonstrate the
limitations of our method. Figure 4 shows the performance of
our method, cuDNN and the TVM-baseline (TVM existing
solution) on convolution layer L5 with different batch sizes.
L5 is a convolution layer with a 1x1 kernel (i.e. Kh = Kw
= 1) where the TVM-baseline direct convolution solution
shows better performance under larger batch sizes. Under
small batch sizes, our method is a better choice. Figure 5
compares these three methods on convolution layer L10
with a 3x3 kernel. Unlike the results of layer L5, the TVM
baseline solution can not achieve a satisfactory performance.
Our method is still better than cuDNN under small batch
sizes, although cuDNN outperforms our method for batch
size of 4 and larger.

Fig. 4. Average execution time (ms) of L5 under different batch sizes on
a Desktop RTX2070 GPU

Fig. 5. Average execution time (ms) of L10 under different batch sizes on
an Embedded Jetson Xavier GPU

VI. CONCLUSION AND FUTURE WORK

This paper introduces a code generation method for con-
volutional layers targeting TCs with NCHW standard data
layout. The experiments show that our solution can reduce
the latency of convolutional layers compared to the Nvidia
cuDNN library, especially for a batch size of one. Our
technique achieves average performance increases of 14%
and 49% for desktop and embedded targets, respectively.
We conclude that our work is therefore a complementary
solution to the state-of-the-art cuDNN library for latency-
sensitive applications.

We acknowledge that the current solution is not able to
match the expertly hand-written libraries in many cases, and
there are still some possibilities for improving our method
further. Therefore, we propose some future work directions:
1) introduce lower-level optimizations for the TVM compiler.
Our method relies on the TVM code generator to generate
CUDA code, although CUDA code has better readability/-
portability than PTX code or Shader ASSembly (SASS)
code, some lower level optimizations cannot be applied at the
CUDA language level. One option would be to implement
micro-kernels based on PTX or SASS as external function

calls to the generated CUDA code and integrate the micro-
kernels with compiler passes. 2) investigate different data
layout. This work only discussed the standard NCHW data
layout, cuDNN convolutions on Tensor Cores can perform
better under NHWC layout [12], it would be interesting
exploring the efficient convolution code generation strategy
for small batch sizes under NHWC data layout.

REFERENCES

[1] M. Abadi et al. “TensorFlow: A System for Large-Scale
Machine Learning”. In: OSDI’16. Savannah, GA, USA:
USENIX Association, 2016, pp. 265–283.

[2] M. Alwani et al. “Fused-layer CNN accelerators”. In: An-
nual IEEE/ACM International Symposium on Microarchitec-
ture. 2016, pp. 1–12.

[3] Somashekaracharya G. Bhaskaracharya, Julien Demouth,
and Vinod Grover. Automatic Kernel Generation for Volta
Tensor Cores. 2020.

[4] Tianqi Chen et al. “Learning to Optimize Tensor Programs”.
In: NIPS’18. 2018.

[5] Tianqi Chen et al. “TVM: An Automated End-to-End Op-
timizing Compiler for Deep Learning”. In: Carlsbad, CA,
USA: USENIX Association, 2018.

[6] Minsik Cho and Daniel Brand. “MEC: Memory-Efficient
Convolution for Deep Neural Network”. In: ICML’17. Syd-
ney, NSW, Australia, 2017.

[7] Marat Dukhan. “The Indirect Convolution Algorithm”. In:
(2019). arXiv: 1907.02129.

[8] Venmugil Elango et al. “Diesel: DSL for Linear Algebra and
Neural Net Computations on GPUs”. In: MAPL. 2018.

[9] Bastian Hagedorn et al. Fireiron: A Scheduling Language
for High-Performance Linear Algebra on GPUs. 2020.

[10] K. He et al. “Deep Residual Learning for Image Recogni-
tion”. In: 2016 IEEE CVPR.

[11] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accu-
racy with 50x fewer parameters and< 0.5 MB model size”.
In: arXiv preprint arXiv:1602.07360 (2016).

[12] M. Jordà, P. Valero-Lara, and A. J. Peña. “Performance
Evaluation of cuDNN Convolution Algorithms on NVIDIA
Volta GPUs”. In: IEEE Access (2019).

[13] A. Lavin and S. Gray. “Fast Algorithms for Convolutional
Neural Networks”. In: 2016 IEEE CVPR.

[14] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep
Learning”. In: Nature (2015).

[15] Mingzhen Li et al. “The Deep Learning Compiler: A Com-
prehensive Survey”. In: (2020). arXiv: 2002.03794v3.

[16] Yizhi Liu et al. “Optimizing CNN Model Inference on
CPUs”. In: USENIX ATC ’19. Renton, WA, USA.

[17] S. Markidis et al. “NVIDIA Tensor Core Programmability,
Performance Precision”. In: 2018 IEEE International Par-
allel and Distributed Processing Symposium Workshops.

[18] Michael Mathieu, Mikael Henaff, and Yann LeCun. “Fast
training of convolutional networks through ffts”. In: arXiv
preprint arXiv:1312.5851 (2013).

[19] Optimization of CNNs on Tensor Core. URL: https :
/ / discuss . tvm . ai / t / rfc - tensor - core -
optimization - of - cnns - on - tensor - core /
6004.

[20] Adam Paszke et al. “PyTorch: An Imperative Style, High-
Performance Deep Learning Library”. In: Advances in Neu-
ral Information Processing Systems 32. Ed. by H. Wallach
et al. Curran Associates, Inc., 2019.

[21] Jonathan Ragan-Kelley et al. “Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines”. In: PLDI ’13.
Seattle, Washington, USA, 2013.

[22] Savvas Sioutas et al. “Programming Tensor Cores from an
Image Processing DSL”. In: SCOPES ’20. Association for
Computing Machinery, 2020.


