
Predictable embedding of large data structures in multiprocessor
networks-on-chip

Sander Stuijk, Twan Basten, Bart Mesman and Marc Geilen
Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands.

s.stuijk@tue.nl

Abstract - Predictable, tile-based multiprocessor networks-on-
chip are considered as future embedded systems platforms. Each
tile contains one or a few processors and local memories. These
memories are typically too small to store large data structures (e.g.
a video frame). A solution to this is to embed tiles with large
memories in the architecture. However, fetching data from these
memories is slow because of the large network delays. The delay
can be hidden by using prefetching. Our main contributions are
models that allow timing analysis to provide guaranteed quality
and performance when using remote memories and prefetching.
We use two realistic video applications to show that our models
can be used in practice to derive a predictable system using large
memory tiles and prefetching, and to provide guaranteed real-time
performance.

1. Introduction

Current developments in settop-box products for media
systems show that chips are becoming memory dominated
(estimated 90% in 2010) for two reasons. Firstly, logic
scales faster with chip technology than memory. Secondly,
current media applications require increasingly more
memory.

For cost reasons, we can no longer afford different sub-
systems to have separate, large memories. This suggests
the need for a high level of re-use of these memories. It
is therefore expected in the electronic design community
that future electronic systems re-use platforms that integrate
many IP-blocks and memories. These platforms will con-
currently execute many applications and (sub-)tasks. The
number of possible use cases is enormous. For example,
in a modern television platform 60 applications are running
in parallel, corresponding to an order of 60! possible use
cases. It is clearly impossible to verify the correct opera-
tion of all these situations through testing and simulation.
The product divisions in large companies currently already
report 60% to 70% of their effort being spent in verify-
ing potential use cases and this number will only increase
in the near future. This has motivated researchers to em-
phasize the ability to analyze and predict the behavior of
applications and platforms without extensive simulations.
Real-time requirements in media systems have put the main
focus on predicting the timing behavior of complex media
systems. This development has accelerated the use of mod-

P

M CA

NI

tile

CA

NI

tile

M
P

M CA

NI

tile

Network

Figure 1. MP-SoC architecture template.

els of computation as a class of them allows analysis of the
system at design time. There are two requirements for us-
ing these models of computation, namely the development
of good analysis tools that exploit these models, and the
ability to capture real-world behavior.

Untill now, designers lived comfortably with dedicated
memory close to the computational logic, thereby allow-
ing predictable access times. In future platforms, as ex-
plained, memories will be distant and shared among po-
tentially many computational resources. This problem was
first identified in [16]. That abstract presents a first solu-
tion on how to model memory accesses on a distant and
shared memory in an important class of future embedded
platforms, namely network-on-chip-based multiprocessors.
The current paper adds to this analyzable models to predict
timing properties of computations operating on large mem-
ories in network-on-chip-based multiprocessors. The mod-
els incorporate prefetching techniques, block fetching, and
provide the basis for an application programming interface
hiding the complexity of using shared, distant memories. In
two case studies on realistic media applications, we show
how our models can be used to derive predictable and ac-
ceptable timing numbers for an application when distant,
shared memories are used.

2. Background

2.1. Architecture template

Culler et al. describe in [4] a general template for multipro-
cessors. It consists of multiple processing tiles connected
with each other by an interconnection network. Each tile
contains one or a few processor cores and local memories.
The tile may contain communication buffers, accessed
both by the local processors and the network. The tile
has a small controller, called communication assist (CA),
that performs buffer accesses on behalf of the network. It
decouples the communication and computation. The archi-



tecture template in our work is shown in Figure 1. Many
multiprocessor systems-on-chip (MP-SoCs), e.g. Daytona
[1], Eclipse [15], and StepNP [11], fit nicely into this
template. The interconnection network in our template is a
network-on-chip (NoC). Each processing tile is ‘plugged’
into the network through a network interface (NI). The
NoC must offer unidirectional point-to-point connections.
The connections must provide guaranteed bandwidth, and a
tightly bounded propagation delay per connection - i.e. they
must provide a guaranteed throughput. The connections
must also preserve the ordering of the communicated data.
Further details of the NoC are not relevant. Examples of
NoCs providing these properties are Æthereal [14] and
Nostrum [9].

Video processing applications perform operations on large
data structures like frames. A single frame in an HDTV
consists of over 2 million pixels. The memories near the
processor on a tile will not be big enough to store this
amount of data [13]. Therefore, we introduce tiles into the
architecture template that contain large memories and no
computational elements. These tiles are called memory tiles
as opposed to the processing tiles which do contain compu-
tational elements. The data in a memory tile can be accessed
through the communication assist of that tile.
In the rest of the paper, we refer to a memory tile as the re-
mote tile and to its memory as the remote tile memory. The
processing tile that runs the code segment we are concerned
with is referred to as the local tile and its memory is called
the local tile memory.

2.2. Model of computation

Synchronous dataflow (SDF) [8] is a model of computation
that allows design-time analysis of multiprocessor appli-
cations [7, 13]. Nodes in an SDF graph, called actors,
typically correspond to functionality, code, that must be
executed, or to other actions performed by the system being
modeled. Edges show data dependencies (data edges) or
execution order (sequence edges). Every edge can carry an
infinite number of tokens between two actors, and contain
initial tokens (present at the edges at start time). Each actor
in the model has a firing rule which specifies the number
of tokens that must be present on each of its inputs before
it can fire. A constant number of tokens is produced to and
consumed from all edges in first-in-first-out order by each
firing.

If an actor firing represents the execution of a code segment,
the result of this execution may be data that is needed by
other actors and/or results needed for the next firing of the
actor itself. The first situation is modeled via data edges.
For the latter situation, self-edges are used. A self-edge is
a data edge of an actor to itself. The token sent over the

motion vectorscurrent frame

previous frame

F

Figure 2. SDF actor for FSBM.

self-edge models the state that is communicated (stored)
between two consecutive actor firings (state saving).

Typically, dataflow models see a token as an indivisible
element. We assume sometimes that a token, after being
read by an actor, may be divided into a set of data elements.
The actor has random access to the data elements inside the
token. For example, a video frame consists of many pixels.
The frame can be communicated between two actors as a
single token. But the actor may operate on the individual
pixels (data elements).

Following common practice, when doing timing analysis,
we extend SDF models with actor execution time annota-
tions (real numbers), representing the time span between
consumption and production of tokens. These annotations
can be either fixed or variable.

In this paper, we also use Boolean dataflow (BDF) [3]. The
main difference between BDF and SDF is that in BDF we
have a switch and select construct. The switch copies the
data it reads from its input to one of its outputs based on
the value of the control token. The select reads, based on
the value of a boolean control token, data from one of its
inputs and copies this data to the output. The switch and
select introduce data-dependent behavior, which makes a
BDF graph in general non-analyzable at design time.

2.3. Example: full-search block matching

Full-search block matching (FSBM) is the basic algorithm
for detecting motion vectors in video sequences. Many
variants exist, like 3D recursive search [5]. Motion vectors
describe the motion of a block of pixel data from one
frame to another. They are typically used to perform spatial
up-conversion or to achieve a higher data compression (e.g.
in H.263 and MPEG-2 encoders). The algorithm divides
the current frame into a sequence of blocks of typically 8
by 8 pixels. It then takes for each block in the current frame
a window of typically 4 by 4 or 8 by 8 blocks centered
around the block’s position from the previous frame. The
motion vectors are determined by the best match, using
the sum-of-absolute differences, between the pixels in the
block from the current frame and the pixels in the window.

The computation of all motion vectors for a frame can be
represented by the SDF actor as shown in Fig. 2. The actor
reads in the current frame from the input and the previous



frame from the self-edge. Next, it computes and outputs
all motion vectors, and it outputs its state (i.e. the current
frame) on the self-edge. The current frame becomes in this
way the previous frame in the next firing.

3. Approach

To get a system with predictable timing properties, we need
an appropriate design flow. The starting point of this flow is
an SDF model of the application and a predictable architec-
ture as described in Sec. 2.1. We use stepwise refinement
of the application SDF model to include mapping decisions
and to model the effects of architecture details. The result
is a combined SDF model of the application and architec-
ture with predictable behavior wrt timing, memory usage
etc. See [13] for an example of such a flow. The mapping
of data structures onto memories is one of the decisions that
should be taken into account in this flow.
The FSBM application illustrates the problem. The avail-
able storage space typically forces a designer to store the
state and input (frames) in a remote tile memory; the out-
put (motion vectors) may be stored in the local tile memory.
Note that the precise mapping of input, output, and state
data to local and remote memory may differ per applica-
tion. In this paper, we focus on the situation where input
and state are stored in remote memory, and output in local
memory; other situations can be handled similarly.
To be able to reason about the timing properties of this map-
ping decision, we need a model of the memory accesses to
the remote memory. Such a model is presented in Sec. 4.
The communication between the remote memory and the
local actor is handled by the communication assist (CA). Its
role is to provide (pre)fetching of data from a remote mem-
ory in a transparent manner to a programmer. Support for
prefetching is important as it allows hiding of large delays
experienced when data is fetched over the network. The CA
cannot be ignored when we want to build a predictable sys-
tem. Therefore, we need to refine the memory access model
with an SDF model, presented in Sec. 5, of the (pre)fetching
functionality of the CAs for accessing data in a remote tile
memory. When a remote memory is accessed, data is sent
over the network. Therefore, we also have to take the timing
properties of the network into account. In the experimental
evaluation of Sec. 6, we show how an existing model of the
network [10] can be combined with the models developed in
this paper to reason about the timing behavior of an applica-
tion and the dimensioning of system components (e.g. net-
work interface buffer sizes and communication bandwidth).

4. Memory model

4.1. Memory access model

Assume an actor A with a single input i, a single output o
and a self-edge for its state. The following approach can

F

T

T

F
M

A1 A2

F

T

local tile
memory

remote tile
memory

no transfer
transferA

i

o
S3

S2

1S

Figure 3. BDF model for remote memory accesses
of state and input data.

be used to model the mapping decision of state and input
to remote memory. The basic idea is that the remote tile
memory is modeled through a separate actor M . An actor
can send a token to M to request a read or write of data
stored in memory M . On its turn, M returns the requested
data elements to the requesting actor. A BDF model based
on this idea is shown in Fig. 3. The state of A stored in the
remote tile memory is modeled via the self-edge on actor
M . The input data for A, also stored in the remote tile
memory, is modeled via the loop going through the switch
S1, the select S2 and the actor M . The switch S1 and select
S2 are used to keep the existing input token (both control
tokens true) or to read a new input token into the remote
tile memory (both control tokens false). In the situation
that the control tokens are false, the current input token
is discarded and a new input token is read via the input i.
This approach allows for (pre)fetching of data elements to
be incorporated later.

The functionality of actor A is split over two actors A1

and A2 which allows tighter bounds on the time at which
tokens are consumed/produced because A2 and M can
operate in parallel. When actor A1 fires, it reads the data
elements it requested from the remote tile memory into
the local memory. The local tile memory is modeled by
the edges from A1 to A2 and from A2 to switch S3. A1

simultaneously sends a new request to the remote tile
memory to read and/or write data. It further outputs control
tokens for S1 and S2, both with the same value. As soon
as A1 finishes its firing, it hands over control to A2. Actor
A2 reads the local state and performs a transformation on
it, which is equal to the transformation performed by the
original actor A. At the end of its firing, it outputs a control
token to switch S3. This switch is used to control the
production of an output token for the original actor A on its
output o. The actor A2 indicates to the switch whether the
produced data, stored in local memory, is valid or not. If it
is not valid, the token is discarded; if it is valid, the token is
put on output o. Actor A2 hands back control to A1 as soon



as it has to read or write data that is not stored in the local
tile memory.

It is important to note that not all edges in the graph shown
in Fig. 3 represent an actual transfer of data in the system.
Only tokens that are sent over the bold edges must phys-
ically be transfered from one memory location to another.
Tokens sent over the non-bold edges require no actual trans-
fer of data (i.e. transformations can be done in place). In the
remainder, we use this convention for all edges.

4.2. Sharing remote memories

As explained, remote memory tiles will be shared among
many processing tiles. To get a predictable system, each
processing tile must get guarantees on the response time of
the remote memory. This can be realized by using a TDMA
scheme to control access to the remote memory [2]. Using
such a scheme, different processing tiles using the same re-
mote memory can be considered independently. For each
actor A whose data is mapped to a remote memory we can
use the model shown in Fig. 3 (or variants of it for differ-
ent mapping decisions). The sharing of the remote memory
is taken into account via the timing behavior of actor M
(memory).

4.3. Typical access patterns

To allow a refinement of the general model of Sec. 4.1 with
prefetching, we briefly discuss typical memory access pat-
terns for the data elements contained in remotely stored
data. Data elements needed by actor A2 (computation) must
explicitly be fetched from actor M (memory). The subse-
quent data elements needed by A2 may be at arbitrary posi-
tions in the remote data token. Thus, we have a global (pos-
sibly random) access pattern. Opposed to this, we see the
situation in which subsequent data elements needed by A2

are local to each other. For example, an actor doing some
video processing may need access to many pixels (data el-
ements) within a certain window of a frame (see e.g. the
FSBM case). If the required data elements are local to each
other, then all these elements can be fetched from the mem-
ory at once. In case we know in advance which data ele-
ments will be accessed, we can even prefetch the data from
the memory. The access pattern will of course be known at
run-time, but for some applications we can also derive it at
design-time. The latter case allows design-time analysis of
the timing behavior.

4.4. Design-time analysis

The BDF model shown in Fig. 3 cannot be analyzed at
design-time [3] when the number of iterations between M ,
A1 and A2 before an output is produced is unknown. In
case we know how often and when the memory needs to be

1,1A 2,1A

M1

1,2A 2,2A

M2

1,nA 2,nA

Mn

A1,
n+1

A2,
n+1

A

i

o

Figure 4. SDF model for remote memory accesses.

accessed, we can translate the BDF model via an unfold-
ing into an SDF model that can be analyzed at design-time
(see Fig. 4). The basic idea is that each iteration i results
in its own set of Mi, A1,i and A2,i actors (encircled in gray
in the figure). All Mi are then connected to each other via
sequence edges. Each actor A2,i is also connected via a se-
quence edge to the actor A1,i+1. During the last firing of
A1,i (i = n + 1) it is not necessary to sent a new request
from A1,n+1 to the memory; thus the actor Mn+1 can be
discarded.
In the situation that we have further design-time knowledge,
we can further reduce the number of actors. (This may be
useful for speeding up timing analysis.) Each actor A1,i is
responsible for accessing data from the memory. In case the
whole memory access pattern is known at design-time, then
we can assume the Mi actors to send the correct data. (It
remains to realize this assumption via appropriate prefetch-
ing, as explained in the next section.) As a result, all A1,i

actors can be removed. The A2,i actors can read the cor-
rect data directly from Mi. We illustrate this transformation
using the FSBM application. FSBM requires access to a
window from a video frame. This window moves in a pat-
tern defined at design-time through the frame. Hence, the
memory access pattern is fully known at design-time. The
original FSBM actor (Fig. 2) can be translated to the model
with explicit memory accesses (Fig. 3). The next step is to
translate the BDF model to an SDF model using our knowl-
edge of the number of iterations through the actors M , A1

and A2. The resulting SDF graph is shown in Fig. 5. It
shows n memory actors Mi which send data to n actors Fi.
Each Fi computes a single motion vector. A frame size of
352 by 288 pixels would make n equal to 1584.

4.5. Expressiveness of the models

Section 4.1 presents a general BDF graph to explicitly
model memory accesses to a remote memory. BDF graphs
may exhibit data-dependent behavior, which in general
makes it impossible to analyze their behavior at design-time
without analyzing all possible input streams. Being able to
analyze the system at design-time without extensive simu-
lation of many possible inputs is key for predictable mul-
tiprocessor systems. SDF models on the other hand can
be analyzed at design-time. However, SDF graphs cannot



M1

F1 F2

M2

Fn

Mn

F

previous frame

current frame

motion vectors

Figure 5. SDF model for FSBM with remote tile
memory.

model data-dependent behavior (i.e. all actors have a con-
stant rate). This may seem to impose a very severe restric-
tion to the applicability of our SDF model. However, the
SDF model is only used to analyze the behavior of the ap-
plication when mapped onto the multi-processor system un-
der certain conditions. For instance, an MPEG decoder may
be modeled as a BDF graph. Our BDF memory model can
be used to make accesses to a frame memory explicit. To
analyze the worst-case behavior of the MPEG decoder, the
graph may be transformed into an SDF model; all variable
(data-dependent) rates in the BDF model are replaced in the
SDF model by their worst-case rates. The SDF model can
then be used to analyze, for instance, the worst-case timing
behavior when this remote frame memory is used. More in
general, one can use the concept of scenarios as presented in
[12, 17] to capture data-dependent behavior and certain con-
trol aspects. Using the concept of scenarios, a set of SDF
graphs can be derived from the BDF model, one for each
typical mode of execution. They can be analyzed individu-
ally. The results can be used, for example, for design-time
mapping decisions and run-time resource and QoS manage-
ment. The concept of scenarios is orthogonal to this work.
So, our approach is not limited to only applications that can
be modeled as SDF graphs. It can handle applications with
data-dependent behavior that can be bounded, which is true
for many multi-media applications.

5. Prefetching

5.1. Prefetching model

In Sec. 3, we already argued that the (pre)fetching of data
from a remote memory as handled by the communication
assist (CA) must be taken into account. Therefore, we need
to extend the memory access model of Sec. 4 with an SDF
model of (pre)fetching functionality of the CAs. Before in-
troducing the model, we first discuss the typical behavior of
the local and remote CA for the ith sequence of firings of the
actors A1,i and A2,i in the memory access model (A1,i and
A2,i in Fig. 4). A firing of actor A1,i produces data to A2,i

and it requests data that is needed for firing A2,i+1. The lo-
cal CA sends this request to the remote CA. On its turn, the
remote CA will return the requested data. Next, the local
CA has to copy the data into the local tile memory. How-

AA1,i

CA l,1 CA l,2 CA l,3 CA l,4

CAr,1 CAr,2

2,i

firing i firing (i+1)

local tile

remote tile

Figure 6. SDF model for the CAs.

ever, it might be that not all requested data can be stored in
the local memory when A2,i is firing (and thus occupies part
of the local memory). For that reason, the local CA might
have to break the request to the remote CA into two steps.
First, the local CA requests and receives the data that can
be prefetched while A2,i is firing. Next, it fetches the data
that could not be stored in the local memory while A2,i was
firing. The SDF model for the behavior of the CAs is shown
in Fig. 6. The actors CAl,1 , CAr ,1 and CAl,2 model the
prefetching of data and the actors CAl,3 , CAr ,2 and CAl,4

model the fetching of data. Note that the remote tile mem-
ory actor Mi has been abstracted away. Its (timing) behav-
ior is included in the remote CA. The SDF model can be
simplified in the situation that all data can be buffered - i.e.
the second access to the remote memory (CAl,3 , CAr ,2 ,
CAl,4 ) can be removed. In the situation that the complete
data access pattern is known at design time, we can apply a
simplification similar to the one discussed at the end of Sec.
4.4. The actor A1,i can be removed and the data access pat-
tern can be directly implemented in CAl,1 and CAl,3 . For
the FSBM example, reverting back to the SDF model shown
in Fig. 5, we have to do the following to take the CAs into
account. Each pair of Mi and Fi should be replaced by the
SDF model of Fig. 6 without the A1,i and with the Fi re-
placing A2,i.

5.2. Communication assist

It is interesting to observe that the (pre)fetching model is
independent of the prefetching strategy. A designer can
choose which strategy to use and use our model to analyze
its timing behavior. However, to support re-use, it is desir-
able that a multi-processor platform supports some typical
prefetching strategies via its CAs. In the domain of multi-
media systems, we see that applications typically have sim-
ilar memory access patterns. For example, many video pro-
cessing applications use a window that moves over a video
frame. They only differ in the used window, frame size, or
direction in which the window moves over the frame. A
parametrized CA can be designed that implements the cor-
rect prefetching behavior for all these applications. In the
video example, the parameters used to configure the CA are
the window and frame size and the direction of movement
of the window.



6. Experimental results

Through the FSBM application and an H.263 decoder we
show how the models presented in the previous sections can
be used to analyze the timing properties of an application.

6.1. Experimental setup

In our experiments, we used the architecture template as
described in Sec. 2.1. Each processing tile contains one
ARM7TDMI core running at 133MHz. The processor has
single-cycle access to the local memory and no cache is
available. The memory access model deals with a single
actor whose state and input token must be mapped onto a
remote memory. The sizes of the local memories are cho-
sen such that in our experiments we always have only one
actor that requires the use of a remote memory. This actor
is mapped onto a processing tile without other actors. The
mapping of the other actors is chosen such that they do not
form a bottleneck in the system.
The functionality of the communication assist can be imple-
mented in hardware (speed) or software (flexibility). For the
FSBM application, we chose to use a software solution as
this is fast enough. In the H.263 decoder, we had to assume
a hardware implementation to avoid that the communication
assist becomes the bottleneck in the system.
The tiles in our MP-SoC are connected with each other us-
ing Æthereal guaranteed throughput channels. The network
runs at 100MHz and provides a bandwidth of 100MByte/s.
There exist two SDF models for reasoning about the timing
properties of such a channel [10, 13]. These can be used
to refine the edges between the CAl and CAr actors in our
model. We have chosen to use the model from [10] as this
fits best to our approach. Data which is sent through the
channel travels first through the CA at the writing side, then
it goes through the network interface, the network and fi-
nally through the network interface and CA at the reading
side. (When sending a request to the remote memory, the
local CA acts as the writing side and the remote CA is the
reading side.) A TDMA scheme is used for the CAs and
network interfaces to provide a guaranteed throughput and
resource sharing [2]. The delay of a single data element (de)
traveling through the channel can be upper bounded by the
following formula:

TNW,de = d(2 · (TCA,w + TNI ) + TL + TCA,r )/Ne (1)

TCA,(w|r) models the fraction of time that a particular task
has access to the communication channel through the CA at
the writing respectively reading side. TL represents the time
that a packet is traveling through the network from one tile
to another. TNI is used to model the bandwidth allocated
for this channel in the network. TNI and TCA,w are counted
twice - once for the data and once for the control flow token
going back. The reading CA is only involved in reading

FCA r

CA l,2

CA l,1

previous frame

current frame

motion vectors

Figure 7. SDF graph for FSBM.

the data and is therefore counted once. The factor N is the
number of data elements transfered in one burst.

6.2. FSBM: manual analysis

Model. The SDF model for the computation of all motion
vectors of a single frame was derived in Sec. 4.4. In Sec.
5.1, we discussed how this model can be refined to include
the behavior of the CA. The result is an SDF graph con-
taining many actors (11088). This number can be reduced
significantly by using application knowledge. All actors
Fi in Fig. 5 have the same functional and timing behavior,
and are executed in sequence; they can be modeled with a
single actor F that is repeatedly fired via a self-edge. We
can apply a similar reasoning for the actors modeling the
local and remote CA. The resulting graph is shown in Fig.
7. Note that such a simplification is in general not possible.
However, in this case, it is convenient because it allows a
manual analysis that can be used to illustrate the potential
of our approach. Note that in case these simplifications are
not possible, the automated analysis technique presented in
the next section is not affected.
Let’s compare Fig. 7 to the original FSBM actor shown
in Fig. 2. Actor F still has a self-edge, but the size of the
token that it carries is now much smaller. The token fits
in the local tile memory. The large token present on the
self-edge of the original F actor is now put on the self-edge
of actor CAr .
We measured, using an ARM instruction set simulator, an
execution time of 6ms to compute a single motion vector
in the F actor for a block of 8 by 8 pixels and a window of
24 by 24 pixels.

Prefetching. After a firing of actor F , the window moves
to a new position in the frame. During the firing of F , this
data should be prefetched from the remote memory. The
worst situation that can happen is that the window moves
down to a new row and the left of the frame. In this case,
the complete window must be discarded and a new window
must be (pre)fetched. To handle this situation, we should
be able to prefetch a complete window. We never have to
prefetch more than this as the FSBM actor has no jitter in
its execution time that must be accommodated for.

Network interface buffer size. We want to prefetch all
data during the firing of actor F . This is possible if the



sequential firing of the actors CAl,1 , CAr ,1 , CAl,2 in our
model and the actors in the channel model takes less time
than the execution time of F (TF = 6ms). The constraint
that must be satisfied is:

TF ≥ TCAl,1
+TNW ,req+TCAr,1

+TNW ,upd +TCAl,2
(2)

The execution time of the network is given by the time
needed to send a request to the remote CA (TNW,req)
and the time needed to send the data from the remote CA
to the local CA (TNW,upd). The request to the memory
is only a single data element (TNW,req = TNW,de). An
update consists of multiple data elements (e.g. a window
requires an update of 192 data elements (pixels)). It holds
that TNW,upd = TNW,de · #(pixels in update). Let’s
assume that each access of the CA to the network takes
2µs (TCA,w = TCA,r = 2µs). The latency of a token
in the network is 20µs, and for the local CA requesting
an update, TCAl,1

, it is 100µs. The remote and local CA
which send and receive the update, TCAr,1

and TCAl,2
,

need 2 · #(pixels in update)µs. Using Eqn. 1 and Eqn.
2, we find that the following constraint should be satisfied:
27µs ≥ (2 · TNI + 26µs)/N . Let’s choose a network
interface buffer size of N = 10 elements. Note that we
can choose a smaller N , but this will increase the required
communication bandwidth as computed below. TNI should
then be at most 122µs.

Communication bandwidth. Using Eqn. 1, we compute
that the maximum time available for prefetching the data
(TNW,upd) is equal to 5ms. The number of data elements
that must be prefetched is at most one window (576 data
elements of one byte). The required bandwidth is then
equal to 576byte/(5ms · 100Mbyte/s) = 0.11% of the
bandwidth available in the channel.

Analysis result. By reserving the calculated buffersize and
communication bandwidth, all data can be transfered from
the remote to the local memory in time so that the compu-
tation of all motion vectors for a frame takes equally long
when using a local or remote tile memory.

6.3. FSBM: automatic analysis

The FSBM algorithm and the prefetching mechanism
have been implemented in HAPI. HAPI is an MP-NoC
simulator based on YAPI [6] that can analyze the timing
and simulate functional behavior of an SDF graph when
mapped onto our architecture template. It allows for
co-simulation between (timed) SDF actors running on the
native processor and SDF actors running on cycle accurate
simulators. An SDF model for an Æthereal guaranteed
throughput channel is also provided. A design-space
exploration is performed by repeatedly analyzing the SDF

graph for different communication bandwidth allocations,
network interface buffer sizes and prefetching sizes. Each
analysis is equal to a complete analysis as done in the
previous subsection.

We first analyzed the impact of prefetching data elements
from the remote memory for different network interface
buffer sizes in the local memory and different sizes of
the window. The results, shown in Fig. 8a, have been
normalized to the time needed to compute all motion
vectors for a frame without prefetching. They clearly
indicate that the time needed to calculate all motion vectors
improves considerably when prefetching is used. The
results show further that prefetching two columns of the
window (prefetch 16) or the entire window (prefetch
window) does not improve the time required to calculate
all motion vectors for a frame compared to prefetching one
column (prefetch 8).

We also used the network channel model in conjunction
with our SDF models to analyze the bandwidth and network
interface buffer size requirements. The results are normal-
ized to the smallest time needed to compute all motion vec-
tors of a frame. Fig. 8b shows that if we prefetch one col-
umn, then we need 0.1% of the available bandwidth. Fig.
8c shows a very small difference (2%) in the time needed
to calculate all motion vectors for a frame when prefetch-
ing one column and using a network buffer size of 1 or 10
elements. With more than 10 elements the time does not de-
crease. Note that both results match with our analysis made
in the previous subsection.

6.4. H.263 decoder

H.263 is a standard video-conferencing codec optimized for
low data rates and relatively low motion. The codec was
used as a starting point for the development of the MPEG-2
codec which is optimized for higher data rates. Part of the
H.263 decoder is a sub-pixel accurate motion compensation
block. It uses the motion vectors calculated by a motion es-
timator (e.g. FSBM) to construct a frame based on already
decoded frames (reference frame). In this experiment, we
mapped the motion compensator on an ARM7. The other
parts of the decoder were mapped in such a way onto other
resources that the motion compensation is the bottleneck in
achieving maximal throughput.

The motion compensation needs access to a reference frame
and outputs a new frame. These frames must be stored in re-
mote memory. The input data is stored in the local memory.
To model this situation, we used a BDF model for remote
accesses of state and output data (not shown in the paper,
but similar to Fig. 3). The motion compensation works on
a block-by-block basis; the prefetching is limited to only a



(a) (b) (c)

Figure 8. Simulation result.

Figure 9. H.263 design space.

single block as not more is needed. We performed a design-
space exploration for the network interface buffer size and
allocated communication bandwidth. The result of the ex-
ploration is shown in Fig. 9. The experiment shows that the
number of frames per second is not influenced by the allo-
cated bandwidth (this is always sufficient), but the network
interface buffers need to be large (64 elements) to obtain the
maximal throughput.

7. Conclusions

In this paper, we have presented an approach to deal with
large data structures in on-chip multiprocessors while guar-
anteeing performance. We use a generic tile-based multi-
processor architecture with tiles containing large memories
that are shared by different subsystems and applications.
We developed a number of SDF models that allow reason-
ing about the timing aspects of using memory tiles in the
system and to reason about buffer sizes and communication
bandwidth requirements. An integrated prefetching mech-
anism hides the latency introduced by using memory tiles.
The analytical properties and the usefulness of the prefetch-
ing have been demonstrated in two case studies.

References

[1] B. Ackland, et al. A single chip 1.6 billion 16-b mac/s
multiprocessor dsp. IEEE Journal of Solid-State Circuits,
35:412–424, 2000.

[2] M. Bekooij, et al. Predictable multiprocessor system design.
In SCOPES’04, p. 77–91. Springer, 2004.

[3] J. Buck. Scheduling Dynamic Dataflow Graphs with
Bounded Memory using the Token Flow Model. PhD the-
sis, University of California, Berkeley, CA, 1993.

[4] D. Culler, et al. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann, 1999.

[5] G. de Haan, et al. True motion estimation with 3-d recur-
sive search block-matching. IEEE Transactions on CSVT,
3(5):368–388, 1993.

[6] E. de Kock, et al. YAPI: Application modeling for signal
processing systems. In DAC’00, p. 402–405. ACM, 2000.

[7] R. Govindarajan, et al. Minimizing buffer requirements
under rate-optimal schedule in regular dataflow networks.
VLSI Signal Processing, 31:207–229, 2002.

[8] E. Lee, et al. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions
on Computers, 36(1):24–35, 1987.

[9] M. Millberg, et al. Guaranteed bandwidth using looped con-
tainers in temporally disjoint networks within the Nostrum
network on chip. In DATE’04, p. 890–895. IEEE, 2004.

[10] A. Moonen, et al. Timing analysis model for network based
multiprocessor systems. In Progress’04, Workshop, Proc.,
p. 122–130. STW, October 2004.

[11] P. Paulin, et al. Application of a multi-processor SoC plat-
form to high-speed packet forwarding. In DATE’04, p. 58–
63. IEEE, 2004.

[12] P. Poplavko, et al. Mapping of an mpeg-4 shape-texture de-
coder onto an on-chip multiprocessor. In PRORISC’03, p.
140–147, 2003.

[13] P. Poplavko, et al. Task-level timing models for guaran-
teed performance in multiprocessor networks-on-chip. In
CASES’03, p. 63–72. ACM, 2003.

[14] A. Radulescu, et al. An efficient on-chip network inter-
face offering guaranteed services shared-memory abstrac-
tion, and flexible network configuration. In DATE’04, p.
878–883. IEEE, 2004.

[15] M. Rutten, et al. A heterogeneous multiprocessor architec-
ture for flexible media processing. IEEE Design & Test of
Computers, 19(4):39–50, 2002.

[16] S. Stuijk, et al. Predictable embedding of large data
structures in multiprocessor networks-on-chip (extended ab-
stract). In DATE’05, p. 254–255. IEEE, 2005.

[17] P. Yang, et al. Managing dynamic concurrent tasks. In
ISSS’02, p. 112–119. ACM, 2002.


