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Abstract. Network-on-chip-based multiprocessor systems-on-
chip are considered as future embedded systems platforms. One of
the steps in mapping an application onto such a parallel platform
involves scheduling the communication on the network-on-chip.
This paper presents different scheduling strategies that minimize
resource usage by exploiting all scheduling freedom offered by
networks-on-chip. Our experiments show that resource-utilization
is improved when compared to existing techniques.

1. Introduction
Increasing computational demands from multimedia ap-

plications have led to the development of multi-processor
systems-on-chip (MP-SoC) which integrate many process-
ing cores and memories. With the growing number of cores
integrated into a chip, communication becomes a bottleneck
as traditional communication architectures are inherently
non-scalable [3]. Networks-on-Chip (NoC) are emerging
as a communication architecture which solves this issue as
it provides a better structure and modularity [3, 5, 16]. Fur-
thermore, it can provide guarantees on the timing behav-
ior of the communication. This enables the development of
systems with a predictable timing behavior which is key for
modern multimedia systems [7].

Current NoCs like Æthereal [16] and Nostrum [12] use
circuit-switching to create connections through the NoC
which offer timing guarantees. Today’s routing and schedul-
ing solutions however (a) often do not use all routing flex-
ibility of NoCs and (b) make bandwidth reservations for
connections with throughput/latency guarantees that are un-
necessarily conservative. To illustrate the first point, for
example, the scheduling strategies presented in [9, 11] re-
strict themselves to minimal length routes. Modern NoCs
allow the use of other, more flexible, routing schemes. As
an illustration of the second point, consider a simple NoC
with three links l1, l2 and l3. The data streams sent over l1
and l2, shown in Fig. 1, are both sent over l3. Traditional
NoC scheduling strategies [9, 10] reserve two guaranteed
throughput connections on the link (l3,trad). However, given
the timing of the data streams on l1 and l2, it is possible
to combine both streams and preserve bandwidth (l3,new).
The essential idea is not to reserve bandwidth for guaran-
teed throughput connections permanently during the entire
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Figure 1. Motivating example.

execution of an active application but only during certain
intervals. This paper explores and compares several new
strategies which exploit all scheduling freedom offered by
modern NoCs and minimize resource usage. Scheduling
strategies which minimize resource usage will be able to
schedule problems with tighter latency constraints and/or
larger bandwidth requirements.

The remainder of this paper is organized as follows. The
next section discusses related work. Sec. 3 presents the ap-
plication model used for programming NoC-based MP-SoC
architectures. The architecture itself is discussed in Sec. 4.
The time-constrained scheduling problem is formalized in
Sec. 5. Several different scheduling strategies are presented
in Sec. 6. The benchmark used to evaluate these strategies is
presented in Sec. 7. The experimental results are discussed
in Sec. 8.

2. Related Work
This paper considers scheduling streaming communica-

tion on a NoC within given timing constraints while mini-
mizing resource usage. We restrict ourself to communica-
tion with timing constraints. In practice, some communica-
tion streams in an application may have no timing require-
ments. Scheduling techniques for these streams are studied
in e.g. [15]. Those techniques can be used together with our
approach to schedule both the communication without and
with timing constraints.

In [11], a state-of-the-art technique is presented to sched-
ule time-constrained communications on a NoC when as-
suming acyclic, non-streaming communication. That is,
tasks communicate at most once with each other. Our ap-
plication model, presented in Sec. 3, allows modeling of
communication streams in which tasks periodically, i.e., re-
peatedly, communicate with each other.

Scheduling streaming communication with timing guar-
antees is also studied in [9, 10, 16]. They apply a greedy
heuristic and reserve bandwidth for streams, whereas we
propose to reserve bandwidth per message and present sev-
eral different heuristics. Our results show a clear improve-
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Figure 2. Example application task graph.

ment in resource usage. In [13], an extension to [10, 16]
is presented to schedule multiple applications onto a single
network-on-chip. This approach can also be used in con-
junction with our scheduling techniques.

3. Application Modeling
Multimedia applications, for instance an MP3 encoder,

operate on streams of data. These applications can be de-
scribed by an application task graph in which the tasks are
periodically executed. The period is determined by the
throughput requirements of the application. Whenever a
task executes, it exchanges messages with other tasks via
(data) streams. Fig. 2 shows an example of a simple appli-
cation task graph consisting of two tasks t1 and t2. Within
each period P, task t1 sends a message m1 through stream s1
to task t2 and t2 sends a message m2 through s2 to t1. Note
that the periodic execution of the tasks results in a periodic
behavior of the communication between them, with poten-
tially some data-dependent jitter.

To meet the computational requirements of modern mul-
timedia applications, multi-processor systems are used. The
tasks, from an application graph, are mapped to the vari-
ous processors in the system. Whenever multiple tasks are
mapped to one processor, the execution order of these tasks
is fixed through a schedule. These schedules and the tim-
ing constraints imposed on the application determine time
bounds within which each task must be executed. Similarly,
they determine time bounds within which messages must be
communicated between the tasks. This paper presents tech-
niques to schedule messages on the NoC, which are speci-
fied with such time bounds.

4. Architecture Platform
Multiprocessor systems-on-chip, like Daytona [1],

Eclipse [17], Hijdra [2], and StepNP [14], use the tile-based
multiprocessor template described by Culler [4]. Each tile
contains one or a few processor cores and local memories.
The architecture template used in our work fits also in this
template. A network-on-chip (NoC) is used to interconnect
the different tiles. Each tile contains a network interface
(NI) through which it is connected with a single router in
the NoC. The routers are connected to each other in an ar-
bitrary topology. The connections between routers and be-
tween routers and NIs are called links.

In this paper, the connections between the processing el-
ements and the NI inside a tile are ignored. We assume that
these connections introduce no delay, or that the delay is al-
ready taken into account in the timing constraints imposed
on communications, and that there is sufficient bandwidth
available. Hence, the NI can be abstracted away into the
tile. Given this abstraction, the architecture can be described
with the following graph structure.

Definition 1. (ARCHITECTURE GRAPH) An architecture
graph (N,L) is a directed graph where each node u,v ∈ N
represents either a tile or a router, and each edge l = (u,v)∈
L represents a link from node u to node v.

Communication between tiles involves sending data over
a sequence of links from the source to the destination tile.
Such a sequence of links through the architecture graph is
called a route and is defined formally as follows.

Definition 2. (ROUTE) A route r between node u and node v
with u 6= v is a path in the architecture graph of consecutive
links from u to v without cycles. The operators src and dst
give respectively the source and destination node of a route
or a link. The length of a route r is equal to the number of
links in the path, and denoted |r|. We use l ∈ r to denote that
the link l appears in the route r.

Links can be shared between different communications
by using a TDMA-based scheduler in the routers and NIs.
All links have the same number of TDMA slots, N, and each
slot has the same bandwidth. At any moment in time, at
most one communication can use a slot in a link. This guar-
antees that the NoC schedule is contention-free. Hence, no
deadlock will occur. The data transfered over a link in a
single slot is called a flit and it has size sz f lit (in bits). To
minimize buffering in routers, a flit entering a router at time-
slot t must leave the router at slot t +1. Not all slots in a link
may be available for use by a single application. Part of the
slots may already be used by other applications mapped to
the system. The function L : L → 2N associates with every
link a set indicating which slots are free.

Wormhole routing [6] is used to send the flits through
the network. This technique requires limited buffering re-
sources and offers strict latency bounds. A message is di-
vided by the sending NI into flits. The flits are then routed
through the network in a pipelined fashion. This reduces the
communication latency considerably. All flits which belong
to the same message and are sent in consecutive slots form
a packet. The first flit in a packet (header flit) contains all
routing information and leads the packet through the net-
work. The header has a fixed size of szph bits (szph ≤ sz f lit ).
The remaining sz f lit − szph bits in the header flit can be used
to send (a part of) the actual message. The size of the header
must be taken into account when allocating resources in the
NoC. Two messages, possibly sent between different source
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Figure 3. NoC-based MP-SoC architecture.

and destination tiles but over one link at non-overlapping
moments in time can use the same slot. For messages that
use the same slot in the link between the source tile and
the first router but a different route, the routing information
stored in the NI for this slot must be changed. This can be
implemented efficiently by sending a message from a pro-
cessor or communication assist [4] inside a tile to its NI to
change the routing information. The time required to recon-
figure the NI is Trecon f . During this reconfiguration time, the
slot may not be used to send messages.

Tasks in an application communicate with each other
through streams of messages. The ordering of the messages
in a stream must be preserved. To realize this, the NIs send
messages onto the network in the same order as they receive
them from the processors. The scheduling of communica-
tions on the NoC must also guarantee that the messages are
received in the same order. No reordering buffers are thus
needed in the NIs, which simplifies their hardware design.
The NoC further requires that when the communication of
a message is started, slots are claimed in the links it is us-
ing. These slots are only freed after the communication has
ended. Preemption of a communication is not supported.

5. Time-Constrained Scheduling Problem
Informally, this paper tries to find a schedule for a set of

messages which are sent, within given timing constraints,
between different tiles in a system. A message is formally
defined as follows.

Definition 3. (MESSAGE) Given an architecture graph
(N,L), a set of streams S and a period P. A message m is
a 7-tuple (u,v,s,n,τ,δ,sz), where u,v ∈ N are respectively
the source and the destination tile of the n-th message sent
through the stream s ∈ S during the period P. The earliest
time at which the communication can start, relative to the
start of the period, is given by τ ∈ N (0 ≤ τ < P). The max-
imum duration of the communication after the earliest start
time is δ ∈ N (δ ≤ P). The size (in bits) of the message that
must be communicated is sz ∈ N.

In the application task graph shown in Fig. 2, a mes-
sage m1 = (u,v,s1,n,τ,δ,sz) is sent each period through the
stream s1. This communication can start at time τ and must
finish before τ+δ. Note that a communication may start in
some period and finish in the next period. This occurs when
τ+δ > P.

In practice, messages may not always have a fixed earli-
est start time, duration, or size. Conservative estimates on
these figures should be used to construct the set of messages
in order to guarantee that all communications fall within the
timing and size constraints. Resources that are claimed but
not used, due to for example a smaller message size, can be
used to send data without timing requirements between tiles
without providing guarantees, i.e. best effort traffic.

A message specifies timing constraints on the communi-
cation of data between a given source and destination tile.
It does not specify the (actual) start time, duration, route
and the slot allocation. This information is provided by the
scheduling entity.

Definition 4. (SCHEDULING ENTITY) A scheduling entity
is a 4-tuple (t,d,r,st), where t ∈ N is the start time of the
scheduled message relative to the start of the period and
d ∈ N is the duration of the communication on a single link.
The scheduled message uses the route r in the network and
the slots it uses from the slot table of the first link l ∈ r are
contained in the set st ∈ 2N .

The slots given in st are claimed on the first link of the
route r at time t for the duration d. On the next link, the
slot reservations are cyclically shifted over one position. So,
these slots are claimed one time-unit later, i.e. at t + 1, but
for the same duration d. The complete message is received
by the destination at time t + d + |r| − 1. Fig. 4 shows a
scheduling entity which sends a message over a link with a
slot-table of 8 slots. Starting at time t = 2, the slots 2, 3, and
4 are used to send the message. The communication ends
after d = 11 time units. In total two packets consisting both
of three flits are used to send the message.

The relation between a message and a scheduling entity
is given by the schedule function, formally defined below
in Def. 5. Among all schedule functions, those respecting
the constraints in Def. 5 are called feasible. The first two
constraints make sure that the communication takes place
between the correct source and destination tile. The third
and fourth constraint guarantee that the communication falls
within the timing constraints given by the message. The
fifth constraint ensures that enough slots are reserved to
send the message and packet headers over the network. It
uses a function π(e) which gives for a scheduling entity
e = (t,d,r,st) the number of packets which are sent between
t and t +d on the first link of the route r considering the slot
reservations st and assuming that at time 0 the first slot of
the slot table is active. The function ϕ(e) gives the number
of slots reserved by e between t and t + d. The sixth con-
straint makes sure that a scheduling entity does not use slots
in links which are used by other applications. It uses a func-
tion σ(e, lk) = {(s + k) mod N | s ∈ st} which gives for a
scheduling entity e and the k-th link lk on the route r of e the
set of slots it uses from the slot-table with size N. The sev-
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enth constraint requires that the schedule is contention-free.
The next constraint makes sure that there is enough time to
reconfigure the NI between two messages which originate
at the same NI and use the same slot but different routes.
The last constraint enforces that the ordering of messages in
a stream is preserved.

Definition 5. (SCHEDULE FUNCTION) A schedule function
is a function S : M → E where M and E are respectively the
set of messages and scheduling entities. We call S feasible
if and only if, for all messages m = (u,v,s,n,τ,δ,sz) ∈ M
associated to scheduling entity S(m) = e = (t,d,r,st),

1. the route starts from the source tile: u = src(r),
2. the route ends at the destination tile: v = dst(r),
3. the communication does not start before the earliest

moment in time at which the data is available: t ≥ τ,
4. the communication finishes not later than the deadline:

t +d + |r|−1 ≤ τ+δ,
5. the number of allocated slots is sufficient to send the

data: sz+ szph ·π(e) ≤ sz f lit ·ϕ(e),
6. for all l ∈ r, σ(e, l)∩L(l) = /0,

and for each pair of messages m1,m2 ∈ M with
m1 6= m2, m1 = (u1,v1,s1,n1,τ1,δ1,sz1), S(m1) = e1 =
(t1,d1,r1,st1), m2 = (u2,v2,s2,n2,τ2,δ2,sz2), and S(m2) =
e2 = (t2,d2,r2,st2),

7. for all l ∈ r1∩ r2, with l the i-th link in r1 and l the j-th
link in r2 and [t1 + i, t1 +d1 + i]∩ [t2 + j, t2 +d + j] 6= /0
must hold: σ(e1, l)∩σ(e2, l) = /0,

8. if u1 = u2, r1 6= r2, and st1
T

st2 6= /0, then there is
enough time to reconfigure the NIs: (P + t2 mod P−
(t1 +d1) mod P) mod P ≥ Trecon f ,

9. if s1 = s2 and n1 < n2, then the ordering of these mes-
sages is preserved: t1 + d1 < t2 ∧ t1 + d1 + |r1|− 1 <
t2 + |r2|.

If a schedule function is not feasible, it means that one
or more of the above rules are violated in at least one as-
sociated scheduling entity. Such a schedule is called infea-
sible. By construction, any feasible schedule is contention-
free and hence free of deadlock and livelock [8].

6. Scheduling Strategies
6.1. Overview

Given a set of messages M, a scheduling strategy must
find a schedule entity e for each message m ∈ M and the set

of scheduling entities E must form a feasible schedule func-
tion (i.e. all constraints from Def. 5 must be met). Given that
an exhaustive approach is not tractable, we present several
heuristic approaches. The heuristics allow the user to trade
off quality of solutions and effort spent on solving prob-
lems. First, a greedy strategy is presented in Sec. 6.2. Typ-
ically, the greedy approach gives a solution quickly. How-
ever, it also excludes a large part of the solution-space. The
second strategy, ripup, adds backtracking to the greedy ap-
proach. This improves the quality (number of feasible solu-
tions found for a set of problems), but it also increases the
run-time. The backtracking tries to resolve scheduling con-
flicts when they occur. The third strategy, presented in Sec.
6.4, tries to avoid conflicts by estimating a priori the usage
of all links. This should steer the routing process to avoid
scheduling conflicts and as such minimizes the use of the
backtracking mechanism.

6.2. Greedy

The greedy strategy explores a small part of the solution-
space. As a result, it has a small run-time. However, it
may miss solutions or find non-optimal ones in terms of re-
source usage. The greedy strategy essentially tries to sched-
ule the largest, most time-constrained messages first, via the
shortest, least congested route that is available. It works as
follows. First, all messages m ∈ M are assigned a cost us-
ing Eqn. 1 and sorted from high to low based on their cost.
The cost function guarantees that messages are ordered ac-
cording to their (integer) size (larger size first) and that two
messages with the same size are ordered with respect to the
duration (tighter constraint first).

costM(m) = sz(m)+
1

δ(m)
(1)

Next, a schedule entity e = (t,d,r,st) must be constructed
for the first message m = (u,v,s,n,τ,δ,sz) ∈ M. To mini-
mize the resource usage, the scheduling strategy must try
to minimize the length of the routes. For this reason, the
greedy strategy determines a list R of all routes from u to v
with the shortest length and assigns a cost to each route r
using the following cost function that determines the mini-
mum ratio of free slots versus available slots in a route.

costR(r,m) = min
l∈r

F (l,m)

|L(l)|
, (2)

with F (l,m) the number of slots in the link l that are not
used between τ(m) and τ(m)+ δ(m) by the set of schedule
entities E constructed so far and with L(l) the number of
slots available in the link l. The routes are sorted from high
to low cost giving preference to the least congested routes.
Next, a schedule entity e is constructed using the first route
r in R. The scheduling strategy should avoid sending data



in bursts as this increases the chance of congestion. There-
fore, the start time, t, of e is set equal to the earliest possible
time respecting the third and last constraint from Def. 5.
Given t and the fourth and last constraint from Def. 5, the
maximal duration d of e can be computed. All slots avail-
able between t and the maximal duration on the first link of
the route, respecting the sixth, seventh and eighth constraint
from Def. 5, are located. From these slots, a set of slots, st,
is selected which offer sufficient room to send the message
and the packet headers. The scheduler tries to minimize the
number of packets that are used by allocating consecutive
slots in the slot table. This minimizes the overhead of the
packet headers, which in turn minimizes the number of slots
needed to sent the message and its headers. This leaves as
many slots as possible free for other messages. It is possible
that no set of slots can be found which offer enough room
to send the message within the timing constraints. If this is
the case, the next route in R must be tried. In the situation
that all routes are unsuccessfully tried, a new set of routes
with a length of the minimum length plus one is created
and tried. This avoids using routes longer than needed and
it never considers a route twice. A route which uses more
links than the minimum required is said to make a detour.
The length of the detour is equal to the length of the route
minus the minimum length. If no set of slots is found when
a user-specified maximum detour of X is reached, then the
problem is considered infeasible. If a set st of slots is found,
the minimal duration d needed to send the message via the
route r, starting at time t using the slots st is computed us-
ing the fifth constraint from Def. 5. The scheduling entity
e = (t,d,r,st) is added to the set of schedule entities E. The
new set of schedule entities E ∪{e} is guaranteed to respect
all constraints from Def. 5. The next message can be han-
dled. The process is repeated till a schedule entity is found
for all messages in M, or until the problem is considered
infeasible (a message cannot be scheduled).

6.3. Ripup

The ripup strategy uses the greedy strategy described in
the previous section to schedule all messages. This guaran-
tees that all problems that are feasible for the greedy strat-
egy are also solved in this strategy. Moreover, the same
schedule function is found. As soon as a conflict occurs (i.e.
no schedule entity ei can be found for a message mi which
meets the constraints given in Def. 5), an existing schedule
entity e j is removed from the set of schedule entities E. To
choose a suitable e j, the heuristic calculates for each sched-
ule entity e j ∈ E the number of slots it uses in the links that
can also be used by ei. The higher this number, the larger
the chance that e j forms a hard conflict with ei. A schedule
entity e j with the largest conflict is therefore removed from
E. This process is continued until a schedule entity ei for
the message mi can be created that respects the constraints

given in Def. 5. After that, the messages of which the corre-
sponding schedule entities were removed are re-scheduled
in last-out first-in order. On a new conflict, the ripup mech-
anism is activated again. The user specifies the maximum
number of times a ripup may be performed. This allows a
trade-off between quality and run-time of the strategy.

6.4. Global knowledge
The ripup scheduler does not know a priori which un-

scheduled messages need to use links in the route it assigns
to the message it is scheduling. It can only use local infor-
mation to avoid congestion. The global knowledge strategy
tries to estimate, before scheduling messages, the number
of slots that are needed in each of the links. This gives the
scheduling strategy global knowledge on the congestion of
links. This knowledge is used to guide the route selection
process when scheduling the messages.

Communication of a message m can take place at any
moment in time within the time interval specified by m.

Within this interval it requires at least
⌈

dsz(m)/sz f lite
max(bδ(m)/Nc,1)

⌉

slots

in each link of the route it uses. In the optimal situation, all
scheduled messages use a route with the shortest length. To
estimate the congestion on all links in the NoC, the strat-
egy assumes that only shortest length routes are used. For
each link l ∈ L, the strategy computes the minimal number
of slots required at each moment in time when all messages
which can use l, as it is part of at least one of their shortest
routes, would use the link l. The function C : L×N → N

gives the estimated number of slots used in a link l ∈ L at a
given time t.

The global knowledge strategy uses the same algorithm
as the ripup strategy. However, a different cost function is
used to sort the routes it is considering when scheduling a
message. The cost function used by the greedy and ripup
strategy (Eqn. 2) is replaced by the following cost function.

costR(r,m) = ∑
l∈r

max
τ(m)≤t<τ(m)+δ(m)

C (l, t) (3)

This cost function ensures that the routes are sorted based on
the estimated congestion of the links contained in the routes.
Routes containing only links with a low estimated conges-
tion are preferred over routes with links that have a high
estimated congestion. This minimizes the number of con-
gestion problems which occur during scheduling. As such,
it makes more effective use of the allowed ripups.

6.5. Cost functions
Cost functions are used in the scheduling strategies to

sort the messages M and routes R. The cost functions should
minimize the chance of having a conflict when scheduling
messages. They are constructed in such a way that the most
resource constrained messages are handled first and that the
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Figure 5. Feasible problems in the problem-space.

resource usage is balanced over all links in the NoC. How-
ever, by doing so, they up-front exclude points from the
solution-space. To circumvent this problem, randomly or-
dered sets M and R can be used as an alternative for the cost
functions. In our experiments, we do so to study the impact
of the cost functions on the quality of the strategies.

7. Benchmark
A benchmark is needed to test the quality of the schedul-

ing strategies. It must contain a set of problems that covers a
large part of the problem space typical of realistic problems.
It should also be large enough to avoid optimization towards
a small set of problems. Currently, no benchmark is avail-
able which meets these requirements. It is not possible to
construct a benchmark containing only real existing appli-
cations. Profiling these is too time-consuming and they are
not representative for more demanding future applications
at which NoCs are targeted. Therefore, we chose to create
a benchmark which consists of a set of randomly generated
problems.

As in [9, 10, 11], we use a mesh topology in our eval-
uation. Tiles located at the edge of the mesh are restricted
in the links that can be used as at least one direction is not
available because of the topology. In a 3x3 mesh this holds
for all tiles except for one. In a 5x5 mesh there are 16 edge
tiles and 9 non-edge tiles and a 7x7 mesh has 24 edge tiles
and 25 non-edge tiles. The ratio of edge to non-edge tiles
can possibly influence the scheduling strategies. To study
this effect, problem sets are generated for a 3x3, 5x5, and
7x7 mesh.

A traffic generator is developed which creates a user-
specified number of streams of messages between randomly
selected source and destination tiles. The streams can model
uniform and hotspot traffic. All messages in a stream are
assigned a start time, size, and duration which consists of
a randomly selected base value which is equal for all mes-
sages in the stream plus a random value selected for each in-
dividual message in the stream. The first part can be used to
steer the variation in message properties between streams.
The second part can be used to create variation between
messages in a single stream (i.e. jitter).

The problem space can be characterized in a 2-
dimensional space. The first dimension is determined by the

number of messages which must be communicated within a
period. The second dimension is determined by the ratio
of the size of the messages communicated and the avail-
able bandwidth. When constructing the problem sets, we
found that there is an area in the problem-space where prob-
lems change from being easy to solve to unsolvable. We
selected 78 equally distributed points around this area in the
problem-space. For each point we generated 100 problems.
This gives a benchmark with in total a set of 7800 different
problems per mesh-size and traffic model. Fig. 5 shows for
each point in the problem-space of the 5x5 mesh with uni-
form traffic how many problems are solved with the greedy
and global knowledge strategies. The results for the greedy
strategy show that most problems do not have a trivial solu-
tion. A solution is found for only 19% of the problems. The
results of the global knowledge strategy show that 59% of
the problems can be solved (and already suggest that global
knowledge performs better than greedy). So, our benchmark
contains problems which are not trivial to solve (i.e. greedy
does not find a solution), but a solution does exist (i.e. global
knowledge finds a solution). Note that when the problems
get harder to solve, the demands on the resources are in-
creased. More latency sensitive messages and/or larger mes-
sages (more bandwidth) need to be scheduled. Scheduling
strategies which are more resource efficient will be able to
solve more problems.

8. Experimental Results
8.1. Reference scheduling strategies

A state-of-the-art scheduling strategy is presented in
[10]. The strategy allows the use of non-shortest routes
but it assumes that slots cannot be shared between differ-
ent streams. Reconfiguration of the NIs is not possible.
As in our greedy strategy, this strategy does not reconsider
scheduling decisions when a conflict occurs. We used this
strategy in our experiments as our reference strategy. It is
implemented using the greedy strategy with three restric-
tions imposed on it. One, messages in one stream must use
the same route. Two, streams are not allowed to share slots.
Three, the reconfiguration time is equal to a period. This
makes it impossible to reconfigure the NIs. The experimen-
tal results suggest that using a backtracking mechanism is
very effective. For this reason, we extended the reference
strategy with our ripup mechanism. This strategy is used in
the experiments as the improved reference strategy.

We also replaced the cost functions in the ripup strat-
egy with a mechanism which assigns random costs to mes-
sages and routes. Experiments showed that the number of
times we run this strategy with a fixed number of ripups on
a given problem set did not have an influence on the number
of problems for which a feasible schedule function is found.
On the other hand, increasing the number of ripups led to
an increase in the number of solved problems. However, the
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(a) 3x3 mesh with uniform traffic.
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(b) 5x5 mesh with uniform traffic.
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(c) 7x7 mesh with uniform traffic.
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(d) 3x3 mesh with hotspot traffic.
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(e) 5x5 mesh with hotspot traffic.
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(f) 7x7 mesh with hotspot traffic.

Figure 6. Trade-off between feasible problems and run-time.

number of problems solved within a limited run-time and
randomly ordered messages and routes is far lower than the
number of problems solved by any of the heuristics in the
same time. This shows that the cost functions in the heuris-
tics are effective in ordering the messages and routes. For
brevity, we do not discuss these experiments in more detail.

8.2. Experiments on the benchmark
All scheduling strategies have been tested on the bench-

mark problems. The ripup, global knowledge and improved
reference strategies have been tested with a number of dif-
ferent values for the maximum number of ripups (1, 10, 50,
100, 150, 200, 400, 800) to study the trade-off between the
number of problems for which a solution is found and the
run-time. A slot-table size of 8 slots is used in all experi-
ments and the maximum detour (X) is initially set to 0. Note
that X = 0 guarantees that any solution uses only shortest
routes. This allows us to study for how many problems each
strategy is able to find a solution with minimal resource re-
quirements. The reconfiguration time of the NI, Trecon f , is
set to 32 time units. This gives tiles 4 complete rotations
of the slot table to reconfigure the NI. A processor or com-
munication assist must send a message to update the routing
information in the NI. The size of this message is less than
the size of a single flit (i.e. it needs one time unit to be sent),
so the value for Trecon f is conservative.

The trade-off between the run-time and the number of
problems that is solved with the various strategies is shown
in Fig. 6. Tab. 1 summarizes these results for all strategies
assuming that 800 ripups are allowed. The column ‘Im-
provement’ shows the percentage of additional problems

that is solved by all strategies compared to the reference
strategy. The column ‘Avg time’ gives for each strategy the
average run-time on a problem.

Looking at the number of problems solved, the results
show that the reference strategy is outperformed by the im-
proved reference strategy. This shows that adding back-
tracking to the state-of-the-art scheduling algorithm pre-
sented in [10] improves the results considerably. The results
show further that the reference strategy solves less problems
than greedy and the improved reference strategy solves less
problems than the other two strategies using ripups. From
this, we conclude that not using the ability of NoCs to re-
configure their connections is a limiting factor. As modern
NoCs do not have this limitation, problems scheduled using
the reference strategies may unnecessarily be considered in-
feasible or use unnecessarily many resources. Slot sharing
is especially advantageous for hotspot traffic. For this type
of traffic, our strategies are able to solve up-to 65% more
problems than the improved reference strategy. This shows
that slot sharing reduces the problem of contention on links
connected to a hotspot.

The results show also that the global knowledge strategy
always outperforms the other strategies. However, the aver-
age run-time on a problem is larger for this strategy than for
the other strategies. This is caused by the congestion esti-
mation made at the start of the strategy. Simpler estimates
might be used to reduce its run-time. The reference and im-
proved reference strategy have always the lowest run-time.
This is logical as route selection is done only once for all
messages in a stream and the slot allocation does not have
to consider reconfiguration of slots.



Table 1. Experimental results.
Improvement Avg time [ms] Detour (X = 2)

Greedy 47% 161 110%
Ripup 248% 731 31%
Knowledge 334% 974 17%
Reference 0% 11 4%
Improved ref. 209% 67 16%

Modern NoCs allow the use of flexible routing schemes
(i.e. routes may use a detour). More problems may be solved
when this flexibility is used. To quantify this gain, we tested
all strategies with a maximum detour of 2 on all problems in
our benchmark. The results of this experiment are shown in
column ‘Detour’ of Tab. 1, which shows the improvement in
the number of problems solved when compared to the same
strategy with detour zero. It shows that using non-shortest
routes helps in solving additional problems.

8.3. Experiments on a multimedia system
Besides the synthetic streams, a realistic multimedia ap-

plication consisting of an MPEG-4 decoder and an MP3 de-
coder is used in the experiments. All 15 tasks in the appli-
cation task graph are mapped and scheduled manually onto
a 2x2 mesh and through profiling a set of 16 streams de-
scribing the decoding of a video frame with accompanying
audio is derived. For each scheduling strategy, the minimal
slot table size is determined for which a feasible schedule
is found. When only shortest routes are used, both the ref-
erence strategies, including the existing method, require a
slot table with 6 slots. Our strategies require a slot table
with 2 slots. This shows that for a realistic application slot
sharing reduces the resource requirements on the NoC (i.e.
fewer slots need to be allocated for the application). When
the maximum detour is 2 links, the reference strategies re-
quire a slot table with 4 slots and our strategies require a
slot table with 1 slot. This confirms that using non-minimal
routes reduces the requirements on the NoC.

9. Conclusion
This paper studies the problem of scheduling time-

constrained communication of a streaming application on
a NoC. Several new strategies are presented to route and
schedule streaming communication. The scheduling strate-
gies use all routing and scheduling flexibility offered by
modern NoCs while limiting resource usage. Short routes
and the reservation of consecutive slots in slot tables min-
imize resource usage and packetization overhead. How-
ever, they also create potential bottlenecks in the NoC,
which may render some resources unusable for schedul-
ing other streams. The use of non-minimal routes and
non-consecutive slot reservations might increase scheduling
freedom for remaining streams. Our strategies try to find a
good compromise in the allocation of routes and slot-table
slots. The experiments show that our strategies perform bet-
ter than the state-of-the-art strategy of [10]. The reason is

that our strategies exploit freedom offered by modern NoCs
not used in the existing strategy. Additionally, we found
that adding backtracking to this state-of-the-art strategy im-
proves its results considerably with only a small overhead
on its run-time.
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