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Abstract—The design of new embedded systems is getting
more and more complex as more functionality is integrated
into these systems. To deal with the design complexity, a
predictable design flow is needed. The result should be a
system that guarantees that an application can perform its
own tasks within strict timing deadlines, independent of other
applications running on the system. Synchronous Dataflow
Graphs (SDFGs) provide predictability and are often used
to model time-constrained streaming applications that are
mapped onto a multiprocessor platform. However, the model
abstracts from the dynamic application behaviour which may
lead to a large overestimation of its resource requirements. We
present a design flow that takes the dynamic behaviour of appli-
cations into account when mapping them onto a multiprocessor
platform. The design flow provides throughput guarantees for
each application independent of the other applications while
taking into account the available processing capacity, memory
and communication bandwidth. The design flow generates a set
of mappings that provide a trade-off in their resource usage.
This trade-off can be used by a run-time mechanism to adapt
the mapping in different use-cases to the available resource.
The experimental results show that our design flow reduces
the resource requirements of an MPEG-4 decoder by 66%
compared to a state-of-the-art design flow based on SDFGs.

I. INTRODUCTION

Modern embedded multimedia systems are often executing
multiple applications concurrently. A user may for example
use a mobile phone to listen to his favourite music using
an MP3 decoder while at the same time he is watching an
accompanying video that is being decoded using an MPEG-4
decoder. The typical user expects that both decoders have a
robust behaviour and that their performance is guaranteed
[4]. This requires that every application running on the
system has a predictable timing behaviour which is indepen-
dent of other applications running on the same system. The
design flow that binds and schedules the applications onto
the hardware platform should provide this predictability.
Several trends need to be considered when developing a
predictable design flow. In the architecture domain, there is a
trend to use heterogeneous multiprocessor platforms to meet
the computational requirements of novel applications [16].
Furthermore, the number of use-cases (i.e., combinations
of applications) that an embeded system has to support is
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growing rapidly. Different use-cases may require a different
mapping of an application onto a multiprocessor platform. In
some use-cases, an application could for example be allowed
to use a lot of computational resources, but limited storage
resources, whereas the situation may be exactly opposite in
other use-cases. A design flow can support this by creating
at design-time a number of different mappings of an applica-
tion that provide a trade-off in their resource requirements.
At run-time, the most suitable mapping can then be selected
based on the resource usage of the applications which are
already running on the platform [17], [23].
Modern streaming applications are becoming increasingly
complex and dynamic. Existing design flows (e.g., [14],
[20]) model these applications using relatively simple and
static models, such as (homogeneous) synchronous dataflow
graphs [11]. These models abstract from the dynamic be-
haviour of an application which may lead to a large overesti-
mation of its resource requirements. The dynamic behaviour
of an application can be taken into account in a design
flow by using a scenario-based design approach [6]. In this
approach, the dynamic behaviour of an application is viewed
upon as a collection of different behaviours (scenarios)
occuring in some arbitrary order, but each scenario by itself
is fairly static and predictable in performance and resource
usage. Therefore, resource allocation can be performed for
each scenario using existing design flows. However, these
design flows can only provide timing guarantees per sce-
nario. They cannot guarantee the timing behaviour when
switching between scenarios. A predictable design flow
should however also guarantee the timing behaviour of an
application when switching between scenarios.
This paper presents a design flow that maps throughput-
constrained applications, whose behaviour can be captured
with a set of scenarios, onto a multiprocessor platform while
providing throughput guarantees. Applications are modeled
using a so-called scenario graph that captures the behaviour
of each scenario with a synchronous dataflow graph. The
dataflow graphs of different scenarios may differ in all
aspects (e.g., communication rates, execution times). The
design flow generates a number of alternative mappings
for each application. These mappings provide different
trade-off’s between the amount of compute, storage, and
communication resources that are used from the platform.



These can be used at run-time to adapt to different use-
cases. Thus, the flow addresses both the dynamic behaviour
within applications and the dynamic behaviour between
applications. We show that this new design flow reduces
the resource requirements of an MPEG-4 decoder by 66%
when compared to an existing state-of-the-art design flow
[20]. Resource savings are also shown for an MP3 decoder
(up-to 21% less memory and up-to 23% less bandwidth).
The remainder of this paper is organized as follows. Sec.
II discusses related work. Sec. III introduces the scenario
graph model. Sec. IV and Sec. V discuss the application
and architecture model. Sec. VI presents a method to per-
form throughput analysis for an application mapped onto
a multiprocessor platform. Our predictable design flow is
discussed in Sec. VII. Experimental results are presented in
Sec. VIII. Sec. IX concludes this paper.

II. RELATED WORK

Resource allocation for time-constrained acyclic graphs has
been studied in [8], [9], [10]. Hashemi et. al [8] propose
an algorithm based on graph partitioning to compute a
binding and schedule which maximizes the throughput of
the application. The acyclic graph model can however not
capture cyclic dependencies between subsequent executions
of the task graph. Our application model can capture such
dependencies and our design flow considers them during
resource allocation. This improves pipelining of different
executions of the same task. Hu et. al assume that every
task can only be bound to a single processor type [9].
Their strategy only decides on which processor (i.e. location)
to use. Our strategy has to decide on the processor type,
its location, and the schedule of tasks on the processors.
It also works for a larger class of models. In [10], the
resource allocation problem is formulated as a constraint
satisfaction problem. Cyclic dependencies which determine,
for example, the throughput of an application cannot be
expressed in this framework.
Several design flows [2], [12], [15], [20] have been pre-
sented to map multiple applications onto a multiprocessor
platform with the objective to minimize resource usage while
meeting a throughput constraint. These flows assume that
each application is modeled with a Cyclo-Static Dataflow
Graph ([15]), or an SDFG ([2], [20]), or a homogeneous
SDFG ([12]). These models abstract from (most of) the
dynamic behaviour of an application. This may lead to a
large overestimation of the resource requirements of the
application. Our application model and design flow are
able to capture and exploit the dynamic behaviour when
allocating resources. The design flow from [7] can deal with
applications that exhibit a dynamic behaviour. The design
flow can however not provide timing guarantees which is
needed to guarantee the robust behaviour of multimedia
systems.
All aforementioned work only considers the binding and
scheduling of an application onto a multiprocessor platform,
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Figure 1. Scenario graph of an MPEG-4 SP decoder.

our flow considers also these steps, but it also considers the
dimensioning of the buffers between the tasks of an applica-
tion. These buffers have a large impact on the throughput of
the application and on its memory requirements. Our design
flow considers this trade-off when allocating resources.
Existing flows in contrast assume either infinite buffer space,
which is unrealistic, or they assume that the assigned buffer
space is input to the design flow.
Different use-cases may require a different mapping of
an application on the platform. All aforementioned flows
generate only a single mapping. The user must modify
the mapping constraints to obtain different mappings for
the same application. In contrast, our flow generates a
set of mappings that provide a trade-off in their resource
requirements. A run-time mechanism (e.g., [17], [23]) can
then select the most suitable mapping based on the resource
usage of all applications that are active in the use-case.

III. SCENARIO GRAPHS

Synchronous Dataflow Graphs (SDFGs) [11] are used to
model time-constrained multimedia applications. They allow
modeling of both pipelined streaming and cyclic depen-
dencies between tasks. Furthermore, analysis techniques to
study, for example, the throughput and storage requirements
of an SDFG exist [5], [21]. The graph in Fig. 1 is an
SDFG when x is assigned a constant value (e.g. 99). This
graph models an MPEG-4 Simple Profile decoder. The
nodes, called actors, communicate with tokens sent from
one actor to another over the edges. The actors typically
model application tasks and the edges model data or control
dependencies. An essential property of SDFGs is that every
time an actor fires (executes) it consumes the same amount
of tokens from its input edges and produces the same
amount of tokens on its output edges. These amounts are
called the rates (indicated next to edge ends; rates 1 are
omitted for clarity). An actor can only fire if sufficient
tokens are available on the edge from which it consumes.
Tokens thus capture dependencies between actor firings.
Such dependencies may originate from data dependencies,
but also from dependencies on shared resources.
The rates determine how often actors have to fire wrt each
other such that productions and consumptions are balanced.
These rates are constant, which forces an SDFG to execute
in a fixed repetitive pattern, called an iteration. An iteration
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Figure 2. Example application graph.

consists of a set of actor firings that have no net effect
on the token distribution. These actor firings typically form
a coherent collection of computations. An iteration could
for example correspond to the processing of a frame in
an audio or video stream. This makes iterations the natural
granularity for defining scenarios, from the perspective of the
application and from the perspective of the model. Note that
subsequent iterations are allowed to overlap in time. Hence,
different scenarios may be active simultaneously, typically
in a pipelined fashion.
The dynamic behaviour of an application can be captured
in a set of scenarios. Each scenario can be modeled with
an SDFG. These SDFGs together form a model of the
application. This set of SDFGs is called a scenario graph.
This model is a restricted form of the Scenario-Aware
Dataflow Model [22]. Consider, as an example, the MPEG-
4 decoder of [22] shown in Fig. 1. The frame detector
(FD) models the part of the application that determines the
frame type and the number of macro blocks to decode. The
modeled decoder supports two different types of frames (I
or P). When a frame of type I is found, a total of 99
macro blocks must always be processed. This scenario is
called I99. A frame of type P requires processing between
0 and 99 macro blocks. The workload varies considerably
depending on the number of macro blocks that is processed.
Therefore, a number of different scenarios Px are defined
based on the number of macro blocks that must be processed.
The graph contains different scenarios for the situations
in which (up to) 0, 30, 40, 50, 60, 70, 80, or 99 macro
blocks are processed for a single P frame. Within each
scenario, the VLD and IDCT operations are performed for
every individual block. The other operations are performed
once per frame. Therefore, the communication rates vary
with each scenario. As a consequence, x is set equal to
the maximum number of macro blocks that may need to
be processed in the scenario.

IV. APPLICATION MODEL

The structure of an application can be described with a
scenario graph. A design flow needs also information on the
resource requirements of the actors and edges in the graph.
An application with its resource requirements is described
by an application graph. Fig. 2 and Tab. I show an example
application graph with two scenarios (s1 and s2). The table
shows for each actor the execution time (in time units)
and memory requirements (in bytes). These numbers may

actor s1× p1 s2× p1 s1× p2 s2× p2
a1 (1,10) (1,10) (1,10) (1,10)
a2 (1,7) (1,7) (1,7) (1,7)
a3 (3,13) (3,13) (10,13) (10,13)
a4 (0,0) (5,10) (0,0) (3,10)

Table I
PROPERTIES (EXECUTION TIME, MEMORY REQUIREMENT) OF THE

EXAMPLE APPLICATION.

depend on the scenario si and processor type p j to which
the actor may be mapped. It shows, for example, that actor
a3 needs 3 time units to execute on processor type p1 and
10 time units on type p2. It is also interesting to note
that in scenario s1, the edges connected to actor a4 have
rate 0 and that a4 has zero execution time and no memory
requirements. Hence, no resources need to be allocated for
a4 in s1 as this actor is not active in s1. So, it is possible to
model scenarios in which not all actors are active.
The execution time of an actor depends on the scenario in
which the actor is fired. This makes it possible to reduce
the over-allocation of resources when using a scenario graph
instead of a single SDFG to model an application. Consider
as an example the MPEG-4 SP decoder shown in Fig. 1. The
worst-case execution time (WCET) of actor RC (350 time
units) occurs in scenario I99. Actor MC has an execution
time of 0 time units in I99. Its WCET (390 time units)
occurs in scenario P99. Actor RC has an execution time
of 320 time-units in P99. A scenario graph can capture the
fact that there will never be a frame in which both actors
reach their WCET. An SDFG that conservatively models
the MPEG-4 SP decoder must on the other hand use these
WCET as the execution times of the actors. As a result,
a predictable design flow that uses this SDFG will always
over-allocate resources in the multiprocessor platform.

V. MULTIPROCESSOR PLATFORM

The architecture template in our work is similar to the tile-
based multiprocessor of [3] in which multiple tiles are con-
nected by an interconnection network. We assume point-to-
point connections with a fixed latency between tiles. These
connections can, for example, be implemented through a
network-on-chip with timing guarantees. Fig. 3 shows an
example multiprocessor platform with three connected tiles.
Each tile contains a processor (P) and a local memory (M).
A tile contains also a set of communication buffers, called
the network interface (NI), that are accessed both by the
local processor and the interconnect.
The processors in a multiprocessor platform may have to
be shared between tasks (i.e., actors in case of a scenario
graph) of one or more applications that are executing on the
platform. A scheduler must be used to arbitrate the access to
the processors. Similar to [15], [20], we use a time-division
multiple-access (TDMA) scheduler to order the execution
of different applications. This allows us to provide timing
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Figure 3. Example multiprocessor platform.

guarantees on the behaviour of individual applications as
a TDMA scheduler virtualizes the processor resources. A
static-order schedule is used on each processor to schedule
the actors that belong to the same application. This schedule
can be computed at design-time. So, there is no run-time
scheduling overhead.
Tab. II gives the values of all elements in the multiprocessor
platform of Fig. 3. It specifies for each tile its processor
type (pt), the size of the processor’s TDMA time wheel
(w) (in time units), the memory size (m) (in bytes), the
maximum number of incoming and outgoing connections
supported by the NI (ci,co), and the maximum incoming
and outgoing bandwidth (bi,bo) (in bytes/time-unit). The
connections between tiles introduce a latency when data is
sent between them. The column labelled l in Tab. II gives
the latency for the connections in our example platform.
Each connection can have a different latency. In this way, the
latency of different connections through a network-on-chip
or segmented bus can be taken into account. The amount
of data that can be sent per time-unit (i.e. bandwidth) is
limited by the incoming, bi, and outgoing bandwidth, bo, of
the tiles.

VI. THROUGHPUT COMPUTATION

In [20], a technique is presented to compute the throughput
of an SDFG that is bound and scheduled on a multiprocessor
platform. This technique starts with modeling all binding
decisions in the graph. Next, the throughput is computed
using the state-space exploration technique from [5]. This
throughput computation technique can be extended to sce-
nario graphs. Fig. 4 shows how a binding of our example
application (Fig. 2) on our example architecture (Fig. 3) is
modeled in a scenario graph. The actors a1, a2, and a3 are
in this example bound to tile t1 and actor a4 is bound to tile
t2. On a tile, only one instance of an actor can be executing
at the same moment in time. This is modelled with the self-
edges with one initial token that are connected to a1, a2, a3,
and a4. Actor a4 is bound to a different tile than a1 and a2.
So, tokens that are communicated between a4 and a1 or a2
must be sent via a connection in the platform. The actors
ac,1 and ac,2 model the delay of sending tokens through a
connection. Actor ac is a very simple connection model. It
can be replaced with a more detailed model, such as the
network-on-chip connection model of [13]. We assume that
the TDMA time wheels on tile t1 and tile t2 do not have to

tile pt w m ci bi co bo connection l
t1 p1 100 4000 10 12 10 12 c31, c13 4
t2 p2 100 5600 10 12 10 12 others 3
t3 p1 100 4000 10 12 10 12

Table II
PROPERTIES OF THE EXAMPLE PLATFORM.
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Figure 4. A binding-aware scenario graph.

be synchronized wrt each other. The actors as,1 and as,2 are
used to decouple the TDMA time wheels on the processors.
The execution times of these actors are chosen such that
they model the worst-case position of the two time wheels
wrt each other. This guarantees that the throughput analysis
of the model is conservative wrt an implementation. The
design flow, as explained in the next section, assigns a finite
storage-space to each edge in the application graph. These
storage-space constraints are modelled by the dashed edges
in Fig. 41. The edge from a2 to a4 and the edge from a4
to a1 are bound to the interconnect. Storage-space must be
allocated for these edges in both tiles. Therefore, there are
two dashed edges in Fig. 4 connecting a1 and a4 via actor
ac,1 and two dashed edges connecting a2 and a4 via ac,2.
Once a resource allocation has been modeled into a scenario
graph, its throughput can be computed using a state-space
exploration similar to [20]. The notion of a state and self-
timed execution are adapted to take scenarios and scenario
transitions into account. The throughput analysis essentially
explores all cycles in the state-space. The longest cycle
determines the bound on the throughput that can be guar-
anteed. This scenario-aware state-space exploration can take
arbitrary sequences of scenarios into account. The set of
possible scenario transitions can also be restricted through
a Finite State Machine (FSM). This would provide for a
tighter analysis. Such an FSM can for example be used to
limit the possible scenario sequences in an MPEG-4 decoder
to those sequences in which an I frame is always followed
by 11 P frames.

VII. PREDICTABLE DESIGN FLOW

This section introduces our predictable design flow. The first
subsection gives an overview of the steps in the flow. The
remaining subsections discuss the details of all steps.

1Dashed edges are only used for clarity. There is no difference between
edges as far as dataflow theory is concerned.
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A. Overview
Our predictable design flow maps a throughput-constrained
application graph (see Sec. IV) to a multiprocessor platform
(see Sec. V). The dynamic behaviour of the application is
captured in the application graph with a set of SDFGs (i.e.,
one for each scenario). We assume that actors and edges in
each SDFG are labelled with a name. Our flow maps actors
or edges that appear in different SDFGs, but which have the
same name, to the same resources (e.g. processor, memory,
etc.). This gives a unified mapping of all SDFGs in the
application graph. Using this unified mapping, we avoid that
data items (i.e. tokens) need to be moved between different
memories when switching between scenarios. Hence, there
is no overhead when switching between scenarios.
Fig. 5 shows the main steps in our design flow. The
flow starts with refining the resource requirements of the
application. The application graph only specifies the re-
source requirements of the actors. Estimating the resource
requirements of the edges (i.e., storage space, bandwidth)
is performed in the first two steps of the flow. In the third
step, the flow binds each actor from the application graph
to the resources in the multiprocessor platform. This step
generates a set of alternative bindings that provide a trade-
off in their resource requirements. The last two steps of the
flow are performed for each of these bindings individually.
Step 4 creates a static-order schedule for each tile that
contains actors of the application graph. Finally, TDMA
time slices are allocated on these tiles. The result of the
flow is a set of mappings of the application graph on
the multiprocessor platform. A mapping is called valid iff
the throughput constraint is met (according to the model)
and not more resources are allocated than available. It is
possible that no valid mapping is found when the storage
space assigned to the edges is too constrained to meet the
throughput constraint. In that case, the design flow iterates
back to step 2 and increases the storage space assigned to
the edges of the graph. The design process ends as soon as
a non-empty set of valid mappings has been found or when
the storage space assigned to the edges can no longer be
increased. In the latter case, the design flow is not able to
find a mapping that satisfies the throughput constraint. More
resources should be added to the platform or the application
and its constraint should be modified in order to find a
mapping that meets the throughput constraint.
Several steps of the design flow address NP complete

problems (e.g., finding the optimal resource binding and
scheduling). It is therefore not possible to compute the opti-
mal mapping for realistic applications within an acceptable
run-time. Our design flow uses therefore heuristics to prune
the design space. The experimental results show that these
heuristics allow our design flow to generate mappings of real
applications on a multiprocessor platform while requiring a
run-time of only a few minutes.

B. Buffer constraints

Tokens that are communicated over the edges of an applica-
tion graph must be stored in memory. The amount of storage
space that is allocated to these edges has a large impact
on the achieved throughput of the application. Allocating
space for more than one token to an edge might increase
throughput because it may increase pipelining opportunities.
The size of the storage space must be chosen such that
the throughput requirement is met, while minimizing the
required storage space. The exact throughput constraint for
parts of the system is however not known at the start of
the flow. Therefore, a trade-off must be made between the
realizable throughput and the storage requirements of the
application graph. Each scenario in the application graph
corresponds to an SDFG. Using the technique from [21], the
throughput-storage space trade-off space of individual sce-
narios (SDFGs) can be found. Next, these trade-off spaces
are combined into a single trade-off space for the application
graph. This is done by unifying these spaces under the
assumption that edges from different SDFGs, but with the
same name, must be assigned the same storage space in
memory. In this way, the flow avoids that tokens (i.e.,
data) must be moved between different memory locations
when switching between scenarios. The obtained trade-off
space contains all distributions of storage space that achieve
the maximal throughput under a given total storage size
constraint. The flow selects the smallest storage distribution
that meets the throughput constraint of the application graph
to limit the storage space of the edges. The source and desti-
nation actor of an edge might in the end be bound to different
tiles. In that case, the storage space allocated to an edge has
to be split over both tiles. The flow assigns in this case
sufficient storage-space to the source and destination side to
complete one firing of the source and destination actor. This
allows the actors to perform a complete firing without the
need to communicate data through the interconnect, which
simplifies the execution time analysis of actors. Any storage-
space that is left is divided evenly over both sides. In this
way, both sides get an equal amount of storage-space to use
as slack. It is not possible to make a better distribution at this
point in the flow as the binding of the actors to the processors
is not known yet. Therefore, the flow has no knowledge
on the processor load which will eventually determine the
available slack.



C. Bandwidth constraints
The dataflow model assumes that edges have an infinite
bandwidth and no latency. So, communication of tokens
over an edge takes no time. Edges whose source and
destination actor are bound to different tiles will be bound
to a connection in the interconnect. This connection has
a latency and finite bandwidth. The latency is specified in
the multiprocessor platform. The bandwidth is constrained
by the incoming and outgoing bandwidth offered by the
tiles. An edge will typically only require a fraction of
this bandwidth. Step 2 of our flow estimates the amount
of bandwidth that must be assigned to the edges of the
application graph. To avoid reconfiguration, an equal amount
of bandwidth must be allocated to an edge in all scenarios.
Step 2 estimates for each edge d the bandwidth requirement
in all scenarios. The maximum bandwidth which is required
for edge d across all scenarios is then taken as the bandwidth
constraint of the edge.
The bandwidth requirement of an edge d depends on the
amount of data that must be communicated and on the
throughput constraint of the application. The latter constrains
the amount of time that is available for the communication.
The former depends on the size of the tokens and on the
number of tokens that are communicated in one iteration.
Note that the number of communicated tokens is scenario
dependent. Multiplying the token size, the number of tokens
communicated per iteration, and the throughput constraint
gives the average number of bytes that must be commu-
nicated per time-unit to meet the throughput constraint.
This number is taken as the bandwidth requirement of the
edge. This bandwidth would be too small if all edges are
mapped to an interprocessor connection. In that case, no time
slack would be left for the actual computation. In practice,
only a fraction of the edges is mapped to an interprocessor
connection and the bandwidth constraint is sufficient. In this
way, the flow saves resources as it does not allocate the
worst-case bandwidth.

D. Resource binding
The resource binding step (step 3) must bind every actor
from the application graph to a tile in the multiprocessor
platform. The application graph contains an SDFG for each
scenario. Because we assume a unified mapping, the flow
must bind actors that appear in different SDFGs, but which
have the same name, to the same resources. For simplicity,
we assume that when we talk in this section about an actor
(or edge) of the application graph we refer to the set of actors
(or edges) from all SDFGs which have the same name.
An important objective of the design flow is to meet the
throughput constraint of the application. For this reason, it
is important that actors whose execution time has a large im-
pact on the throughput of the application are considered first.
Actors are therefore ordered based on the average execution
time needed to complete one iteration of all scenarios. After
sorting the actors in decreasing order, the resource binding

step tries to bind the actors in the given order to the tiles.
It is possible that an actor can be mapped to a number of
different tiles. The algorithm constructs all possible (partial)
bindings. In each binding, it assigns the actor to a processor
inside the tile and it allocates the required memory space
of the actor (see Tab. I) in the memory of the tile. When
binding an actor, the algorithm may also implicitly bind an
edge to the platform. This happens when the other actor that
is connected to the edge is already bound to the platform.
Therefore, the algorithm checks which edges have been
bound implicitly due to the actor binding. It then allocates
resources (i.e., storage space in the memories and bandwidth
in the network interfaces) for these edges. As mentioned
before, the binding of one actor to the platform may result
in a number of different (partial) bindings. When no partial
binding is found, the algorithm terminates and the prob-
lem is considered infeasible within the current constraints.
Otherwise, the algorithm continues with the next actor. It
tries to add this actor to all partial bindings which have
been constructed in the previous iteration of the algorithm.
This is done using the same procedure as described above.
Note that this may lead to an explosion in the number of
bindings that is considered. Therefore, the number of partial
bindings that is considered when binding the next actor is
limited by a user-defined number X . After each iteration of
the algorithm, the number of partial bindings that is carried
over to the next iteration is limited to at most X . When
more than X partial bindings have been found, a selection
procedure is used to reduce the number of partial bindings.
This procedure works as follows. Each binding can be seen
as a point in an N-dimensional space where each resource
in the platform forms its own dimension. The procedure
selects those X points which have the largest distance wrt to
each other in the space. This gives a spread in the resource
requirements of the different mappings. As a first point, the
procedure selects a mapping that uses the smallest amount
of processors. This mapping is typically the least resource
demanding solution and it is therefore interesting to keep.
The selection procedure limits the total number of partial
bindings that is evaluated by the flow to X times the number
of actors in the graph times the number of processors in the
platform. Through X , the user of the design flow can make
a trade-off between the run-time of the flow and the number
of partial bindings that is evaluated. Note that the evaluation
of a single binding requires typically less than 1ms. So, in
practice it is possible to evaluate many different bindings
within a limited run-time.

E. Static-order scheduling

When a resource is shared between different actors from the
same application, a static-order schedule must be constructed
that orders the accesses to the resource. Step 4 of the flow
must construct such a schedule for each tile in the platform.
The application graph contains an SDFG for each scenario.
The number of actor firings that must be scheduled depends



on the scenario that is executed. Actor a1 in our example
application (Fig. 2) must for example be fired once per
iteration in scenario s1 and twice per iteration in scenario s2.
Actor a3 on the other hand needs to be executed only once,
independent of which scenario is executed. This example
shows that the relative actor firing counts are not constant be-
tween all scenarios. As a result, it is not possible to construct
a static-order schedule that can be used for all scenarios.
Instead, a static-order schedule must be constructed for each
scenario individually. When switching between scenarios,
the processors must switch between static-order schedules.
To avoid a complex switching mechanism, we constrain the
number of actor firings in a static-order schedule to the
number of actor firings needed to complete one iteration.
Consider as an example our example application and assume
that the actors a1, a2, and a3 are mapped to the same tile. For
tile t1, the scheduler in step 4 must construct two schedules
(one for scenario s1 and one for scenario s2). The schedule
for s1 contains one firing of each actor. The schedule for
s2 contains two firings of a1 and a2 and one firing of a3.
Since scenario switches can only occur at the end of an
iteration and a schedule contains exactly one iteration, we
do not require any mechanism to switch between static-order
schedules of different scenarios. Processors only need to
decide once per iteration which static-order schedule needs
to be executed. This schedule can then be executed till
completion.
As mentioned before, step 4 of our flow must construct for
each scenario in the application graph a set of static-order
schedules (i.e. one for each tile used in the platform). An
earliest deadline first (EDF) scheduler is used to construct
for a given scenario the static-order schedules for all tiles
at once. This scheduler is executed once for each scenario.
The scheduler starts with modeling the binding, which was
created in the previous step of the flow, into a binding-aware
graph using the technique presented in Sec. VI. To compute
the execution time of the TDMA time wheel synchronization
actors (e.g. as,1 and as,2 in Fig. 4), it is assumed that 50% of
the available time wheel will be allocated to the application
graph. Since the scheduler works with a single scenario
at a time, the binding-aware graph is in fact an SDFG.
Using the technique from [18], this SDFG is transformed to
an acyclic precedence graph. This graph is then scheduled
using the EDF algorithm from [1]. Applying this scheduler
to our example application and assuming the mapping of
a1, a2, and a3 to tile t1 and a4 to t2, we find the following
static-order schedules for tile t1 when executing respectively
scenario s1 and s2: (a1,a2,a3) and (a1,a1,a2,a2,a3). On
tile t2, the schedule (a4) is executed in scenario s2 and
no schedule is executed in s1 since a4 is not active in this
scenario.

F. Time slice allocation

The last step of the flow allocates TDMA time slices for all
tiles. A binary search algorithm is used, which guarantees

that a time slice allocation satisfying the throughput con-
straint is found if it exists. The algorithm takes the context
switching overhead when an actor firing cannot be finished
within the allocated time slice into account. The search
between the initial bounds of 1 time slice and the entire
(unoccupied) time wheel continues until the throughput of
the graph constrained by the current slice allocation is at
most 10% larger than the throughput constraint. When the
allocation of the entire unoccupied time wheels is insuffi-
cient to meet the throughput constraint, the flow returns to
step 1 and enlarges the buffer constraints.

VIII. EXPERIMENTAL RESULTS

The design flow has been implemented as an extension of
the publicly available SDF3 tool set [19]. We have used
this implementation to map the MPEG-4 decoder, which has
been discussed earlier, and an MP3 decoder onto a multi-
processor platform with three generic processors. We limit
the number of partial bindings that are considered in step
4 of the flow (see Sec. VII-D) to 10 bindings. We compare
the mappings obtained with our flow to the mappings found
using the design flow of [20] that is available in SDF3. This
flow requires that the resource requirements of the edges are
specified in the graph. Our flow computes these requirements
in step 1 and 2. We extended the flow of [20] with similar
steps in order to make a fair comparison between both flows.

A. MPEG-4 SP decoder

The scenario graph model of an MPEG-4 decoder is shown
in Fig. 1. A conservative SDFG model, without scenarios,
has the same graph structure (with x equal to 99). As
explained in Sec. IV, the execution times of an actor in this
SDFG are equal to the maximal execution time across all
scenarios of the corresponding actor in the scenario graph.
When mapping the model to the platform, we require that
the decoder can produce 20 frames per second.
Our flow finds 10 feasible mappings when mapping the
scenario graph model of the MPEG-4 decoder onto the
platform. These mappings are generated by SDF3 within
less than one minute when running SDF3 on an Intel Core
2 at 2.2GHz. The generated mappings differ in the number
of processors used (1 to 3), the amount of memory used
(201kBytes to 304kBytes), and the amount of communica-
tion bandwidth used (0 to 38MBytes/sec). Each of these
mappings is at least better in one aspect (i.e., number of
processors used, amount of memory or bandwidth used) than
any of the other mappings (i.e., they are Pareto optimal).
This shows that our flow is able to find a set of mappings that
provide a trade-off in their resource requirements. A system
that must support multiple use-cases can use this set of
mappings to find the most suitable mapping for a particular
use-case while considering the resource requirements of
other applications that are active in the same use-case. In
this way, the inter-application dynamism can be exploited
in the system.



The flow from [20] is able to find one feasible mapping
of the MPEG-4 decoder. This mapping binds all actors to
one processor. To meet the timing constraint, the application
must allocate 58% of the processor’s TDMA time wheel.
Amongst the 10 mappings generated by our flow, there is one
mapping with the same binding as found by the flow from
[20]. Both mappings require the same amount of memory
and communication bandwidth. However, the mapping found
with our flow, which considers scenarios, requires only 17%
of the processor’s TDMA time wheel. Hence, it reduces
the requirements on the processor’s time wheel with 66%
compared to the flow from [20]. This shows the advantage
of using a design flow which considers the dynamism within
an application.

B. MP3 decoder

In [20], a conservative SDFG model of an MP3 decoder is
mapped onto a multiprocessor platform. This SDFG model
abstracts from the dynamic behaviour of the application. An
MP3 decoder divides an audio stream into frames of 26ms.
The decoder may employ five different coding schemes
depending on the audio content. This dynamic behaviour
can be captured with five scenarios in a scenario graph. To
test our design flow, we constructed a scenario graph of an
MP3 decoder using the SDFG model from [20].
We mapped the scenario graph model onto the multiproces-
sor platform. Our flow finds 10 different mappings that pro-
vide a trade-off in their resource requirements. SDF3 needs a
run-time of less than 5 minutes to generate these mappings.
They require between 1 and 3 processors, between 6.3kBytes
and 14kBytes of memory, and between 0 and 19MBytes/sec
of bandwidth. The SDFG model of the MP3 decoder was
mapped to the same platform using the flow from [20]. This
flow finds one mapping which uses all three processors.
Our flow has found several mappings that use all three
processors. When comparing these mappings to the mapping
obtained with [20], we see that all mappings require the same
fraction of the processor’s TDMA time wheels (17% on each
processor). Our mappings require however less memory (up-
to 21%) and less bandwidth (up-to 23%). This shows again
that our flow is able to reduce the resource requirements of
an application by considering the dynamic behaviour of the
application in the mapping flow.

IX. CONCLUSIONS

We have presented the first design flow that fully takes
the dynamic behaviour of applications into account when
mapping them onto a multiprocessor platform. The design
flow considers both inter- and intra-application dynamism
and provides timing guarantees for each application inde-
pendent of the other applications while taking into account
the available processor space, memory and communication
bandwidth. The design flow produces at design-time a num-
ber of different mappings of an application. These mappings

provide a trade-off in their resource requirements. At run-
time, the most suitable mapping can then be selected based
on the resource usage of the applications which are already
running on the platform. The experimental results show that
our design flow is able to reduce the resource requirements
of an MPEG-4 decoder by 66% compared to a state-of-the-
art design flow. The results also show that our design flow
reduces the resource requirements of an MP3 decoder (up-
to 21% less memory and up-to 23% less bandwidth). In
future work, we want to alleviate the assumption of a unified
mapping across scenarios and allow task migration between
scenarios. To do this, we must extend the design flow such
that it takes the cost of scenario switches into account.
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