
Iteration-based Trade-off Analysis of
Resource-aware SDF∗

Yang Yang1, Marc Geilen1, Twan Basten1,2, Sander Stuijk1, Henk Corporaal1
1Department of Electrical Engineering, Eindhoven University of Technology, Netherlands

2Embedded Systems Institute, Eindhoven, Netherlands
{y.yang, m.c.w.geilen, a.a.basten, s.stuijk, h.corporaal}@tue.nl

Abstract—Synchronous dataflow graphs (SDFGs) are widely
used to model streaming applications such as signal processing
and multimedia applications in embedded systems. Trade-off
analysis between performance and resource usage of SDFGs
allows designers to explore implementation alternatives of a
system while meeting its performance requirements and re-
source constraints. This type of analysis is computationally very
challenging, particularly when resources may be shared among
computations. With resource sharing, system scheduling decisions
lead to a combinatorial explosion in the number of scheduling
alternatives to be explored. We present a new approach to
explore the trade-offs in a such systems. It breaks analysis down
in iterations of dataflow graph execution and uses a max-plus
algebra semantics. The experimental results on a set of realistic
benchmark models show that the new iteration-based approach
and the traditional time-based analysis approach complement
each other. None of the two approaches dominates the other in
terms of quality of the analysis results and analysis time. The
two approaches combined give the highest quality result.

Index Terms—Synchronous dataflow, Max-plus Algebra,
Design-space Exploration

I. INTRODUCTION

Embedded systems can be found almost everywhere, in
smart phones, e-book readers, portable media players and
digital printers. An important class of applications, widely
found in those electronic devices, are streaming applications
like image, audio and video processing. Since those embedded
systems are always resource constrained, resources have to be
shared among many tasks. At the same time, it is becoming
practice in system design to use a reference platform that
will be carefully tailored to the specific set of applications
considered, in order to reduce time-to-market and development
costs. Designers have to carefully tune the platform parameters
(number of cores, size of buffers, etc.) to meet performance
requirements. Model-based design methods promise to solve
such design challenges, and deliver a shorter development
cycle while ensuring functional correctness and guaranteed
performance of products.

For finding a good match between application and archi-
tecture or platform instance, the Y-chart methodology is often
employed in embedded system design [2], [12]. According to
this method, designers first specify application and architecture

∗This work has been carried out as part of the Octopus project with Océ
Technologies B.V. under the responsibility of the Embedded Systems Institute.
This project is partially supported by the Netherlands Ministry of Economic
Affairs under the Bsik program.

aspects of an embedded system separately and then map
them together to do performance analysis. From the analysis,
designers can tune platform parameters and resource mapping
to satisfy application requirements and exploit available trade-
offs.

���������	
 ����������

�����
�

���	���
��
�
������

Fig. 1. Y-Chart Methodology [2], [12]

The SDFG model and its variants are often applied to model
streaming applications as well as platforms and their mapping.
However, resources are implicitly modeled in SDFGs. For
example, a buffer between two application tasks is modeled
as tokens in a feedback dependency edge between those tasks
and processors can be modeled as dependencies between
task invocations. When not explicitly modeled, resources are
assumed unlimited. In this model resources are always private
or resource access is statically ordered. Resource-Aware SDFG
(RASDFG) [21] is a particular extension of the SDFG [13]
model based on the Y-chart methodology to separate and
model resources explicitly. It combines application, architec-
ture and mapping aspects of a system into one graph. Fig. 2(a)
shows an example of RASDFG. Moreover, it allows dynamic
sharing of resources. The design space exploration addressed
in this paper targets dimensioning of a given architecture,
i.e., what should be the capacities of different resources in
the architecture to allow concurrent execution of tasks, and
investigates the trade-off with performance (throughput).
RASDFG is used to analyze these trade-offs between through-
put and resource usage and to dimension resource, given an
architecture and a set of fixed types of resources [21], [22].

Contributions. An iteration-based approach is proposed
to explore trade-offs in an RASDF graph. Earlier work on
analyzing RASDFGs [21], [22] does not exploit the fact
that system execution occurs in iterations. In this paper, we
develop a novel iteration-based trade-off analysis technique



(a) An RASDFG

5 6 7 8 9
1

2
34

5
6
7
8
9

Processor Num (y)Memory Size (x)
Th

ro
ug

hp
ut

−1

(9,3,4)

(9,2,4.5)
(7,2,5)

(6,2,7)

(5,1,9)(5,2,8)

(b) Design space

Fig. 2. An illustrative example

for RASDFG, aiming for an improved quality of the results
and efficiency of the analysis. The approach is grounded in
max-plus algebra [4], [11], which provides a natural means to
capture iteration-based execution of dataflow applications. It
turns out that the newly developed method improves quality
and/or efficiency of the analysis in some, but not all cases.
Best quality results can be obtained by a combination of the
new iteration-based method with the traditional method.

II. PRELIMINARIES

To illustrate our approach, we introduce an example that
is used throughout this paper. Assume we have a streaming
application that consists of 3 tasks (A, B and C). We map it
to a reference platform with multiple processors and a shared
memory for which neither the size of the memory (x) nor the
number of cores (y) are decided. Fig. 2(a) shows its system
model as an RASDFG. The trade-offs in its design space are
shown in Fig. 2(b).

The RASDFG in Fig. 2(a) includes three parts of the given
system:
application. The circular nodes, actors, represent computa-
tions. Actor names and execution times are shown inside
the nodes. Actors communicate through FIFO channels (solid
directed edges) using data items called tokens.
architecture. The rectangular nodes represent (shared) re-
sources that are needed by the computations. Resource names
and amounts are shown inside the nodes.
mapping. Claims and releases of resources by actors are
denoted by request edges (the bidirectional dashed edges).

An essential property of an RASDFG is that every time an
actor fires (executes), it consumes/claims the same amount of
tokens/resources from its input ports/resource providers and
produces/releases the same amount of tokens/resources to its
output ports/resource providers. These amounts are called the
rates, and are attached to both ends of the edges in the figure.
For example, in Fig. 2(a), actor A’s execution time is 1 time
unit and it claims 2 units of memory when it starts firing, and
outputs 2 tokens on channel ch1 when it ends firing. It does,
however, not yet release the memory. Actor B consumes 3
tokens from channel ch1 and claims 1 unit of memory when
it starts firing, and outputs 1 token on ch2 and releases 3 units
of memory that were claimed by actor A and itself, when it
ends firing.

RASDFGs are strictly more expressive than regular Syn-
chronous Dataflow graphs. If every resource is claimed by only

one actor and released by only one actor, then an RASDFG can
be converted to an SDFG. However, if resources are claimed
and/or released by multiple actors, such transformation does
in general not exist. Analyzing performance-resource usage
trade-offs for RASDFGs is a fundamentally more difficult
problem than similar analyses on regular SDFGs, like the
throughput-buffer sizing trade-off analysis of [15]. In an
RASDFG execution, actors may compete for resources, and
the order of firings impacts resource usage and performance.
As a result, different orderings need to be investigated and
the size of the execution state space grows rapidly for more
complex RASDFGs and therefore an exhaustive exploration is
not practically feasible for those graphs. State-space reduction
techniques are needed for efficient design space exploration.

One important property of SDFGs is preserved by RASD-
FGs, namely the fact that execution occurs in iterations. An
iteration is the minimal non-empty set of actor firings that
does not have a net effect on the system state (available data
tokens and resources) of an RASDFG, when executed. For the
example of Fig. 2, an iteration consists of three firings of A,
two of B, and one of C. Therefore, an execution of the graph
can be conveniently partitioned into separate, but pipelined,
iterations.

The rest of this paper is structured as follows. The next
section discusses related work. Sec. IV introduces RASDFGs
and their operational semantics in the iteration-based approach.
Sec. V discusses state-space pruning techniques based on max-
plus algebra. An experimental evaluation is given in Sec. VI.
Sec. VII concludes.

III. RELATED WORK

Much work has been done on analyzing SDFG throughput
and on synthesizing schedules that minimize the resource of
buffer sizes [3], [8], [10], [14], [18], [23]. Only recently, trade-
off analysis for SDFGs [17], [21], [22], [24] is investigated.
[17] uses bottleneck analysis to explore distributed buffer size
configurations efficiently while [22] applies this approach to
the more general RASDFG model. [23], [24] investigate trade-
offs between cost and performance by differently partitioning
actors to software and hardware implementations, assuming
software and hardware realisations have different cost and
performance. They use constraint programming to find a
schedule that satisfies a given throughput constraint and has
the minimal total size of distributed buffers. Then Pareto op-
timization is applied to the discovered solutions characterized
by their software, hardware and buffer costs. They investigate
the binding problem rather than the resource dimensioning
problem that is investigated in this paper. Existing trade-off
analysis work assumes traditional time-based representations
of system execution. Except for the work on RASDFGs [21],
[22], all this work also limits exploration to specific execution
policies, such as self-timed execution or periodic execution.
Such policies are no longer optimal when resource sharing
is allowed. Recently, [7], [9] introduce an iteration-based
throughput analysis for an SDFG variant called scenario-
aware SDFGs. Scenario-aware dataflow allows dynamic actor
execution time changes between iterations. The analysis is



Fig. 3. State space example in max-plus view

based on a max-plus representation of SDFG execution. Max-
plus algebra is also used to analyze the performance of Petri-
nets [5], [6], which is a more general model of computation
encompassing SDFGs. Inspired by this work, we apply max-
plus algebra for RASDFG analysis, to compute throughput-
resource usage trade-offs in the design space of the RASDFG.
The approaches of [7], [9] are not directly applicable because
of non-determinism in RASDFG execution. The approaches of
[5], [6] do not fully exploit the characteristics of RASDFGs
and are not directly applicable to trade-off analysis.

IV. MAX-PLUS VIEW ON RASDFGS

A. Motivation of the new approach

In order to explore the trade-offs of a given RASDFG,
we need to explore its different executions. As mentioned,
RASDFGs execute in iterations. Like a regular SDFG, also
an RASDFG requires consistency and has a repetition vector
[13], [21]. An RASDFG is consistent if and only if there exists
a non-trivial repetition vector q, which assigns a non-zero
number of firings to every actor, such that, after any sequence
of actor firings conforming to q, an iteration, the number of
tokens in the channels as well as the amount of resources are
equal to their initial state values. The repetition vector of the
example of Fig. 2 equals q(A) = 3, q(B) = 2, q(C) = 1.

The max-plus view on RASDFG execution uses the pro-
duction times of tokens and the release times of resources
to capture the state of an RASDFG after a sequence of
actor firings. By exploring the firing order of actors inside
one iteration and checking for recurrence od states after
every complete iteration, we explore the trade-offs in a given
RASDFG on an iteration-by-iteration basis.

Fig. 3 shows part of the state space of the model of Fig. 2(a)
with memory size x = 9 and y = 3 processors, generated
according to an iteration-based approach. Triangular states
Ik represent the states in the iteration state space reached
after a number of whole iterations and edges with arrows
denote single iterations. The right parts of the figure zooms
into the iterations between I3 and I4 and shows the intra-
iteration states Si,j (ith state in jth iteration explored) and
individual actor firings (arrows labeled with actor names).
Dashed back edges denote occurrences of recurrent states in

�

�

� � � � �� �� �� �� �� �

Fig. 4. An execution chart of our example

the state space (for instance, S6,3 is identical to I3) and the
trade-offs (iteration period, memory and number of processors)
of the corresponding cycles are annotated with them. Iteration
period is the (average) time taken for one iteration and is thus
inversely proportional to the throughput.

Since the amounts of tokens and resources do not change
after any number of complete iterations, to detect recurrent
states, we only need to compare the production times of
tokens and resources, not their quantities (precise definitions
are given in the following section). We therefore also only
need to store the triangle states of every iteration. For example,
instead of 20 states (the states in the dashed box), we only
have to store 2 states (I3 and I4) in Fig. 3. This property
sharply reduces checks for recurrent states and the size of
the state space stored compared to the traditional state-space
exploration approach, which we refer to as the time-based
approach. For the example, only 123 iteration states (triangles)
need to be stored for a full exploration when using the
iteration-based exploration, in comparison to 220 states when
using the time-based exploration of [22], to explore the state
space to a depth of just 4 iterations.

B. Iteration-based State and Execution of RASDFG

To formalize our iteration-based approach, we use max-plus
algebra to capture the execution of a given RASDFG. Fig. 4
shows one of its executions with memory size x = 5 and y = 2
processors, where the horizontal axis is time and the vertical
axis shows resources. We separate different resources (mem ,
proc) in the vertical axis of the chart, into their individual
units. At the top, it shows a Gantt chart with the individual
actor firings. The chart shows the acquisition and release of
resources. The small circles with enclosed numbers denote
the end of each iteration of the graph and indicates when that
resource unit is ultimately released for the execution of the
iteration; the number inside the circle is the iteration count.
After the second iteration, in lighter grey color, we observe
that the resource release times are identical to the release times
after the first iteration, except that they are all shifted forward
by 8 time units. Thus, the execution may go into a periodic
phase, repeating this behavior forever with period 8.

In the time-based state-space exploration, a state at time
t keeps information about active actors of an RASDFG at
t and the token distribution in channels and resources. This
representation is intuitive but it is impossible to distinguish
iteration states, since the firings of different actors reach the
end of an iteration at different times; the iterations overlap



Fig. 5. Max-plus semantics for actor firing

in time, are pipelined. For example, actor A finishes the 1st
iteration at time 5 while actor B finishes at time 7. Actor C
finishes at time 9, while actor A has already started the next
iteration at that moment in time.

In order to represent the iteration state of an RASDFG,
we define the time stamp of each token as the time it was
produced, i.e., written into the channel, for a data token, and
the time it was released, for resource tokens. We use this
representation for a nested exploration strategy that explores
the scheduling possibilities inside a single iteration and then
only constructs a state-space of iteration states in memory,
labeled with the resource usage and time taken by the iteration.
Hence, the new technique is based on maintaining time stamps
of tokens indicating their first moment of availability. This time
stamp evolution of tokens is illustrated with Fig. 5. When actor
A fires with execution time τa, it consumes two tokens, with
time stamps t1 and t2. Assuming a self-timed execution, the
actor starts as soon as both tokens are available, i.e., at time
max(t1, t2) and thus it completes and produces a new token
with time stamp max(t1, t2)+τa. Hence, the process of actors
firing and the evolution of time stamp values of tokens can be
captured by max-plus algebra equations [1], [11].

We now briefly introduce some notation for max-plus al-
gebra, only as far as it is used in the following sections.
Following max-plus algebra notation, we use ε to denote
−∞, important in the algebra as the neutral element of
the max operator, for a ∈ R ∪ {ε} = Rmax, we have
max(a, ε) = max(ε, a) = a and the zero element of the
addition operator, a+ ε = ε+ a = ε.

For a vector ā, we use ‖ā‖ = max{ai} to denote its norm
and if the norm is larger than ε, ānorm = ā−‖ā‖ to denote its
normalized vector. When two vectors ā and b̄ have the same
length n and for all i ≤ n it holds that ai ≤ bi, then we say
that ā dominates b̄ and we use ā � b̄ to represent this. For
more details, we refer to [1], [11].

A finite execution σ is defined as a finite sequence of actor
firings with their starting times. For example, the execution in
Fig. 4 can be written as σ = (A, 0)(A, 1)(B, 2)(A, 4) . . .. We
use a counting vector γ(σ) = [γa(σ) | a ∈ A] with A the set
of actors, to denote the total number of firings γa(σ) of each
actor a in the execution σ. The ‘state’ of an RASDFG can
be defined by the locations and time stamps of its data and
resource tokens. Although the number and locations of tokens
may vary with the firings within an iteration, they return to
their original values and places at the end of the iteration.
Then only the time-stamps have hanged. We use the notation
ψc(σ) = {(m1, τ1), (m2, τ2), . . . , (mk, τk)} to denote the time
stamps of the tokens in the channel c after σ, where (mi, τi)

means that there are mi tokens with the same time stamp τi.
For a resource r, we define ψr(σ) in a similar way. All data
tokens are initialized to 0, while resource tokens are initialized
to ε (for reasons explained below). The state of an RASDFG
after a finite execution σ is defined, by the combination of the
state of the channels and the state of the resources, as

Ψ(σ) =

[
ψc(σ)
ψr(σ)

c ∈ C, r ∈ R

]

For example, in Fig. 4, the state of the example RASDFG
after a finite execution σ = (A, 0)(A, 1)(B, 2) is:

Ψ(σ) =

⎡
⎢⎢⎣

{(1, 2)}ch1

{(1, 4)}ch2

{(3, 4)}mem

{(1, ε), (1, 4)}proc

⎤
⎥⎥⎦

There is one token in channel ch1 with time stamp 2, one
in channel ch2 with time stamp 4, 3 memory resource tokens
with time stamps 4, one still unused processor with time stamp
ε, and one processor resource token with time stamp 4.

With a fixed ordering of the channels and representing
individual tokens, we can alternatively represent states in
vector form for simplicity. For example, the above state can
be written as

ζ(σ) =
[
2 4 4 4 4 ε 4

]

The first entry in the vector ζ(σ) corresponds to the element
(1, 2)ch1 from the state Ψ(σ). The third, fourth and fifth
elements correspond to (3, 4)mem. Every entry (mi, τi) in the
state gets expanded into mi entries in the vector ζ(σ) with
value τi.

Different resource allocation policies will lead to different
states, and the number of possible policies can be very large
due to its combinatorial nature. Therefore, we need a strategy
to find an optimal policy. Sec. V provides a throughput optimal
resource allocation policy to solve this problem.

C. Throughput and Resource usage computation

Since the time stamps in the state of a given execution keep
growing as the execution continues, we normalize the state’s
time stamps to check for recurrence in the state space by
only comparing the relative differences of the time stamps. We
therefore store the max-plus normalization of the vector ζ(σ)
in memory during state-space exploration. In the following,
we use σi to denote an execution that contains i complete
iterations. Assume the execution first visits its recurrent state
after the n1th iteration and revisits it after the n2th iteration,
then the execution between the n1th and n2th iteration forms
a cycle in the state space. Assume that after k iterations
of execution, this cycle has been repeated n times, so that
k = n1 + n(n2 − n1). The time at which the ith iteration
completes is ‖ζ(σi)‖ (recall that this is the maximum element
in the vector). We can compute its throughput (the average



number of iterations per time unit) with the following equation.

Thr(σ) = lim
k→∞

k

‖ζ(σk)‖
= lim

n→∞
n1 + n · (n2 − n1)

‖ζ(σn1)‖+ n · (‖ζ(σn2)‖ − ‖ζ(σn1)‖)
=

n2 − n1
‖ζ(σn2)‖ − ‖ζ(σn1)‖

In the max-plus view, the state vector contains the time
stamps of all available resource tokens. The time stamp of a
resource token that was ever used is larger than ε (hence the
initialization to ε). Hence, the number of non-ε time stamp to-
kens at a state Si for resource r is the amount of used resource
at the state Si and denoted by Rur(Si). So, the resource usage
of an execution σ is Rur(σ) = max{Rur(Si)}, for all Si ∈ σ.
Ru(σ) denotes the vector [Rur(σ) | r ∈ R].

Different executions may lead to different cycles and have
different throughput and resource usage properties. By explor-
ing the design space of a given RASDFG we can find those
cycles, their performance and resource usage trade-offs and
the corresponding resource arbitration policies. Note that, in
Fig. 3, S10,3 = I4; at S10,3/I4 the execution transits from
one iteration into the next iteration. The dashed edges denote
the detections of recurrent states and the numbers denote
the performance value and resource usage. For example, an
execution σ may reach I3 after its first iteration (denoted as
σ1). At the end of the 3rd iteration of σ, (after σ3), it may
reach S6,4, which is identical to I3 (Snorm

6,4 = Inorm3 ). The path
between I3 and S6,4 is a cycle and can be repeated forever.
Thus a trade-off point is found. In this point, the average
number of time units per iteration is 5.5, the resource usage
is 7 for the memory and 3 for the processors, added as a label
(5.5, 7, 3) to the dashed edge.

From a given state, different actor firings may generate
different next states. For example, at the state

S2,3 =

⎡
⎢⎢⎣

{(2, 8), (2, 10)}ch1

∅ch2

{(2, ε), (2, 0), (1, 9)}mem

{(1, 7), (1, 9), (1, 10)}proc

⎤
⎥⎥⎦ ,

there are two enabled actors, A and B; we have 2 options:
firing A (going from S2,3 to S3,3) or firing B (going from
S2,3 to S7,3). Note that simultaneous firings can always be
replaced by a sequence of single firings. Therefore, we only
need to consider interleavings of enabled firings at a state.

Given the state space, we can compute the throughput and
resource usage of different executions. For example, the states
I3 and S6,4 in Fig. 3 are

I3 =

⎡
⎢⎢⎣

∅ch1

∅ch2

{(2, ε), (2, 4), (3, 6), (2, 8)}mem

{(1, 3), (1, 6), (1, 8)}proc

⎤
⎥⎥⎦

S6,4 =

⎡
⎢⎢⎣

∅ch1

∅ch2

{(2, ε), (2, 15), (3, 17), (2, 19)}mem

{(1, 14), (1, 17), (1, 19)}proc

⎤
⎥⎥⎦

The normalized time stamp vectors for I3 and S6,4 are equal,
i.e.,

ζ(σ1)
norm = ζ(σ3)

norm =[
ε ε −4 −4 −2 −2 −2 0 0 −5 −2 0

]
We find a cycle σper consisting of the firings leading from I3
to S6,4. The norms are ‖ζ(σ1)‖ = 8 and ‖ζ(σ3)‖ = 19. So
with σpre being the execution leading from the initial state I0
to I3, the throughput for the infinite execution σ = σpreσ

ω
per

is
Thr(σ) = lim

n→∞
1 + n · (3− 1)

8 + n · (19− 8)
=

2

11
.

In the execution σ = σpreσ
ω
per (called a simple execution),

there are 7 non-ε time stamp memory tokens, so the usage of
the memory resource is 7 and similarly for the processors is
3.

By applying Pareto minimization on the metric points
we obtained from the exploration of the state space of an
RASDFG, we can find the different trade-off points between
throughput and resource usage, i.e, the Pareto points in the
metric space. For example, in Fig. 3, we can find 4 different
Pareto points: (8, 5, 3), (7, 6, 3), (5, 7, 3), (4, 9, 3). In each
point, the first value is the average time per iteration (i.e.,
the inverse of throughput), the second value is the memory
usage, the third is the processor usage.

Given the trade-offs in the metric space, designers can tailor
their platform to their wishes. The success of this method
depends on efficiently pruning the state space of a given
RASDFG. The next section provides theoretical results for
efficient pruning of the iteration state space.

V. STATE SPACE PRUNING TECHNIQUES

In order to explore the design space of a given RASDFG,
we need to explore different executions of the RASDFG and
compute the throughputs and resource usages of those execu-
tions. The executions are different in two aspects: the firing
order of actors and the resource allocation policy of resource
tokens. By exploiting the properties of the two aspects, we can
prune the state space of a given RASDFG efficiently.

A. Pruning Based on Actor Firing Order

The order of actor firings in an RASDFG can be different in
different executions. Under the same resource constraints, two
executions may have the same number of firings for each actor,
and only differ in the order of actor firings leading to different
token time stamps. An execution where all time stamps are
larger than or equal to some other execution uses the same
resources and is slower and is therefore redundant and can be
pruned.

Proposition 1: Given two executions σ1 and σ2 such that
the actor firing counts are equal, i.e., γ(σ1) = γ(σ2). If
ζ(σ1) � ζ(σ2), then for any execution σb = σ2σ, execution
σa = σ1σ dominates σb so that its throughput is equal to or
better than the throughput of σb, i.e. Thr(σa) ≥ Thr(σb) and
so is it resource usage Ru(σa) � Ru(σb).

Proof: Since γ(σ1) = γ(σ2), the numbers of data and
resource tokens are equal between σ1 and σ2. They only differ



Fig. 6. Optimal resource allocation policy

in time stamp values, which in ζ(σ1) are no later than in
ζ(σ2). So any actor firing that is possible in σb after σ2 is
also enabled in σa after σ1. As ζ(σ1) � ζ(σ2), and the max
and plus operators are monotonically non-decreasing, for any
actor firing sequence σs, the new time stamps vector in σa will
dominate the vector in σb. ζ(σ1σs) � ζ(σ2σs). So for the ith
iteration states in σa and σb after σ1 and σ2 respectively, we
always have ζ((σa)i) � ζ((σb)i). Hence,

Thr(σa) = lim
n→∞

n

‖ζ((σa)i)‖ ≥ lim
n→∞

n

‖ζ((σb)i)‖ = Thr(σb)

Since ζ(σ1) � ζ(σ2), Ru(σ1) � Ru(σ2). From Ru(σa) =
max(Ru(σ1), Ru(σ)) and Ru(σb) = max(Ru(σ2), Ru(σ))
it follows that Ru(σa) � Ru(σb).
From Proposition 1 we know that, if we find that the time
stamp vector of a state is dominated by a time stamp vector
already existing in the state space with the same firing counts
and resource usage, the exploration can backtrack since further
exploration cannot lead to a better result.

B. Pruning Based on Resource Allocation

From Sec. IV we know that there can be many resource
allocation policies. However, we want to find throughput-
optimal policies to reduce the exploration cost. Based on
Proposition 1, we can construct a throughput optimal policy.
The policy is illustrated in Fig. 6: an actor is ready to be
fired (i.e. enabled) at ten when all data tokens and resource
requirements are satisfied. Let ten be the earliest time at which
the actor is enabled (there are sufficient data and resource
tokens to be able to fire). The k resource tokens it needs are
only available at tk. We know that the enable time of the actor
ten ≥ tk. We always select the k tokens with the largest time
stamps that are equal to or less than ten. This leaves the earlier
resource tokens to be used by other actor firings which may
thus be able to fire earlier and so improve performance. Since
the time stamps are the newest tokens that are available at
ten, we call the resource token selection policy: As New As
Possible (ANAP) and denote it by PANAP .

Proposition 2: The resource allocation policy PANAP is an
optimal policy.

Proof: Given an execution at state s, an actor with
execution time τa is selected for firing at state s. Assume the
actor enable time is ten. Then the output tokens of the actor
are time-stamped τa + ten if the firing starts at ten. Since ten
is the actor enable time, the output time stamps are as small as
possible. We only need to compare the remaining time stamps.
The channel time stamps are consumed in a FIFO way, so no
matter how resource tokens are taken, the remaining channel
time stamps are always the same for any resource allocation
policy. By using the PANAP policy, the remaining resource
time stamps are the smallest. So, the time vector generated by
PANAP always dominates time vectors generated by another

Fig. 7. Throughput approximation

resource allocation policy. From Proposition 1, it then follows
that PANAP is the optimal resource allocation policy.

Proposition 2 shows that the PANAP resource allocation
policy provides the best possible throughput. Note that the
policy is not necessarily resource optimal. In certain situations,
resource could be saved when delaying an actor firing when
it is enabled. In our experiments, we perform an exploration
with various resource constraints. This allows us to find these
trade-off points as well.

C. Throughput Approximation

In practice, the schedule length is always limited. The
state space of an RASDFG without schedule length limit can
be very large. To prune the exploration, throughput has to
be computed for a bounded number of iterations. However,
in some cases, a cycle cannot be detected before reaching
the iteration limit. To get useful results out of the aborted
explorations, we need to compute an approximation for the
throughput. Fig. 7 shows how to compute the approximation.

Assume we have an execution which after the (i + k)th
iteration reaches a state ζi+k, which has not been visited
before. We can estimate the throughput that is obtainable
from ζi by computing the minimal offset kλmin such that
ζi+k � ζi+(kλmin). Then we can always achieve a throughput
Thr = k

kλmin
= 1

λmin
by delaying the time stamp vector

of ζi+k to ζi + (kλmin) and let the execution enter into a
cyclic phase. For all stored iteration states from ζ0 to ζk−1,
we estimate the throughput based on that state and since we
know they are all lower bounds on throughput, we may keep
the largest one as the throughput estimate.

Proposition 3: The schedule found with the above approx-
imation, leads to a throughput which is no smaller than the
approximated throughput.

Proof: Assume that the highest approximated throughput
Thr = 1

λmin
is obtained from the part of an execution σk

that repeats the part between the ith iteration and the (i+k)th
iteration, resulting in the execution σ = σi(σk)

ω . Then we can
construct an execution σ′ on the full state space by firing actors
in the same order as in σ. Since ζ(σ′

i+nk) ≺ ζ(σi(σk)
n),

from Proposition 1, we know that for this constructed execu-
tion Thr(σ′) = limn→∞ i+n·k

‖ζ(σ′
i+nk)‖ ≥ limn→∞ i+n·k

‖ζ(σi(σk)n)‖
= limn→∞ i+n·k

‖ζ(σi)‖+n·k·λmin
= 1

λmin
= Thr(σ).

It shows the approximation is conservative.

VI. EXPERIMENTS

We implemented our algorithm in the SDF3 toolset [16] and
tested it on two sets of RASDFGs to evaluate the iteration-
based approach on a Linux 64bit system with an Intel 2.8G



TABLE I
ITERATION BASED APPROACH VS. TIME BASED APPROACH (GRID SEARCH + BOTTLENECK ANALYSIS)

Bipartite Modem Sample Rate MP3 Satellite H263Decoder
No. of Shared buffers 1 2 1 3 1 3 1 3 1 3 1 2

No. of Pareto Points (time based) 7 8 4 1 6 2 2 4 1 1 2 3
No. of Conf (time based) 10 69 30 34 15 250 9 104 11 27 65 43

Exec Time time (s) 7.8 1.7 29.7 6.7 15.3 47.9 9.3 57.2 11.4 27.4 60.9 30.9
No. of Pareto Points (iter based) 7 8 4 1 3 2 4 2 2 3 1 1

No. of Conf (iter based) 10 91 11 34 15 250 9 106 9 9 3 4
Exec Time Iter (s) 6.7 2.2 7.2 1.7 8.9 37 9.5 11.3 21.4 64.2 2.7 0.7

Iε (time,iter)/Iε(iter,time) 1/1 1/1 1/1.0625 1/1 1.024/1.035 1/1 1.156/1.09 1.156/1 1.019/1 1.019/1 1/1.074 1/2
Exec Time Reduction 14% -30% 75% 75% 60% 23% -2% 80% -87% -134% 95% 98%

TABLE III
COMBINED APPROACH VS. TIME-BASED AND ITERATION-BASED APPROACHES

Bipartite Modem Sample Rate MP3 Satellite H263Decoder
No. of Shared buffers 1 2 1 3 1 3 1 3 1 3 1 2 Arch 1 Arch 2 Arch 3

Trade-offs No. (combined) 7 8 4 1 5 2 3 2 2 3 2 3 10 14 18
Exec Time (combined) (s) 14.5 3.9 36.9 8.4 24.2 84.9 18.8 68.5 32.8 91.6 63.6 31.6 153.28 66.4 150.2
Iε (iter,comb)/(comb,iter) 1/1 1/1 1.0625/1 1/1 1.035/1 1.041/1 1.09/1 1/1 1/1 1/1 1.074/1 2/1 1.092/1 1.811/1 1.05/1

Iε (time,comb)/(comb,time) 1/1 1/1 1/1 1/1 1.024/1 1/1 1.156/1 1.156/1 1.019/1 1.019/1 1/1 1/1 3.0/1 2.0/1 2.137/1
ADRS(time,comb)/(iter,comb) 0/0 0/0 0/0.156 0/0 0.0056/0.0186 0/0.037 0.087/0.031 0.078/0 0.009 /0 0.0125/0 0/0.0369 0/0.0358 0.390/0.016 0.265/0.310 0.303 /0.010

TABLE II
ITERATION-BASED APPROACH VS. TIME-BASED APPROACH: PRINTER

ARCHITECTURE EXPLORATION

Arch 1 Arch 2 Arch 3
Trade-offs No. (time based) 5 9 9

Conf No. (time based) 147 66 137
Exec Time (time based) (s) 144.6 65.4 134.8
Trade-offs No. (iter based ) 8 5 13

Conf No. (iter based) 60 6 57
Exec Time (iter based) (s) 9.28 1 15.4

Iε(time,iter)/(iter,time) 3.0/1.092 2.0/1.811 2.137/1.05
Exec Time Reduction 94% 98% 86%

CoreTM i7 with 8GB memory. The first set of graphs includes
realistic media graphs from the literature. The set contains
a modem [3], a sample-rate converter [3], an MP3 decoder
and an H.263 decoder [15], and a satellite receiver [19]. We
also included the often used artificial bipartite graph from [3].
Memory resources and corresponding resource requirements
are added to the models. For each of the graphs we consider
two variants, one with a single shared memory buffer and
one with two or three selected shared buffers. The second
set of graphs, including resources and resource requirements,
originates from an industrial project cooperation with Océ
Technologies (www.oce.com) to explore the design space of
printer architectures.

We compare the iteration-based approach with the time-
based approach of [21], [22]. A bottleneck analysis technique
similar to [22] is applied in the iteration-based approach
by augmenting time stamps with their producing actor and
detecting data and resource dependencies. In our experiments,
we divide the resource space into grids and iterate all grid
points within a time budget of 1 second for every grid point.
Tables I and II show the results. We compare the numbers of
explored configurations and the Pareto points obtained. It is not
obvious how to compare the quality of sets of Pareto points
according to simple metrics [25], [26], [27]. The quality of
the Pareto points obtained from both approaches is compared
using the ε-Indicator of [26] and using the Average Distance to
Reference Set (ADRS) [25] metric. The first one is typically
used to compare two different point sets while the second
one is often used to evaluate the quality of the method to

approximate a known Pareto-optimal front.
Loosely speaking, a set B of Pareto points is better than a

set A when Iε(A,B) is bigger than Iε(B,A). If Iε(A,B) is
bigger than 1, then B contains new Pareto points compared to
A. Iε(A,B) defines by how much the points in B need to be
scaled so that they are all dominated by points in A. Fig. 8
illustrates the ε-Indicator. For example, we have to scale by a
factor of 1.09 to make that the scaled time-based results are
dominated by the iteration-based results. On the other hand, we
have to scale by a factor of 1.156 to get the scaled iteration-
based results dominated by the time-based results. We can
conclude that none of the results are strictly better than the
other (both scaling factors are larger than 1), but if we have
to make a choice based on the ε-Indicator, we would prefer
the iteration-based set for this case.

In ADRS, the average distance of a set of Pareto points
to the reference set of Pareto points is measured. In our
experiment, the combined results of the two approaches are
used as the reference set. For example, the 3 green circles in
Fig. 8 are the combined results of the two approaches and
are used as points of the reference set. For every point in the
reference set (green cycle), we compute the minimal distance
to the points in the selected set. The distance between two
points is defined as the maximal ratio of value change among
all objective dimensions. For example, we can compute the
ADRS of the iteration-based approach as follows. For two
reference points, which overlap with the points in the iteration-
based approach, the minimal distance is 0. For the left upper
green circle, the minimal distance of a point to it is 0.0929.
So the ADRS is (0.0929 + 0 + 0)/3 = 0.031.

Since both approaches do not fully explore the design space
of large examples, they may miss optimal points. The iteration-
based approach cannot exploit the interleaving of iterations,
i.e., earlier iterations must use the resources before later
iterations. The time-based approach can in principle exploit
the opportunity of interleaving iterations. However, in practice,
the size of the state space that can be explored is limited and
this opportunity typically provides little advantage in practice.
As the size of state space grows rapidly with the length of



0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7
x 106

Shared Buffer Size

Th
ro

ug
hp

ut
−1

Trade−offs in MP3 with one shared buffer

time−based
iter−based
scaled−timed
scaled−iter

Iε(iter,time)=1.09

Iε(time,iter)=1.156

Fig. 8. Trade-offs MP3 with one buffer; circled points are Pareto points for
the combined results

an iteration and slows down the exploration, the iteration-
based approach typically completes faster than the time-based
approach.

We see in our experiments that a considerable exploration
time reduction is obtained in 11 out of 15 cases and new
Pareto points are found with the iteration-based approach in
8 cases. Also in 8 cases, however, the time-based approach
yields Pareto points not found by the iteration-based approach.
There does not seem to be a systematic way to predict
which of the approaches performs better in specific cases.
The two approaches do strengthen each other. Running both
analyses yields the best results, as illustrated for example
in Fig. 8. Table III compares the combined approach with
the two other approaches. The combined approach obviously
dominates the two individual approaches quality wise, with
acceptable execution times ranging from a few seconds to just
over 2.5 minutes.

VII. CONCLUSION

In this paper, we investigate a novel technique to explore the
resource usage vs. performance trade-offs in dataflow graphs
with shared resources using an iteration-based state-space
exploration technique. We exploit the properties of the max-
plus based model of execution to explore the state space on
an iteration-by-iteration basis. We present exact and heuristic
pruning techniques to reduce the size of the state space. The
experimental results on a set of realistic benchmark models
show that the new iteration-based approach and the traditional
time-based analysis approach complement each other. The
new approach finds new trade-off configurations not found
by the traditional technique in 8 out of 15 cases and it is
often faster. Combining the two approaches is feasible and
yields the highest quality results. The iteration-based approach
allows for easy modeling of dynamic execution time changes
between iterations, as in scenario-aware dataflow graphs [9],
[20]. We plan to investigate the possibilities to add generic
resource awareness as developed in this paper to scenario-
aware dataflow graphs and adapt our analysis to such a
combined model.

REFERENCES

[1] F. Baccelli, et al., “Synchronization and Linearity: An Algebra for
Discrete Event Systems,” Wiley, 1992.

[2] F. Balarin, et al., Hardware-software co-design of embedded systems:
the POLIS approach. Kluwer, 1997.

[3] S. S. Bhattacharyya, et al., “Synthesis of embedded software from
synchronous dataflow specifications,” J VLSI Signal Process. Syst.,
vol. 21, no. 2, pp. 151–166, 1999.

[4] G. Cohen, et al., “Max-plus algebra and system theory: Where we are
and where to go now,” Annual Reviews in Control, pp. 207–219, 1999.

[5] S. Gaubert, et al., “Modeling and analysis of timed petri nets using
heaps of pieces,” IEEE Trans. Aut. Cont, pp. 40:683–697, 1997.

[6] S. Gaubert, et al., “Performance evaluation of (max,+) automata” IEEE
Trans. Aut. Cont., pp. 40:2014–2025, 1995.

[7] M. C. W. Geilen, “Synchronous Data Flow Scenarios” in ACM Trans.
Embedded Computing Systems, 2010.

[8] M. C. W. Geilen, et al., “Minimizing buffer requirements of synchronous
dataflow graphs with model-checking,” in DAC’05 Proc, ACM, 2005, pp.
819–824.

[9] M. C. W. Geilen, et al., “Worst-case Performance Analysis of Syn-
chronous Dataflow Scenarios” in CODE+ISSS’10 Proc, 2010, pp. 125-
134.

[10] A. Ghamarian, et al., “Throughput analysis of synchronous data flow
graphs,” in ACSD’06 Proc, IEEE, 2006, pp. 25–34.

[11] B. Heidergott, et al., “Max Plus at Work: Modeling and Analysis of
Synchronized Systems” Princeton Univ. Press, 2005.

[12] B. Kienhuis, et al., “An approach for quantitative analysis of application-
specific dataflow architectures,” in ASAP’97 Proc, IEEE, 1997, pp. 338–
349.

[13] E. A. Lee , et al., “Static scheduling of synchronous data flow programs
for digital signal processing,” IEEE Trans. Comp., vol. 36, no. 1, pp.
24–35, 1987.

[14] P. K. Murthy, et al., “Memory management for synthesis of DSP
Software,” CRC Press, 2006.

[15] S. Stuijk, et al., “Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs,” in DAC’06
Proc, ACM, 2006, pp. 899–904.

[16] S. Stuijk, et al., “SDF3: SDF For Free,” in ACSD’06 Proc, IEEE,
2006, pp. 276–278.

[17] S. Stuijk, et al., “Throughput-buffering trade-off exploration for cyclo-
static and synchronous dataflow graphs,” IEEE Trans. Comp., vol. 57,
no. 10, pp. 1331–1345, 2008.

[18] S. Sriram, et al., “Embedded Multiprocessors: Scheduling and Synchro-
nization,” Marcel Dekker, Inc, 2000.

[19] S. Ritz, et al., “Scheduling for optimum data memory compaction in
block diagram oriented software synthesis,” in ICASSP’95 Proc, IEEE,
1995, pp. 2651–2654.

[20] B. Theelen, et al., ”A Scenario-Aware Data Flow Model for Combined
Long-Run Average and Worst-Case Performance Analysis” in MEM-
CODE 06, pp. 185-194.

[21] Y. Yang, et al., “Exploring trade-offs between performance and resource
requirements for synchronous dataflow graphs” in Estimedia’09 Proc,
2009, pp. 96–105.

[22] Y. Yang, et al., “Automated Bottleneck-Driven Design-Space Explo-
ration of Media Processing Systems” in DATE’10 Proc, 2010, pp. 1041–
1046.

[23] J. Zhu, et al., “Constrained global scheduling of streaming applications
on MPSoCs” in ASP-DAC’09 Proc, 2009, pp. 223–228.

[24] J. Zhu, et al., “Pareto efficient design for reconfigurable streaming
applications on CPU/FPGA” in DATE’10 Proc, 2010, pp. 1035–1040.

[25] J.A. Czyak, et al., “Pareto simulated annealing: a metaheuristic tech-
nique for multiple-objective combinatorial optimisation” in Journal of
Multi-Criteria Decision Analysis, 1998, pp. 7:34–47.

[26] E. Zitzler, et al., “Performance Assessment of Multiobjective Optimiz-
ers: An Analysis and Review” in IEEE Trans, Evol, Comp., 2003, pp.
7:117–131.

[27] Gianluca Palermo, et al., “Pareto simulated annealing: a metaheuristic
technique for multiple-objective combinatorial optimisation” in Journal
of Embedded Computing, 2005, pp. 1:305–316.


