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Abstract. The dynamism inside applications can be exploited to save
energy. A proactive scheduler that exploits this dynamism through
Dynamic Frequency and Voltage Scaling (DVFS) has been presented
in [1][2]. So far, the claimed energy savings of this scheduler have
never been demonstrated on a real hardware platform. In this paper,
we show for the first time that the proactive scheduler from [1][2] is
able to realize the claimed energy savings. Our experimental results
show that this scheduler reduces the energy consumption of a MP3
decoder running on a TI Omap3530 board by 18%. The proactive
scheduler from [1][2] can only be used on a system that is running a
single application. In this paper, we extend this scheduler such that
it can deal with multiple applications that are running concurrently.
Our scheduler exploits both inter and intra application dynamism to
save energy while providing timing guarantees to all applications.
Experimental results show that our scheduler is able to achieve the
same energy savings, 38%, as an optimized version of the Linux
ondemand scheduler when running two H.263 decoders concurrently.
However, our scheduler achieves this result without any deadline
misses; the ondemand scheduler fails 10% of its deadlines leading to
a substantial quality loss.

Index Terms—Real-time scheduling, DVFS, embedded systems,
energy reduction, system scenarios

I. INTRODUCTION

Applications running on mobile embedded systems, e.g.
smart phones, require powerful processors to deliver the
Quality-of-Service which consumers expect from these sys-
tems. These processors however put a high strain on the battery
life time of the system. The need to frequently recharge mobile
systems immediately impacts the Quality-of-Experience of
consumers. It is therefore important to develop techniques
that allow mobile embedded systems to save energy, and
thus increase the battery life time, while maintaining the
desired Quality-of-Service (QoS). The resource requirements
of many applications show large variations over time. In order
to achieve the desired QoS, designers often allocate sufficient
resources to be able to deliver the required QoS even under
the worst-case situation. Exploiting the dynamic behavior of
applications offers however great potential for saving resources
and thus energy.

Several scheduling methods have been developed to exploit
the dynamic behavior of applications. These can be divided in
two classes: reactive methods and proactive methods. Reactive
methods measure the past workload and use this information to
adjust the processor frequency (e.g. using DVFS) to the lowest
frequency with which the past workload could have been
processed. However the past workload does not necessarily

provide an accurate prediction of the upcoming workload. As
a result, a reactive method may choose to run a processor
at a too high or too low frequency. In the former case, the
processor uses more energy then strictly required. In the latter
case, the application misses its deadline and the QoS of the
application is lowered. In contrast, proactive methods predict
the upcoming workload based on information gathered both
at design-time and run-time. This allows proactive methods to
switch the processor to the lowest frequency with which the
application is guaranteed to meet its timing constraints.

A proactive scheduling method that exploits the dynamic
behavior of applications has been presented in [1][2]. So far,
the claimed energy savings of this scheduler have never been
demonstrated on a real hardware platform. In this paper, we
show for the first time that this proactive scheduler is able to
realize the claimed energy savings. Our experimental results
show that this scheduler reduces the energy consumption of
a H263 and MP3 decoder running on a realistic hardware
platform which is used in several high-end smart phones. The
proactive scheduler realizes for both applications a reduction in
energy consumption of respectively 13% and 18% compared
to a system that does not use DVFS (i.e. which is running
at the lowest frequency needed to process the worst-case
input without missing any deadlines). When compared to the
state-of-the-art reactive scheduler used in Linux, the proactive
scheduler has the same or lower energy consumption (H263
and MP3 respectively). The proactive scheduler achieves this
result without any deadline misses (i.e. maintaining the QoS)
while the reactive scheduler misses 2% of its deadlines.

The proactive scheduler from [2] can only be used on a
system that is running a single application. In this paper, we
extend this scheduler such that it can deal with multiple appli-
cations that are running concurrently. Our scheduler exploits
both inter and intra application dynamism to save energy while
providing timing guarantees to all applications. Experimental
results show that our proactive scheduler is able to achieve the
same energy consumption as an optimized version of the reac-
tive scheduler used in Linux when running two H.263 decoders
concurrently. Our scheduler achieves this result without any
deadline misses whereas the ondemand scheduler misses 10%
of its deadlines which leads to a substantial loss of quality.

The remainder of this paper is structured as follows. Sec. II
presents related work. Sec. III describes our target platform.
Sec. IV discusses the dynamic behavior of multimedia appli-
cations. Sec. V explains the approach used by our proactive
scheduler to predict upcoming workloads. Sec. VI presents
results for the proactive scheduler when scheduling a single ap-



plication on our platform. Sec. VII explains how this scheduler
can be extended to deal with multiple concurrently running
applications. Sec. VIII presents extensions to the platform and
scheduler that would allow additional energy savings. Sec. IX
concludes this paper.

II. RELATED WORK

Many operating systems use a reactive scheduler in combi-
nation with DVFS to save energy. For example, the android
OS uses a reactive scheduler called ondemand [3]. Reactive
schedulers (e.g. [4], [3], [5], [6]) are easy to implement and
result in reasonable energy savings without requiring any
information from the applications that are scheduled using a
reactive scheduler. However, reactive schedulers are not well
suited for applications with real-time constraints (e.g. video
or audio decoders). Reactive schedulers are often forced to
run such applications at a frequency which is higher then
strictly needed to meet the application timing constraints. This
is due to the fact that the reactive scheduler cannot accurately
predict the upcoming workload. It results however in a loss
of energy which could potentially be avoided if the upcoming
workload could be predicted in advance. Such a prediction of
the upcoming workload is made by the proactive schedulers
presented in [7], [1], [2], [5], [8]. Although these papers
claim to achieve energy savings, these savings have never been
demonstrated on a real hardware platform. In this paper, we
show that the energy savings claimed in [1], [2] can be realized
on a hardware platform that is used in high-end smart phones.

Many modern embedded systems are running multiple ap-
plications concurrently. Reactive schedulers such as the Linux
ondemand scheduler [3] can be used in this context, but
as explained before reactive schedulers may cause deadline
misses or require more energy then strictly needed. Fixed
priority schedulers, e.g. [9], [10], [11], are able to achieve
a lower consumption compared to reactive schedulers while
providing timing guarantees. These schedulers are typically
only usable when all applications have periodic deadlines. Ap-
plications such as a H263 decoder do not fulfill this constraint.
The multi-application schedulers presented in [11] and [12]
can deal with a-periodic tasks, but these schedulers do not
exploit the dynamic behavior of applications to save energy.
As mentioned before, our experimental results indicate that
substantial energy savings can be obtained when exploiting
this dynamic behavior. Existing proactive schedulers (i.e. [7],
[2], [5], [8]) can however only be used in systems that run a
single application at the same time. Hence, these proactive
schedulers cannot be used directly in a multi-application
context. In this paper, we extend the proactive scheduler from
[2] such that it can be used to concurrently schedule multiple
time-constrained applications on a hardware platform.

III. HARDWARE PLATFORM

The BeagleBoard [13] is used as our target platform. It
is based on the TI Omap3530 System-on-Chip (SoC). This
platform is used in many high-end embedded devices, like
the Apple IPhone 3Gs and the Nokia N900. The Omap3530
SoC contains an ARM Cortex-A8 core, a TMS320C64x DSP
Core, and a POWERVR SGX Graphics Accelerator. The

TABLE I
DVFS POINTS AND ENERGY CONSUMPTION BEAGLEBOARD.

Frequency (MHz) Voltage (V) Consumption (mW)
125 0.975 ∼ 366
250 1.050 ∼ 456
500 1.200 ∼ 730
550 1.270 ∼ 785
600 1.350 ∼ 861

BeagleBoard supports several DVFS operation points for the
ARM core. These DVFS points are listed in Tab. I together
with the average energy consumption of the complete board in
each point. The energy consumption of the board is measured
using a shunt resistor which is present in the power supply
line. This allows us to measure the current drawn by the
board. Using a custom build instrumentation amplifier and
a data-logger connected to Matlab we measured the energy
consumption of the board. In this paper, we focus on reducing
the energy consumption of the ARM Cortex-A8 core. There-
fore, we forced all other components in power down or sleep
mode during our experiments. This avoids that components
other then the ARM core influence our measurements. We
validated our measurement setup using energy consumption
data provided by Texas Instrument [14].

IV. APPLICATIONS

A MP3 audio decoder and a H.263 video decoder are typical
applications to be found in mobile multimedia systems such
as the iPhone. This section discusses the dynamism that can
be found in these applications. These applications will be used
in the paper to demonstrate how this dynamism can be used
to save energy.

A. MP3 Decoder
A MP3 bitstream can be broken down into a stream of audio

frames. One frame represents 1152 output samples. At the start
of each frame, a header indicates the parameters that need to be
used when decoding this frame. Fig. 1 gives an overview of the
steps in this decoding process. It starts with decompressing the
bitstream using a Huffman decoder. The execution time needed
by the Huffmann decoder depends strongly on the bitrate of
the music. This bitrate is indicated in the header of each frame.
The decoded data consists of two blocks called granules. Each
granule holds 576 audio samples in the frequency domain.
After decoding, the samples are dequantized and reordered.
The execution time of both steps depends on the block type
that is used. After reordering, the stream of samples is split
into one or more channels. The number of channels depends
on whether the encoded stream contains mono or stereo audio.
Obviously, the number of channels has a large impact on the
execution time of the MP3 decoder. The final step (IMDCT)
in the MP3 decoder involves the transformation of the samples
from the frequency domain to the time domain. This step
shows no dynamic behavior.

B. H.263 Decoder
Fig. 2 shows the basic steps that are performed by a H.263

decoder. The decoding process of a H.263 decoder and a MP3
decoder are very similar. A H.263 decoder starts by decoding
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the bitstream using a variable-length decoder. Inside the header
of the bitstream, several parameters such as the number of
macro-blocks inside a frame, the picture encoding type, and
the frame rate are present. These parameters have a large
influence on the execution time of the whole decoder. Since
these parameters are part of the header of each frame, their
value will be known early on in the frame decoding process.
As explained in the next section, we can use the values of these
parameters to predict the execution time of the application.
This information can then be used to adjust the voltage and
frequency of the processor which results in a lower energy
usage.

V. SYSTEM SCENARIOS

Applications that are running on embedded multimedia
systems are full of dynamism. Their execution time depends,
amongst others, on the input data. When such an application
is running on a given platform it may encounter different
run-time situations. A run-time situation is a piece of system
execution that is treated as an atomic unit. Each run-time
situation has an associated cost (e.g. resource usage). The
execution of the system is a sequence of run-time situations.
The current run-time situation is only known at the moment
that it occurs. However, a set of so called scenario parameters
(i.e. variables in the application) can be used to predict the next
run-time situation. The knowledge that this run-time situation
will occur in the near future can be used to adapt the system
settings (e.g. processor frequency) to this run-time situation.
The number of distinguishable run-time situations from a
system is exponential in the number of scenario parameters.
To avoid that all these situations must be handled separately at
run-time, several run-time situations should be clustered into
a single system scenario. This clustering presents a trade-off
between the optimization quality and the run-time overhead of
the scenario exploitation.

A general methodology to identify and exploit scenarios has
been described in [2]. This methodology consists of a com-
bination of design-time and run-time steps. At design-time,
the scenario methodology starts with identifying the potential
scenario parameters and clustering the run-time situations into
scenarios. During this clustering, a trade-off must be made
between the cost of having more scenarios (e.g. larger code
size, more scenario switches) and the cost of grouping run-
time situations in one scenario (e.g. over-dimensioning of the

system for certain run-time situations). The second design-time
step involves the construction of a predictor that at run-time
observes the scenario parameters and that uses their observed
values to select a scenario at run-time. Finally, at design-time
an algorithm is constructed that is used at run-time to decide
when to switch between scenarios. This algorithm does not
only decide when it is required to switch between different
scenarios. When switching, it also changes the system settings
of the old scenario to the settings required for the new scenario
(e.g. it may change the processor frequency).

VI. SINGLE APPLICATION

In [2], Gheorghita presented an implementation of the
scenario methodology and associated proactive scheduler. He
demonstrated the energy savings of this methodology using
a platform simulator. So far, these savings have never been
demonstrated on a real platform. Results for such a validation
will be presented in this section.

In order to test the proactive scheduler of Gheorghita on
our platform, we had to make one important change to his
implementation. The scenario method and implementation
described in [2] assume a platform with many DVFS points
(i.e. one point per MHz). In practice, many platform have only
a limited set of DVFS points. Our platform has in fact only
5 DVFS points over its entire range from 125-600 MHz (see
Tab. I). The assumption made by the scenario method from [2]
may cause the generation of a non-optimal set of scenarios for
our platform. The method may generate and predict scenarios
that cannot be exploited on the target hardware. Consider as
an example a situation in which the method forms different
scenarios running at 300, 400 and 500 MHz frequency while
the actual hardware is only able to run at 500 MHz. The
generated scenario detector will need to distinguish these three
scenarios although they effectively all need to run on the same
frequency. As a result, the detector will be more complex then
strictly needed. We modified the implementation from [2] to
take the limited number of DVFS points in our platform into
account. Due to the limited number of DVFS points in our
platform, we find a smaller set of scenarios compared to [2].

To validate the scenario methodology from [2], we per-
formed experiments with a MP3 decoder and a H263 decoder.
In both experiments, we compare the proactive scheduler
proposed by [2] to the Linux ondemand scheduler [3] which
is is a state-of-the-art reactive scheduler. We also compare
the proactive scheduler to a worst-case scheduler which does
not use DVFS. Instead, it keeps the frequency fixed at the
lowest frequency needed to meet the timing constraints of the
application under its worst-case behavior.

MP3 decoder. Gheorghita validated his method using an
MP3 decoder. We used the same source code [15] as used by
Gheorghita to perform our experiments. The scenario method-
ology discovers three different scenarios in this application.
These scenarios capture the dynamism inside the various
blocks of the MP3 decoder (see Sec. IV) and they are exploited
by the proactive scheduler to save energy. Tab. II shows the
average power consumption of the proactive scheduler and our
two reference schedulers. The third column shows the resulting
energy usage relative to the worst-case scheduler. The results



TABLE II
ENERGY CONSUMPTION MP3 DECODER.

Scheduler Avg power (mW) Energy (%) Deadline Misses
Worst-case 766 100% 0%
Reactive 632 83% 2%
Proactive 627 82% 0%

show that our proactive scheduler is able to achieve an 18%
energy saving compared to the worst-case scheduler. In [2],
an energy saving of 12% has been reported for the proactive
scheduler. This result is in-line with the saving found by our
measurements on the BeagleBoard. From this we conclude
that the claim made in [2] is valid and that it is possible
to achieve actual energy savings using a proactive scheduler.
Tab. II also shows that the relative energy consumption of the
reactive scheduler is 1% higher than our proactive scheduler
(i.e. the energy saving obtained with the reactive scheduler
is smaller compared to the proactive scheduler). Despite this
higher energy consumption, the reactive scheduler still misses
2% of its deadlines while the proactive scheduler does not fail
any deadline. This shows that the proactive scheduler is able
to achieve energy savings without loss of quality.

The number of deadline misses of the reactive scheduler
could potentially be reduced by changing the granularity with
which the scheduler is invoked. By default, the scheduler is
invoked once every 300 ms. Tab. III shows the effect when
changing this granularity to 100 ms and 900 ms. The results
shows that a smaller granularity (100 ms) leads to fewer
deadline misses, but a larger energy consumption. This is to
be expected as the overhead of the scheduler, which costs
energy, becomes larger. The results also show that a larger
granularity (900 ms) results in more deadline misses and an
increased energy consumption. This is caused by the fact that
the scheduler is not invoked frequently enough. Whenever it
is invoked, there is a reasonable chance that a deadline has
been missed. In this situation, the scheduler will switch to a
very high frequency in order to avoid deadline misses in the
future. This will however cause a large increase in the energy
consumption. On the next invocation, the scheduler will see
that the workload does not justify the chosen frequency and it
will lower the frequency often below the frequency needed
to meet all deadlines. At this moment, the whole process
repeats itself. It is this constant switching between too high and
too low frequencies that causes the scheduler to increase its
energy consumption compared to a reactive scheduler which
is invoked every 300 ms. The results in Tab. III show that a
granularity of 300 ms for the reactive scheduler provides the
lowest energy consumption. We already saw earlier in Tab.
II that even in this situation, the proactive scheduler has a
lower energy consumption and better quality. This confirms
again that the proactive scheduler is able to exploit the inter
application dynamism to save energy.

H263 decoder. As a second experiment, we measured the
energy consumption of a H263 decoder running on our hard-
ware platform. Tab. IV shows the power consumption and rel-
ative energy consumption when using the proactive scheduler
from [2] as well as our two reference schedulers. The results of

TABLE III
GRANULARITY REACTIVE SCHEDULER - MP3 DECODER.

Granularity Avg power (mW) Energy (%) Deadline Misses
100ms 647 85% 1%
300ms 632 83% 2%
900ms 658 86% 6%

TABLE IV
ENERGY CONSUMPTION H263 DECODER.

Scheduler Avg power (mW) Energy (%) Deadline misses
Worst-case 463 100% 0%
Reactive 404 87% 9%
Proactive 405 87% 0%

this experiment are similar to the results from the MP3 decoder
experiment. Both the proactive and reactive scheduler are able
to achieve an energy saving of 13% compared to the worst-
case scheduler. The reactive scheduler achieves this result with
some quality loss (i.e. it misses 10% of its deadlines). The
proactive scheduler can achieve this saving without any quality
loss. Similar to the MP3 decoder experiment, we adjusted the
granularity with which the reactive scheduler could be invoked.
These results showed that a granularity of 300 ms provides the
lowest energy consumption. Decreasing the granularity would
lead to a higher quality, but also a higher energy consumption.
From this experiment, we can conclude that the proactive
scheduler outperforms the reactive scheduler as it achieves the
same energy reduction, but without any quality loss.

VII. MULTIPLE APPLICATIONS

The proactive scheduler presented in [2] can only be used
when running a single application on the platform. Mod-
ern embedded platforms typically run multiple applications
concurrently. In this section, we explain how the proactive
scheduler from [2] can be extend to handle multiple, time-
constrained applications. Similar to the single application
proactive scheduler discussed in the previous section, this
scheduler uses the concept of system scenarios to capture the
dynamic behavior of applications and to save energy.

A. Problem statement

We start by formalizing our multiple application scheduling
problem. Assume a set A = {A1,A2, · · · ,An} of n running
applications. Each application Ai has a worst-case workload
Lwci. Whenever an application Ai is running, a run-time
situation is active in a particular scenario. This run-time
situation has a deadline Di, and remaining workload Wi (which
is scenario dependent). The start time of a run-time situation is
the deadline of the previous run-time situation. The workload
of a run-time situation (i.e. Wi) and the next deadline (i.e.
Di) become available at the start of the run-time situation. An
active application can be preempted at any time. This causes
a context switch overhead CWoh (in cycles). Whenever the
scheduler is invoked, it may decide to switch the frequency
of the processor which causes a speed transition overhead
SWoh. Both overheads needs to be taken into account by the
scheduler. The scheduler is invoked whenever the running
application finishes its work for its current run-time situation



or when the deadline of another application is reached. At
that moment, the scheduler can choose a new DVFS operating
point. This DVFS operating point should be chosen in such
a way that all applications can meet their deadline while also
minimizing the overall energy consumption of the platform.

B. Multiple Application Scheduler

Whenever our multiple application scheduler is invoked, it
must take the following two decision: (1) it must select the
next application to be executed (activated), (2) it must select
the DVFS operating point (i.e. processor frequency). To take
the first decision, most uni-processor platforms use an Earliest
Deadline First (EDF) [16] or Rate Monotonic (RM) [17]
scheduler. We choose to use an EDF scheduler as it supports
a high utilization bound (i.e. close to 1.0) which is important
from an energy point of view. An RM scheduler does not allow
a utilization bound above 0.69 [18]. Hence, an RM scheduler
requires an earlier switch to a higher frequency compared to an
EDF scheduler. In other words, an EDF scheduler is preferred
over an RM scheduler because it allows larger energy savings.

Our proactive multiple application scheduler start with
invoking the EDF scheduler. This scheduler selects the ap-
plication Ai from the set of applications A that has the
earliest deadline Di and which still has work left before this
deadline (i.e. Wi > 0). The EDF scheduler also determines the
deadline DEDF at which the next invocation of our proactive
scheduler needs to take place. This deadline is equal to the
minimum of the next deadline of the selected application
(i.e. Ai) and the deadlines of all other applications. Once
this deadline is computed, the EDF scheduler ends and our
proactive scheduler invokes the DVFS Selection and Switching
(DVFS3) algorithm. This algorithm is responsible for selecting
the DVFS operating point and performing a switch between
two DVFS points whenever needed. The DVFS3 algorithm has
to take into account the workload that is currently available,
the workload which may be offered in the future, and the
time that is available to perform all this work. As explained
in Sec. VII-A, our proactive scheduler and thus the DVFS3

algorithm must take the switching overhead into account as a
switch between two DVFS points can take several milliseconds
[19][20].

The pseudo-code of our DVFS3 algorithm is shown in
Algorithm 1. We will explain the working of this algorithm
using the example situation shown in Fig. 3. In this example,
the DVFS3 algorithm is activated at time Sactivate. At this
moment, the applications A1, A2, and A3 all need to perform
some work before their respective deadlines. Application A2
has the earliest deadline (i.e. DEDF = D2). The EDF sched-
uler, which was invoked just before the DVFS3 algorithm,
has therefore decided that this application will be activated
next. The DVFS3 algorithm should now determine the DVFS
operating point (i.e. processor frequency) that needs to be
used. The algorithm starts by computing the total workload,
work, that is available at Sactivate. For our running example (see
Fig. 3), this workload is equal to the total area of the dashed
boxes. When computing work, the algorithm also determines
the last deadline, Tlast deadline, of all running applications (red
line in Fig. 3). Looking beyond this deadline does not give

Algorithm 1 DVFS Selection and Switching (DVFS3)
1: work← 0
2: workld← 0
3: Tlast deadline← 0
4: for all Ai ∈ A do
5: work← work+Wi
6: if Di > Tlast deadline then
7: Tlast deadline← Di
8: end if
9: end for

10: workld← work
11: for all Ai ∈ A do
12: workld← workld +Lwci · (Tlast deadline−Di)
13: end for
14: f f irst with oh← NDP(work+SWoh+CWoh

DEDF−Sactivate
)

15: f f irst w/o oh← NDP
(

work+CWoh
DEDF−Sactivate

)
16: flast with oh← NDP( workld+SWoh+CWoh

last deadline−Sactivate
)

17: flast w/o oh← NDP
(

workld+CWoh
last deadline−Sactivate

)
18: fmin w/o oh← min

(
f f irst w/o oh, flast w/o oh

)
19: if fmin w/o oh 6= fcurrent then
20: fmin with oh← min

(
f f irst withoh, flast with oh

)
21: if (SWoh+CWoh)

min( fmin w/o oh, fmin with oh)
< (DEDF −Sactivate) then

22: fcurrent ← foh
23: end if
24: end if

any useful information as it is unknown at this moment (i.e.
at Sactivate) which scenarios the applications will be execution
after Tlast deadline. Next, the algorithm computes in lines 11-13
an upper bound on the workload that needs to be performed
before the last deadline (i.e. before Tlast deadline). Before
Tlast deadline, some applications may have already started a next
run-time situation. At the Sactivate, the DVFS3 algorithm does
however not know the scenario of these run-time situations.
Hence, it does not know the scenario-predicted worst-case
workload of these run-time situations. Therefore the algorithm
must assume that the workload of these run-time situations is
equal to the worst-case scenario. In our example (see Fig.
3), the total workload before the last deadline is equal to the
sum of the dashed and dotted boxes. The algorithm continues
in line 14 by computing the minimal frequency needed to
perform all available work (work) before the first deadline.
The computation takes the context switching overhead (CWoh)
and the DVFS switching overhead (SWoh) into account. This
computation uses the Nearest DVFS Point (NDP()) function.
This function returns the frequency of the nearest DVFS points
that has a frequency equal or higher as the supplied frequency.
Line 15 of our algorithm performs the same computation,
but without the DVFS switching overhead. The frequencies
computed in line 14 and 15 assume that all available work
needs to be finished before DEDF . It might sometimes be better
to postpone some of this work till after this deadline as this
may allow the platform to run at a lower frequency. Whether
this is possible depends not only on the available work, but



Fig. 3. DVFS3 algorithm.

also on the additional work that may arrive before the last
deadline. In lines 11-13, the algorithm already computed an
upper bound on the workload that may have to be processed
before this last deadline. Lines 16 and 17 use this upper bound
(workld) to compute the frequency needed to finish all work
before the last deadline. Similar to the earlier computation,
two frequencies are computed. One for the situation in which
no DVFS switch needs to be performed ( flast w/o oh) and one
which considers the DVFS switching overhead ( flast with oh).
Obviously, the processor only needs to run at the minimum of
the four frequencies computed so far as this will always allow
all applications to meet their timing constraint. Two of these
frequencies require a DVFS switch and the other two require
no switch. Lines 18-24 determine whether a DVFS switch
is needed. If the required frequency ( fmin w/o oh) matches
the current frequency fcurrent , no switch (and therefore no
overhead) is required. This avoids that the processor goes to
a higher frequency only for the overhead. As a last check,
the algorithm checks in line 21 whether the time available till
the next deadline is larger then the time needed to switch the
frequency. It is obviously not needed to make a switch if a
switch would result in a deadline miss.

C. Experimental Evaluation

Similar as in the single application experiments (see Sec.
VI), we compare our proactive scheduler to the Linux on-
demand (reactive) scheduler and a worst-case scheduler. The
granularity with which the reactive scheduler is invoked is
experimentally set to the value needed to get the largest
energy savings. (Note that the default settings of the ondemand
scheduler may provide worse results.) Similar to our proactive
scheduler, the reactive scheduler must be combined with an
algorithm that decides which application is activated. Due to a
constraint in the Linux kernel, it is not possible to use the EDF
algorithm for this purpose. Therefore, we combined the onde-
mand scheduler with the Completely Fair Scheduler (CFS).
This schedulers tries to give an equal amount of processing
time to all running applications. Since this scheduler does not
consider the deadline of an application, it may cause more
deadline misses then an EDF algorithm. Since the ondemand
scheduler chooses the highest DVFS operating point when a

deadline miss occurs, the combination of ondemand and CFS
may show a higher energy consumption then a combination
of ondemand and EDF. Since the latter combination does not
work due to limitation in the Linux kernel, we choose to
anyhow use the combination of ondemand and CFS for our
reactive scheduler. This gives us the best realizable comparison
between a proactive and reactive scheduler. We also compare
our proactive scheduler to a worst-case scheduler which does
not use DVFS. This scheduler keeps the frequency fixed at the
lowest frequency needed to meet the timing constraints of the
application under its worst-case behavior and it uses the EDF
algorithm to determine which application is activated. As a
third comparison, we created a Constraint Programming algo-
rithm that computes a lower bound on the energy consumption
of all possible schedules that meet the timing constraints of
all applications. Note that the problem of finding the optimal
schedule is NP-hard [12]. It is therefore not possible to find
the optimal solution in a reasonable amount of time. Several
assumptions are made in our algorithm to limit its run-time.
It is assumed that both the transition delay and the context
switch overhead are zero. These approximation can only result
in an underestimation of the energy usage. Hence, the energy
consumption computed by our algorithm is a valid lower
bound.

As explained in Sec. VII-B, our proactive multiple applica-
tion scheduler consists of a combination of an EDF scheduler
and our DVFS3 algorithm. This scheduler is implemented in
a small program that runs on our hardware platform. Using
the real-time scheduler from the Linux kernel, the program
is given a time slice that is longer then the duration of any
experiment. This allows the program to run without interrup-
tions. Hence, only our scheduler will be invoked during the
experiments. The Linux scheduler will not be activated. The
program schedules and executes the different applications as
threads spawned by our scheduler.

Two H263 decoders. We measured the energy usage of our
platform when running two H263 decoders concurrently. Fig.
4 show the energy usage of the various schedulers relative to
energy usage of the worst-case scheduler. The figure shows
that the proactive and reactive scheduler achieves similar
energy savings (around 38%). The proactive scheduler realizes
these savings without any quality loss. The reactive scheduler
misses 10% of its deadlines. Hence, its quality is considerably
degraded compared to our proactive scheduler. This shows that
our proactive scheduler is able to achieve the same savings as a
state-of-the-art reactive scheduler, but while delivering a much
higher quality.

Fig. 4 also shows that the proactive scheduler gets within
6% of the lower bound. This shows that our proactive sched-
uler and in fact also the reactive scheduler enforce a schedule
which is close to the schedule with minimal energy usage.
Hence, the proactive scheduler effectively exploits the inter
and intra application dynamism to save energy.

Scaled H263 and MP3 decoders. To mimic a real multime-
dia system, we tried to run a combination of one H263 decoder
and two MP3 decoders on our platform. Unfortunately, our
platform does not have enough performance to run these three
applications together. This forced us to scale the workload of
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Fig. 4. Two H263 decoders.
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Fig. 5. Scaled workload - one H263 decoders and two MP3 decoder.

this set of applications to a range which could be ran on the
platform. Since we scale all application workloads in the same
way, this scaling will not affect the relative performance of
the various schedulers. Therefore we felt that it is justified
to perform this scaling. In total, we created three sets of
our scaled applications. The application in these sets have a
combined workload of respectively 270 · 106, 370 · 106 and
480 ·106 cycles/second.

Fig. 5 shows the energy usage of the various workloads
for the different schedulers. Note that in this comparison we
excluded the reactive scheduler. This is due to a problem in
the Linux kernel which made it impossible to schedule our
scaled workload using the ondemand scheduler. It can be seen
in Fig. 5 that the schedulers achieve different energy savings
when the workload changes. This is due to the limited set of
DVFS points available in our platform. For some workloads,
there are more options to select a favorable DVFS operating
point compared to some other workloads. In our experiment,
we achieve a maximal saving of 25% when the dynamism
between the applications is maximal (i.e. in the workload
270 · 106 cycles/s). This shows that when the space between
the average load and the worst-case load is larger, a larger
energy saving can be achieved. The results also show that even
when we are are very close to the worst-case point, 480 MHz
average versus 550 MHz worst-case, we can still safe around
10% on energy. Finally, the results show that our scheduler is
always within 3-6% from the lower bound. This experiment
reconfirms our earlier conclusion that the proactive scheduler
can effectively exploit the inter and intra application dynamic
behavior.

VIII. EXTENSIONS TO HW PLATFORM AND SCHEDULER

The experimental results presented in the previous sections
are all measured on the BeagleBoard (see Sec. III). The
exploited scenarios have been discovered using the scenario

methodology from [2]. In this section, we present several
changes that can be made to the hardware platform and
the scenario methodology in order to improve the energy
savings of the system. Since these changes involve changes
in the hardware, we were not able to validate the impact
of these changes on the real hardware. The experimental
results presented in this section are therefore obtained using an
energy simulator which we developed for this platform. Before
running the experiments outlined in this section, we validated
the simulator using the data obtained from the experiments
presented in the previous sections.

More DVFS points. The BeagleBoard has five DVFS
points (see Tab. I). In order to provide timing guarantees, the
proactive scheduler always chooses the smallest frequency that
is large enough to process the upcoming workload. Increasing
the number of DVFS points allows the scheduler to use a
frequency that is closer to the actual frequency needed to
process this workload. However, an increase in the number of
DVFS points could lead to an increase in the number of DVFS
switches. As a result, the transition delay when switching be-
tween DVFS point could negatively impact the energy savings.
To analyze this effect, we increased the number of DVFS
points in our simulator as compared to the actual BeagleBoard.
Furthermore, we distributed these DVFS points evenly over the
entire frequency range (125-600 MHz). Line 1 in Fig. 6 shows
the energy usage of three H263 decoder running concurrently
on the platform when varying the number of DVFS points.
The time needed to switch between two DVFS points, i.e. the
transition delay, is kept the same as on the real BeagleBoard
(i.e. 300000 cycles). The figure shows that a board with 7
DVFS points would result in the highest energy savings. The
figure also shows that the switching overhead impacts the
savings when more then 7 DVFS points are used. Comparing
line 1 in Fig. 6 to the 5 DVFS points used in the real board
(see left-hand side of Fig. 6), it is clear that equally distributing
these 5 DVFS points is more energy efficient then the original
distribution. This result can be expected considering the fact
that the real board has only 3 DVFS points in the lowest 83%
of its frequency range. Increasing the number of DVFS points
within this part of the range provides more opportunities to
select a suitable frequency and hence run the board at a lower
frequency.

Decreasing the transition delay. Line 1 in Fig. 6 shows
that the transition delay becomes significant when more then
7 DVFS points are used. The transition delay as used by the
Linux kernel could theoretically be lowered. According to the
TI datasheets, it can be lowered to 30000 cycles. Line 4 in
Fig. 6 shows the energy usage of the two H263 decoders when
varying the number of DVFS points. Compared to line 1, it is
clear that a lower transition delay allows for additional energy
savings of almost 7%. Moreover, decreasing the transition
delay makes it also possible to use more DVFS points to save
additional energy.

Scenario-based worst-case workload. The DVFS3 algo-
rithm uses the worst-case workload of an application when
estimating the total workload till the last known deadline.
This worst-case workload can be very pessimistic. Consider
as an example a video decoder that can process videos with
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resolutions up-to full-HD. The worst-case workload will be
based on a full-HD video. This worst-case load will however
never be reached when processing a video with a lower
resolution. Some properties of the application are constant
throughout the run-time of the application (e.g. the resolution
of a video). This information could be used to provide a
tighter bound on the worst-case workload. This can be seen as
adding an additional level of scenarios of which one scenario
is selected at the start of the application. Line 3 in Fig. 6 shows
the energy usage of our setup when our DVFS3 algorithm uses
a resolution-specific worst-case workload. The figure shows
that a scenario-based worst-case workload allows an additional
energy saving of 2% compared to the original setup on the
BeagleBoard.

Advance scenario prediction. The scenario methodology
from [2] only predicts the scenario of the current run-time
situation. Predicting in advance the scenarios of future run-
time situations would allow the DVFS3 algorithm to use tighter
estimates on the worst-case workload of upcoming run-time
situations. Line 5 and 6 in Fig. 6 show the energy usage of
our setup when predicting the scenario of the next run-time
situation. The result shows that predicting scenarios in advance
leads to a 7% energy saving as compared to the original setup.
This shows the potential of predicting scenarios in advances.
Extending the scenario framework to make such a prediction
is however left as future work.

IX. CONCLUSION

In this paper we validated the proactive method from
[1][2] on a real hardware platform. Our results show that
this method performs better then an existing state-of-the-art
reactive method. The proactive method from [1][2] only works
on single applications. This paper proposes a proactive multi-
application scheduler. It schedules multiple real-time applica-
tions concurrently while minimizing the energy consumption
of the system. Experimental results show that our proactive
scheduler is able to achieve the same energy consumption as
an optimized version of the Linux ondemand scheduler when
running two H.263 decoders concurrently. Both schedulers
realize a 38% reduction in energy consumption compared
to a worst-case scheduler. Our scheduler achieves this result
without any deadline misses whereas the ondemand scheduler
misses 10% of its deadlines which leads to a substantial quality
loss. This shows that exploiting inter and intra application

dynamism allows for significant energy saving without loss
of real-time performance. As future work, we consider the
development of a hybrid scheduler that allows DVFS energy
saving on a system with mixed real-time and non-real-time
applications.
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