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Abstract—The ever increasing performance gap between
processors and memories is one of the biggest performance
bottlenecks for computer systems. In this paper, we propose
a task scheduling technique that schedules an application,
modeled with a task graph, on a multiprocessor system-on-
chip (MPSoC) that contains a limited on-chip memory. The
proposed scheduling technique explores the trade-off between
executing tasks in a code-driven (i.e. executing parallel tasks) or
data-driven (i.e. executing pipelined tasks) manner to minimize
the run-time of the application. Our static scheduler identifies
those task sequences in which it is useful to use a code-
driven execution and those task sequences that benefit from
a data-driven execution. We extend the proposed technique to
consider prefetching when choosing a suitable task order. The
technique is implemented using an integer linear programming
framework. To evaluate the effectiveness of the technique, we
use an application from the multimedia domain and a synthetic
task graph that is used in related work. Our experimental
results show that our scheduler is able to reduce the run-time
of an MP3 decoder application by 8% compared to a commonly
used heuristic scheduler.

Keywords-Code generation, run-time minimization, scratch-
pad memory, scheduling, ILP

I. INTRODUCTION

Multiprocessor Systems-on-Chip (MPSoCs) are used to
fulfill the increasing demand for computational performance
of emerging applications. MPSoCs offer a promising solu-
tion to the ever-increasing digital electronics market desire
for more sophisticated and integrated applications. Nowa-
days, MPSoCs are used in different electronic devices such
as consumer appliances, medical and navigation systems,
industrial equipment, etc. Most of these devices run applica-
tions that perform complex processing operations on streams
of input data. The performance of these devices depends on
the performance of the processing elements as well as on the
performance of the memory system. Processor performance
has been improving by 60% per year [1]. However, memory
access times have improved by less than 10% per year
[1]. The resulting performance gap between processor and
memories encouraged designers to put more effort into this
crucial issue. On-chip memories have been introduced to
alleviate this issue. These memories limit the number of
off-chip (remote) memory accesses. On-chip (local) memory
can be used as caches or as scratchpad memories (SPMs).
SPMs have become an efficient replacement for caches in
novel embedded systems, thanks to their lower energy/area
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cost and better predictability [2]. Due to limitations in the
size of local memories (i.e. SPMs), an application (code and
data) can only be partially loaded to the SPM. Therefore, ap-
plications must be split into several smaller tasks. Instead of
loading a whole application to local memory, which requires
a large memory space, tasks are loaded consecutively one-
by-one based on their scheduling order. After the completion
of one task, its code can be discarded from the local memory
and its data can be written back to the remote memory such
that free space is created for another task.

In this paper, we propose a scheduling technique for a
task graph which is mapped to an MPSoC. The proposed
technique tries to minimize the time needed to execute the
task graph. To achieve this goal, the technique determines a
task execution order that minimizes the total access time on
the local and remote memories. It does this by considering
the ratio between the code size of the tasks and the amount
of data that is needed by the tasks. Data-intensive tasks [3]
will be scheduled in a data-driven manner and code-intensive
tasks [3] will be scheduled in a code-driven manner.

We implement the proposed scheduling technique using
an integer linear programming (ILP) framework. The tech-
nique generates a compact ILP formulation. We apply our
technique on an application from the multimedia domain
(an MP3 decoder) and on a synthetic task graph from a
closely related paper. The experimental results show that
our technique reduces the run-time of the MP3 decoder and
the synthetic task graph by 7% and 29% respectively as
compared to a commonly used technique.

Nowadays, MPSoCs are equipped with direct memory
access (DMA) controllers. DMA was devised to liberate
processors from transferring data between different mem-
ories in a memory hierarchy. Using a DMA, the transfer
of code or data to/from a local on-chip memory and the
execution of a task on a processor can be overlapped. As a
second contribution, we show how our scheduling technique
can be extended to take prefetching into account during
the task scheduling. In contrast to scheduling techniques
that consider prefetching opportunities in a post-processing
step after construction of the task schedule, our technique is
able to find schedules that make better use of prefetching.
The experimental results show that our extended technique
reduces the run-time of the MP3 decoder and the synthetic
task graph by 8% and 32% respectively as compared to a
commonly used technique that considers prefetching in a
post-processing step.

The remainder of this paper is organized as follows.



Sec. II discusses related work on task scheduling in MP-
SoCs. Sec. III presents a motivating example. Sec. IV
describes our target MPSoC platform. Sec. V introduces our
application model. Sec. VI describes the proposed schedul-
ing technique. Sec. VII extends the proposed technique with
the notion of prefetching. Sec. VIII contains an experimental
evaluation. Conclusions are drawn in Sec. IX.

II. RELATED WORK

There is a rich literature on mapping applications onto
MPSoCs [4]–[6]. Mostly, this work proposes mapping algo-
rithms followed by a scheduling technique to meet design
constraints such as performance, energy consumption, com-
munication cost, or memory usage. In this paper, we rely
on existing mapping methods like the one proposed in [6]
and we focus on the scheduling problem. We explore two
groups of related work. The first group considers the trade-
off between code and data in a pipelined parallel system
during task scheduling. The second group considers code
and data prefetching while scheduling the tasks.

As mentioned before, our scheduling technique considers
the trade-off between the code-driven and data-driven exe-
cution of parallel applications that need to be scheduled on
an MPSoC. A similar problem is studied in [7] where the
authors propose an evolutionary algorithm to find an optimal
schedule for pipelined parallel task graphs. The algorithm
does not consider the effect of memory operations. Memory
access times have a large impact on the performance of
streaming applications. For this reason, and in contrast to
[7], we consider memory access times in our scheduling
technique. In [8], a technique is presented to generate a data-
parallel schedule from applications modeled as synchronous
dataflow graphs. Similar to [7], the authors do not consider
the overhead of moving code and data between on-chip and
off-chip memory. Furthermore, they implicitly assume the
availability of unlimited on-chip memory. Our scheduling
technique alleviates both of these issues.

In [9], a prefetching and partitioning technique is pre-
sented to minimize the execution time of nested loops by
iteratively re-timing the instructions of the loops. Their
solution maps the instructions of the nested loops to multiple
processing units with the objective of increasing parallelism.
It only considers the effect of partitioning on the prefetching
efficiency. It does not consider the effect of scheduling on
the prefetching efficiency in a single partition. As compared
to [9], one aim of our work is to find a suitable schedule in
order to reduce the run-time of applications by maximizing
the amount of the possible code/data prefetching in MPSoCs.

A large amount of research exists on optimizing SPM
accesses. In [10], a heuristic is presented to partition vari-
ables of an application such that they can be mapped to
the on-chip memories of an MPSoC; the heuristic performs
task scheduling while considering the effect of scheduling on
the variable partitioning. They assume that the time needed
to access the off-chip memory can be hidden completely
through prefetching. In our work, we consider the situation
in which off-chip accesses are not negligible. The authors
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Figure 1. Example task graph.

of [11] investigate the use of prefetching for SPM mem-
ories. Based on profiling information, they add software
prefetching commands inside the application source code to
prefetch instructions. Our work is different from this type of
work because we use prefetching at a task level granularity
to prefetch both code (instructions) and data. Furthermore,
our technique result in a predictable solution because it is
computed based on the task graph dependency relation and
not based on a technique like profiling that may cause miss-
predictions during the prefetching phase.

The most relevant work to our paper is [12] which pro-
poses an ILP-based solution to map an application modeled
with a task graph onto a Cell processor. The authors assume
that the application code fits in the local memory and they
solve the problem of mapping data objects to memories. Task
scheduling is left to run-time and no design-time analysis
is suggested in [12]. Our technique provides a design-time
approach for the task scheduling problem; it finds an efficient
task order to minimize the run-time of the applications
without incurring any run-time overhead. The authors of [12]
compare their technique with a few well-known heuristics.
We evaluate our techniques using the same heuristics.

III. MOTIVATION AND PRELIMINARIES

We assume that each processor has its own local memory
to store code and data. A task can start its execution on
a processor if its code and input data are available in the
local memory and when there is enough space in the local
memory to store all output produced by the task. We also
assume that a DMA unit is available for each processor.

We show the effect of different scheduling strategies and
prefetch-aware scheduling on the performance of an appli-
cation when running on an MPSoC with a simple example.
Fig. 1 shows a task graph of an artificial application. The
number close to a task is the code size of the task and
the number close to an edge is the size of the data that
needs to be communicated between the tasks. The number
inside each task represents the function of the task. The tasks
with the same function number have the same code. For
simplicity, we assume in this example that all tasks have the
same execution time. Assume that tasks t0-t7 are mapped
to one processor and the remaining tasks are mapped to
another processor. For the sake of brevity, we only discuss
the scheduling of tasks t0-t7. Consider the situation in which
the processor, which has to execute these tasks, has 40KB of
local code memory and 40KB of local data memory. In this
work, we assume that the remote memory access times have
a linear relation with the amount of memory objects to be
transferred (i.e. if transferring 100 bytes takes x time-units,
then transferring 1000 bytes takes 10x time-units).

Fig. 2 shows four alternative schedules for our example
task graph. Schedule A is a code-driven schedule with



P only DMA only P and DMA

Time

(A)

Time

(B)

Time

(C)t7
t6
t5
t4
t3
t2
t1
t0

t7
t6
t5
t4
t3
t2
t1
t0

t7
t6
t5
t4
t3
t2
t1
t0

Time

(D)t7
t6
t5
t4
t3
t2
t1
t0

Figure 2. Different schedules: (A) code-driven (B) data-driven (C) hybrid (D) hybrid prefetch-aware.

prefetching, B is a data-driven schedule with prefetching, C
is a combined code and data driven (hybrid) schedule with-
out prefetching, and D is a hybrid prefetch-aware schedule.
The blue bars in Fig. 2 indicate when a processor (P) is busy
executing a task. The red bars show the activation of DMA.
The green bars indicate that the processor and DMA are
active simultaneously. Schedules C and D are constructed
using the scheduling techniques proposed in this paper.
The goal of this paper is to find schedules that minimize
the run-time of applications. To realize this objective, our
scheduling strategy explores alternative schedules that use a
combination of code and data-driven scheduling while taking
the impact of prefetching into account.

In Fig. 1, the horizontal arrow shows the direction of
consecutive pipelined tasks and the vertical arrow show
the direction of parallel tasks that may use the same code
(i.e. execute the same function). The tasks in our example
task graph can be executed in a code-driven or data-
driven manner. In a code-driven schedule, the code needed
for subsequent tasks will be reused as much as possible.
Hence, the code needs to be loaded only once from remote
memory. In a data-driven schedule, the data needed for
subsequent tasks can remain in the local on-chip memory.
In other words, scheduling tasks in a data-driven manner
avoids moving data between the local and remote memory.
Schedule C in Fig. 2 uses a combination of both code and
data-driven scheduling. Tasks t2 and t5 are scheduled in a
code-driven manner while tasks t0, t1, t3, t4, t6, and t7 are
scheduled in a data-driven manner. In general, a code-driven
strategy gives better performance for tasks that have a large
code size and a data driven strategy gives better performance
for tasks that operate on large data objects.

Schedule D is an extension of schedule C that is opti-
mized for prefetching. It can be seen in Fig. 2 that schedule
D is able to keep the processor and DMA active simultane-
ously for a longer period of time compared to schedules A
and B (i.e. the total size of the green bars in schedule D is
larger than the total size of the green bars in schedules A
and B). This example shows that the order in which tasks
are scheduled may have a noticeable impact on the amount
of code and data that can be prefetched. This, in turn, has
an impact on the overall completion time of the schedule.

IV. MPSOC PLATFORM TEMPLATE

Fig. 3 shows the (abstract) MPSoC platform template that
is targeted in this work. The platform template consists of a
set of processing tiles (PTs) that are interconnected through a
shared bus or network-on-chip. Each processing tile contains
a processor (P), a code memory (CM), a data memory (DM),
and a direct memory access (DMA) unit. The DMA unit
can work independently from the processor and it has direct
memory access on the CM and DM as well as the remote
memory. A real world example of this type of architecture is
the Cell processor. Each processing tile is specified by a pair
pti = (mc,md) where mc specifies the capacity of the code
memory (in bytes), md specifies the capacity of the data
memory (in bytes). We use a constant H to model the per-
word read/write latency of the remote memory in terms of
clock cycles. Without loss of generality, we assume that the
local memory can be accessed within one clock cycle. This
is similar to the assumption made in [13]. We also assume
that the DMA units of all tiles can work in parallel with each
other without causing interference on the interconnect and
remote memory. Partitioning remote memory into multiple
banks is a common solutions [14] to realize this assumption.

V. APPLICATION GRAPH

An application is modeled with an acyclic task graph
G = (T,E) where T is the set of tasks and E is the
set of dependencies between these tasks. Let |T | denote
the number of tasks in the task graph. We assume that the
mapping of tasks to processing tiles is given. Each task is
specified with a 4-tuple ti = (m, c, τ, f) where m specifies
the processing tile to which the task is mapped, c is the code
size of the task (in bytes), τ is the execution time of the task
(in cycles), and f is the function identifier of the task. Tasks
that have the same function identifier require the same code
to be executed. When such tasks are executed immediately
after each other on the same processor, then we only need
to load the code of these tasks prior to the execution of
the first task. Each dependency edge between two tasks is
specified with a 4-tuple eij = (ti, tj , d, s) where ti is the
source task, tj is the sink task, d is the communication delay
in cycles and is equal to the number of required processor
clock cycles to transfer a data object from one local memory
to another local memory, s is the amount of memory (in
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bytes) required in the DM to store the data of this edge.
This data corresponds to the intermediate data between the
source task and sink task that are connected to the edge eij .

VI. HYBRID TASK SCHEDULING

In this section, we provide an integer linear programming
(ILP) formulation to solve the scheduling problem. The pro-
posed scheduling technique explores the trade-off between
executing tasks from the task graph in a code or data-driven
manner. The scheduler identifies tasks with a large code
size and consecutive tasks with a large communication data
size. The scheduler choose a proper scheduling order for all
tasks in the task graph to minimize the overall execution
time of the application. We call the proposed technique
Hybrid ILP (HybILP). All necessary elements to form the
ILP formulation are explained in the following subsections.

A. ILP Variables
We consider two groups of ILP variables in our formula-

tion. The first set (S) models the start times of the tasks in
the task graph. These start times also form the final solution
of the scheduling problem. The second set (I) captures the
ordering of the tasks that are running on the same processor.

Si start time of task ti

Iij =

{
1 if task tj scheduled immediately after task ti
0 otherwise

Based on the set I (described above), we define a notation
to model the initiation time (IT ) of a task which is the time
needed to complete all required operations before the task
can be executed. Fig. 4 shows a simple task graph with four
tasks. Assume that task tj will be executed immediately after
task ti on the same processor. The following operations are
necessary before the execution of task tj :

WDijWrite the necessary output data of the tasks executed
before task tj to the remote memory (O1 and O2 in Fig. 4)

RDij Read the necessary input data of task tj from the remote
memory (O3 and O4 in Fig. 4)

RCij Read the necessary code of task tj from the remote memory
(O5 in Fig. 4)

In some situations, it is not necessary to perform all these
initialization operations. Analysis of the dependencies be-
tween tasks reveals when certain operations can be skipped:

• It is unnecessary to read/write the intermediate data
between consecutive tasks from/to the remote memory,
when the intermediate data can be used immediately by
the next scheduled task (i.e. O2 and O3 in Fig. 4).
• It is unnecessary to load the code of a task from the
remote memory if its function is the same as the previously

executed task since the code of the task already exists in
the local memory (O5 in Fig. 4 can be skipped if the ti
and tj execute the same function).

Assume that task ti and tj execute the same function. The
initialization time of task tj , i.e. ITj , is then equal to:

ITj = (Time of O1) + (Time of O4) (1)

In general, the initiation time of a task tj is equal to:

ITj =

|T |−1∑
i=0

Iij · ITij (2)

ITij is the initialization time of task tj when its previous
task is known to be task ti. It can be computed as follows:

ITij = H · (WDij +RCij +RDij) (3)

ITij is computed by multiplying the size of the memory
objects to be transferred to/from the remote memory (i.e.
summation of WDij , RDij , and RCij) with the latency of
the remote memory (H). In the remainder of this subsection,
it is shown how each part of Eqn. 3 can be computed. We
assume that the size of the tasks in the task graph and the size
of the local memories are of the same order of magnitude. In
other words, the code size of the tasks and the intermediate
data between the tasks are assumed to be similar in size.
Therefore, we do not consider the situation in which the
memory objects of two different tasks can be placed in the
local memory at the same time. These assumptions are in-
line with the objective of this paper, which is optimizing the
memory behavior of an application running on an MPSoC
with limited local memories.

1) Size of the output data: The size of the output data
produced by the task ti which is needs to be written to the
remote memory is given by the next equation. It is assumed
that task tj is scheduled immediately after task ti.

WDij =
∑

ei,k∈E

[s of ei,k]

︸ ︷︷ ︸
α

− [s of ei,j ]︸ ︷︷ ︸
β

(4)

In Eqn. 4, α is equal to the size of all output data produced
by the task ti and β is the size of all data produced by task ti
and used by task tj . The ILP solver could decide to schedule
tasks that communicate large data objects in a consecutive
order to get a lower initialization time (i.e. a data-driven
scheduling strategy could be selected).

2) Size of the code: The size of the code needed to be
fetched from memory to execute task tj , which is scheduled
immediately after task ti, is as follows:

RCij =

{
0 [f of ti] = [f of tj ]
[c of tj] otherwise

(5)

Eqn. 5 could force the ILP solver to schedule large tasks
with the same functionality in a consecutive order (i.e. a
code-driven scheduling strategy could be selected).



3) Size of the input data: The size of the input data that
needs to be read from remote memory to execute task tj ,
which is scheduled immediately after task ti, is as follows:

RDij =
∑

ek,j∈E

[s of ek,j ]

︸ ︷︷ ︸
α

− [s of ei,j ]︸ ︷︷ ︸
β

(6)

In Eqn. 6, α is equal to the size of all input data needed
for task tj and β is equal to the intermediate data between
task ti and task tj . As before, the ILP solver could decide to
schedule the tasks ti and tj immediately after each other if
their intermediate data is large (i.e. a data-driven scheduling
strategy could be selected).

B. ILP Constraints
This subsection introduces the constraints that are used

in our ILP formulation. These constraints force the ILP
solver to satisfy essential properties of the application (i.e.
data dependencies) and intrinsic properties of the scheduling
problem (i.e. avoid resource conflicts).

1) Data dependency constraints: To model the dependen-
cies between tasks, we add the following set of constraints:

∀ei,jεE ∧ i �= j → Si + [τ of ti] + [ d of ei,j ] + ITj � Sj (7)

The constraint states that the start times of task ti and tj
should allow sufficient time to execute task ti, to transfer
data from task ti to task tj and to initiate task tj .

2) Resource conflict constraint: Two tasks cannot be
executed on the same processor at the same time. This
is enforced by adding the following set of constraints.
MAXINT is a large integer value that exceeds the sum of
the execution times of all tasks in the task graph.

∀0 � i, j < |T | ∧ i �= j ∧ [m of ti] = [m of tj ] ∧ (ti

is not reachable from tj) → Si + [τ of ti] + [d of ei,j ]

+ Iij · ITij � Sj + (1− Iij) · MAXINT (8)

To reduce the number of ILP variables and equations, we
add the condition that ti is not reachable from tj . It is not
necessary to consider Eqn. 8 in this situation because if ti
is reachable from tj it means that ti is dependent on tj and
this situation is already covered by Eqn. 7.

3) Other constraints: The next equation enforces positive
start times for all tasks.

∀0 � i < |T | → Si � 0 (9)

The next equation enforces that one task is only allowed
to be scheduled immediately after each task. No task can be
scheduled directly after a leaf task in a task graph.

∀0 � i, k < |T | →
{ ∑|T |−1

j=0 Iij � 1 �eik | [m of ti] = [m of tk]∑|T |−1
j=0 Iij = 1 otherwise

(10)

The next equation enforces that one task is only allowed
to be scheduled immediately before each task. No task can
be scheduled directly before a root task in a task graph.

∀0 � i, k < |T | →
{ ∑|T |−1

j=0 Iji � 1 �eki | [m of ti] = [m of tk]∑|T |−1
j=0 Iji = 1 otherwise

(11)

C. ILP Objective Function
The goal of our optimization is to minimize the comple-

tion time of the task graph. Therefore, if we minimize the
start time of the last task in the task graph we achieve the
goal. A task graph may contain more than one leaf node. In
that case, we add a bulk leaf node which has a dependency
on all leaf nodes in the original task graph. The objective
function is then given by:

Objective: Minimize Slast task (12)

VII. HYBRID PREFETCH-AWARE TASK SCHEDULING

In this section, we refine the HybILP scheduler of Sec. VI
to consider prefetching. We call the new technique Hybrid-
Prefetch-ILP (HybPrefILP). To attain a compact ILP for-
mulation, we assume that the memory object of only one
task can be prefetched during the execution of the running
task. This assumption reduces the number of prefetching
options which leads to a smaller ILP formulation. As a result
of this limiting assumption, the outcome of our scheduler
may become sub-optimal, but it is practical. However, two
limitations for prefetching often prevent the loading of many
memory objects into the local memory. The first limitation
is related to the available free space in the local memory.
The second limitation comes from the limited time that is
available to perform prefetching. Usually, these limitations
are barriers to prefetch more than one task in a realistic
application. Hence, this assumption does not typically affect
the quality of the solution significantly.

We refine the HybILP technique by changing the elements
of Eqn. 3. The size of the output data that should be
written back to the remote memory (WDij) is independent
from prefetching, but the size of the code (RCij) and data
(RDij) that must be fetched dependent on the amount of
code and data that is already prefetched. We introduce two
new constants RC ′

ij and RD′
ij that capture respectively the

size of code and data that need to be fetched after the
prefetching has ended. These constants replace RCij and
RDij in Eqn. 3. All other parts of the ILP formulation in
the HybILP technique can be used without any change.

A. Size of the code
Assume that task tj is scheduled after task ti. The size of

the code that needs to be fetched from the memory after the
execution of task ti has ended (i.e. RC ′

ij) depends, amongst
others, on the amount of free space that is left in the local
code memory. This code space limitation (CSL) is given by:

CSLij = [mc of pt[m of tj ]
]− [c of ti] (13)
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RC ′
ij depends also on the execution time of the previous

task as this influences the time during which the DMA and
processor can run in parallel (i.e. code can be prefetched).
This temporal limitation (TL) is given by:

TLij =

⌊
[τ of ti]

H

⌋
(14)

We assume that data prefetching is done after code
prefetching. The total amount of the code that can be
prefetched does not only depend on the space and temporal
limitations discussed above. It is also limited by the code
size of the task (i.e. RCij as defined in Eqn. 5). The code
prefetched amount (CPA) is given by:

CPAij = min(RCij , CSLij , TLij) (15)

So, the total size of the code that needs to be fetched,
when executing task tj directly after task ti, is equal to:

RC′
ij = RCij − CPAij (16)

B. Size of the input data
Assume once more that task tj is scheduled after task ti.

The amount of data that needs to be fetched from remote
memory to execute task tj (i.e. RD′

ij) depends on the amount
of data that could be prefetched during the execution of task
ti. The data prefetched amount depends on the amount of
free space in the local data memory. This so-called data
space limitation (DSL) is given by:

DSLij = [md of pt[m of tj ]
]-

∑
ek,i∈E

[s of ek,i]-
∑

ei,k∈E

[s of ei,k]

(17)

The data prefetched amount depends also on the running
time of the task which is executed directly before task tj
and the amount of the time that the DMA was busy with
transferring the code; the latter needs to be considered as we
assume that data prefetching is done after code prefetching.
This so-called data temporal limitation (DTL) is given by:

DTLij = TLij − CPAij (18)

The data prefetched amount is limited by the data space
limitation, the data temporal limitation, and the actual data
memory requirement of the task (i.e. RDij as defined in
Eqn. 6). Hence, the data prefetched amount is equal to:

DPAij = min(RDij , DSLij , DTLij) (19)

So, the total size of the data that needs to be fetched,
when executing task tj directly after task ti, is equal to:

RD′
ij = RDij −DPAij (20)

C. Post-processing

The HybPrefILP scheduler uses the assumption that pre-
fetching of memory objects for task tj can only be started
when its direct predecessor in the schedule (e.g. task ti)
has started. In practice it may sometimes be possible to
start the prefetching for task tj earlier. This may lead to
a shorter completion time of the task graph. Consider as an
example the schedules shown in Fig. 5. All tasks in this
figure are mapped to a single processing tile with 30KB
for each of the code and data memories. Schedule A is
generated using our HybPrefILP scheduler. This schedule
is sub-optimal as the prefetching for task t2 is only started
when task t1 starts its execution. In practice, it might be
possible to start the prefetching of t2 earlier. Schedule B
uses the property that prefetching can be started earlier (i.e.
when t0 is executing). Extending our ILP formulation such
that it also considers options in which the prefetching is
started earlier would result in a large increase in the number
of variables. Therefore, we have decided to keep our current
assumption with respect to the start time of prefetching
operations. However, we have included a post-processing
step that optimizes the schedule. This post-processing step
tries to fill the free space of the local memory by prefetching
memory object of subsequent tasks based on the task order
generated by the HybPrefILP scheduler.

VIII. EXPERIMENTAL EVALUATION

The proposed scheduling technique takes an application
task graph and MPSoC platform as input. It generates an ILP
formulation which is solved using CPLEX [15]. CPLEX is
executed on a Linux platform with an Intel� CoreTM i7
running at 2.67GHz and 4GB of internal memory. Large
execution times are often mentioned as an important draw-
back of using an ILP-based solution. Thanks to our compact
ILP formulation, which avoids unnecessary variables and
constraints, the execution time of the ILP solver when
looking for a schedule never needed more than a fraction
of a minute for the selected task graphs in our experiments.
For example, the HybILP technique needs a run-time of
0.76 seconds to schedule an MP3 decoder. The HybPrefILP
requires 0.96 seconds to schedule the same application while
also considering prefetching.

We use two different task graphs to evaluate the proposed
scheduling technique. The first task graph models an MP3
decoder. This application is a frequently used application
from the multimedia domain. We manually extract a task
graph for this application (see Fig. 6). We estimate the
execution time of all tasks when they would be executed
on an ARM7TDMI core. The second task graph is taken
from [12]. It is a synthetic directed acyclic graph with 50
tasks. In our experiments, we assume that the latency of the
remote memory is 100 times larger than the local memories
and access to the local memory will take one clock cycle.



AA0

Huf

ReQ0 ReO0
Stereo0

IMDCT0 FInv0 Synth0
Merge0

P0

AA1ReQ1 ReO1 IMDCT1 FInv1 Synth1

P1 AA2ReQ2 ReO2
Stereo1

IMDCT2 FInv2 Synth2
Merge1

AA3ReQ3 ReO3 IMDCT3 FInv3 Synth3

part-a part-b

Figure 6. Task graph of an MP3 decoder.

A. MP3 Decoder
MP3 decoding is a frame based algorithm that transforms

a compressed stream of data into pulse code modulation
(PCM) data. Fig. 6 shows the task graph of the MP3 decoder.
As the task graph of this application is composed of two
symmetric sub-graphs, we map each sub-graph onto a single
processor. This mapping is depicted in Fig. 6; the upper sub-
graph is mapped to the first processor (P0) and the lower
sub-graph is mapped to the second processor (P1).

To make a comparison between our technique and related
work, we implement the greedy CPU (G-CPU) scheduling
technique from [12]. We also implement the heterogeneous
earliest finish time (HEFT) scheduling technique [16] which
is a commonly used heuristic-based mapping and scheduling
technique. We apply the HybILP, HybPrefILP, HEFT and
G-CPU scheduling techniques to the task graph of the MP3
decoder. The HEFT and G-CPU result in the same outcome;
the result of the HybILP and HybPrefILP scheduling is
different from these techniques. HEFT and G-CPU schedule
all tasks of the MP3 decoder in a code-driven order. The
HybILP and HybPrefILP schedule part-a of the task graph
(shown with an arrow in Fig. 6) in a data-driven order. In
part-a the size of the intermediate data is larger than the
code size of the tasks. By using a data-driven strategy, the
data outputted by one task is consumed immediately by the
next task. Therefore, there is no need to store/load this large
intermediate data to/from the remote memory. The code size
of the tasks are larger than the size of the intermediate data
in part-b of the MP3 decoder task graph. The HybILP and
HybPrefILP schedule part-b in a code-driven order. This
decision leads to a reduction in the number of off-chip
memory accesses because with the code-driven strategy each
task only needs to be loaded once from the remote memory.
As a result of these scheduling strategy decisions, HybILP
achieves a schedule with a 7% shorter execution time (in
terms of cpu cycles) as compared to HEFT and G-CPU.
The HybPrefILP technique finds a schedule with an 8%
shorter execution time as compared to extended versions of
HEFT and G-CPU in which prefetching is considered in a
post-processing step. These results show that our scheduling
technique is able to construct schedules that are significantly
faster as compared to existing well-known scheduling tech-
niques. The schedule constructed by our hybrid prefetch-
aware technique is 11% faster as compared to a the non-
prefetch-aware schedule constructed by our technique. This
shows the advantage of using prefetching to decrease the
run-time of applications.

B. Synthetic DAG
To verify the effectiveness of our proposed technique we

select the synthetic task graph used in [12]. The mapping
decisions computed by HEFT are used as input to our

scheduling technique. We evaluate our technique for three
different experimental set-ups: first, different sizes of local
memories; second, different amounts of communication-to-
computation ratios (CCRs) in the task graph; third, different
numbers of processors in the platform.

The size of the local memory can affect the amount
of prefetching. We determine the necessary amount of lo-
cal memory which is required to execute the task graph.
Fig. 7(a) shows execution time of the task graph (in the
number of processor cycles) for different sizes of the local
memory, for two processors, and a CCR of 1.0. The memory
scale factor in Fig. 7(a) is the scaling factor of the necessary
amount of the local memory. Scaling local memory size from
1.0 to 1.5 times decreases the run-time of the application
when using HybPrefILP by 10%, when using HEFT with
prefetching by10%, and when using G-CPU with prefetching
by 9%. Scaling local memory size from 1.5 to 2.0 times
does not further reduce the run-time of the application. This
is due to another limitation of prefetching which is the
time limitation (see Eqn. 14). These results show that the
effect of prefetching is similar in all these three scheduling
techniques. However, overall, the HybPrefILP gives a sched-
ule which is 32% and 39% faster compared to HEFT with
prefetching and G-CPU with prefetching respectively for all
local memory scaling factors in Fig. 7(a).

The number of off-chip memory access determines the
required amount of communication in a multiprocessor
system. Hence, we explore the effectiveness of our proposed
scheduling (HybILP) for different amounts of communi-
cation to computation ratios. For this purpose, we derive
several task graphs from the original task graph by scaling
the size of the memory objects. CCR is a term for digitizing
the amount of communication in an application. A larger
CCR implies a larger amount of remote memory accesses.
Fig. 7(b) shows the execution time of the task graph (in
the number of processor cycles) for different CCRs when
the task graph is mapped to a platform with two processors
and the memory scale factor is 1.0. The required amount
of processor cycles increases by increasing the CCR of the
task graph. This is due to the fact that more remote accesses
are needed in a task graph with larger CCR. Comparing
the outcome of HybILP (HybPrefILP) with the outcome
of HEFT (HEFT with prefetching) and G-CPU (G-CPU
with prefetching) in Fig. 7(b) confirms that our technique
outperforms common heuristic techniques in different CCRs.

By increasing the number of the processing tiles in
the MPSoC, the required amount of the processor cycles
decreases (see Fig. 7(c)). This shows the existence of parallel
tasks in the task graph that enable tasks to execute in a
concurrent way on a multiprocessor system. For the selected
DAG, the HybILP (HybPrefILP) gives similar efficiency to
HEFT (HEFT with prefetching) and G-CPU (G-CPU with
prefetching) by using a platform with fewer processors. For
example, the execution time of the HybILP schedule on
a platform with two processors is close to the execution
time of HEFT and G-CPU schedules on a platform with
four processors. This means that the HybILP requires less
computation resources compared to the HEFT and G-CPU.
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Figure 7. Execution time of a DAG in different configurations ([# of processors][CCR][memory scale factor]). Each filled bar shows the execution time
of a technique when considering prefetching and the stacked bar represents the extra execution time of the same technique without prefetching.

Increasing the number of processors up to three (or four)
does not reduce the execution time of the task graph signifi-
cantly while using the HybILP (HybPrefILP) for scheduling
the selected DAG; this is due to the limited parallelism in
the DAG and on-chip communication overhead.

The outcome of the proposed technique for the selected
DAG is a hybrid schedule (i.e. it uses the combination of
code- and data-driven scheduling for tasks in the task graph)
which reduces the amount of remote accesses for large
code elements and large intermediate data elements between
the tasks. When comparing the outcome of HybILP with
HEFT and G-CPU, our technique achieves a 29% and 30%
respectively shorter execution time for the selected DAG in a
nominal experimental configuration (where two processors,
a CCR equal to 1.0, a memory scale factor equal to 1.0).
By extending HybILP to HybPrefILP, the execution time of
the DAG in the nominal experimental configuration reduces
by 32% and 39% compared to HEFT with prefetching and
G-CPU with prefetching respectively.

IX. CONCLUSION

The performance of applications when running on an MP-
SoC are affected by the time spent on fetching code and data
from remote memories. We present a scheduling technique
to improve the memory behavior of an MPSoC with limited
on-chip memories. We formulate our approaches using an
ILP framework.

The proposed technique, HybILP, makes a trade-off be-
tween loading code or data to reduce the run-time of
the application. In essence, it chooses the most suitable
scheduling strategy for a series of tasks in a task graph.
Tasks with dominant code size are scheduled with a code-
driven scheduling strategy and tasks that exchange large
amounts of data are scheduled with a data-driven scheduling
strategy. Our technique uses a compact ILP formulation
which requires limited time for an ILP solver. To further
refine the result of HybILP, we extend it to HybPrefILP. The
HybPrefILP technique takes the overhead of prefetching into
account when scheduling an application onto an MPSoC.

We evaluate our scheduling technique with a synthetic
task graph, taken from recent related work [12], and a com-
mon multimedia application (an MP3 decoder). We achieve a
reduction in run-time of 8% compared to a common heuristic

solution for the MP3 decoder application and 32% for the
task graph from [12]. These results demonstrate the advan-
tage of our hybrid prefetch-aware scheduling technique.
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