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Abstract—Multi-processors are suited to host a dynamic mix
of real-time dataflow applications, but are increasingly subject
to faults because of the decreasing feature size. Applications can
start and stop as needed if they execute on a private set of Virtual
Processors (VPs) that are deployed on the physical processors.
This allows online software updates, but makes it impossible to
predict the deployment. If a fault renders a processor unusable,
the free resources on other processors may be too fragmented
to allow its VPs to be re-deployed. We show that mapping an
application to more VPs reduces the maximum VP size. This
increases the probability of successfully dealing with faults, at the
cost of an increase of the total size. Such a mapping can either
be run from the start, or we can split the VPs only when a fault
occurs. Experiments confirm the feasibility of our approach, and
show a trade-off between improved fault-tolerance and resource
usage for both strategies.

I. INTRODUCTION

Advanced control systems such as driving assistance in
automotive require processing of high-bandwidth data streams
from sensors and external sources. Processing steps with
data-dependent execution times such as filtering and feature
recognition must be performed in real-time (RT), because
control algorithms depend on their output. These algorithms
start and stop over time and contain repetitive operations that
can benefit from hardware accelerators. Heterogeneous multi-
processor platforms where general-purpose (GP) processors
are supported by accelerators (ACC) are good candidates to
host such a dynamic mix of demanding applications.

The continuous decrease of the feature size in VLSI design
leads to an increased power density, which translates to higher
local temperatures or hot spots. These cause intermittent faults
and processor shutdowns on the short term, and speed up
the silicon aging process which leads to permanent faults on
the long term [1], [2]. It is costly to add circuitry for fault
correction. Instead we propose a method for, and analysis of,
fault-tolerant deployment of applications to handle intermittent
and permanent processor faults.

Our contributions are valid for each Model of Computation
(MoC) that allows the design of data-dependent RT applica-
tions. One such a MoC is dataflow, which we will use as
a running example throughout this work [3]. We consider a
design flow in which clusters of dataflow actors, the nodes of
a dataflow graph, are mapped to Virtual Processors (VPs) at
design-time, see application α on the left side of Figures 1a-
c. We consider heterogeneous platforms that are Globally
Asynchronous, Locally Synchronous (GALS) [4].
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Fig. 1: Application α with actors q..u is mapped to an increas-
ing number of VPs (left) which are deployed on processors
p1, p2 (right). When p2 encounters a fault:
a) V Pα,2 cannot be re-deployed because of its size and type;
b) V Pα,2 cannot be re-deployed because of its type, but V Pα,3
can be re-deployed on p4;
c) we switch to another mapping at runtime in which V Pα,2
is split and resized for a GP, and re-deployed on p1 and p3.

At runtime the VPs of an application may be deployed on
any physical processor pi with sufficient free capacity using
Time Division Multiplexing (TDM) arbitration, see the right
side of Figures 1a-c [5]. This combination of design-time
mapping and runtime deployment ensures that applications
can be started and stopped at any time independent of the
current deployment, as long as sufficient capacity is available.
Therefore applications can be added at runtime, which enables
online software updates. Deployment is an instance of the bin-
packing problem, and it is impossible to predict what the
distribution of VPs will be at a given time. When a fault
occurs the free capacity may be too fragmented to allow re-
deployment, see the right side of Figure 1a.

Our first contribution is improved fault-tolerance through a
design-time mapping strategy. By mapping each application to
more VPs of a smaller maximum size the probability of suc-
cessful re-deployment is increased, at the cost of an increase
in total size. Consider the improvement of the deployment in
Figure 1b over that in 1a. The total size of application α has
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Fig. 2: a) V Pε,1 has a waiting time twait,1 of 2 slots, captured
by actor tw,1 b) After splitting naively into V Pε,1 and V Pε,2
(dark blue and dark green) the waiting time is 4 slots for both.
The throughput constraint is not satisfied, so additional slots
must be reserved (light blue and light green) to reduce the
actor WCRT.

increased from 6 to 7, but V Pα,3 can now be re-deployed on
p4. While V Pα,3 would fit on GP processor p3, it is targeted
for an ACC and cannot be re-deployed.

Our second contribution solves this by splitting and resizing
VPs at design-time, and switching to that new mapping at
runtime. As shown on the left side of Figure 1c, V Pα,2 is
further split into V Pα,4 and V Pα,5 that are targeted for a GP.
The total size of that mapping increases to 8 slots because
the execution time of the actors is higher on a GP. When the
fault occurs we switch to the new mapping, and V Pα,4 and
V Pα,5 can be re-deployed on p3 and p1 respectively. The other
VPs are not affected by the split and can continue without
interruption.

The trade-off between improved fault-tolerance and resource
usage is evaluated for the different strategies in Section VI. We
find that the platform utilization at the moment that the fault
occurs plays an important role. There are two thresholds on
this utilization. Below the lower threshold a re-deployment can
always be found with every strategy, while above the higher
threshold no deployment can be found with any strategy.
The area of interest is in between these thresholds, where
the strategies help to maximize fault-tolerance for the highest
possible platform utilization.

Mapping dataflow actors to VPs is detailed in Section II,
the deployment of VPs to the platform in III. The fault model
is presented in Section IV, followed by our contributions in
Section V. The experiments in Section VI confirm the validity
of our contribution. We discuss related work in Section VII,
and present the conclusions in Section VIII.

II. MAPPING DATAFLOW GRAPHS

Our contributions can be applied to any RT MoC that
can guarantee a minimum throughput or maximum latency
given the actor (or task) worst-case execution time (WCET)
and a method to compute the resulting worst-case response
time (WCRT) of the application. To illustrate this we use the
dataflow MoC, which can guarantee a minimum bound on the
throughput given the actor WCET by means of computing the
resulting WCRT of the application [6], [7]. The contributions
trade fault-tolerance against the size of the applications, mea-
sured in TDM slots. To provide insight in this cost trade-off we

now take a detailed look at the design-time, intra-application
mapping.

Dataflow actors are mapped to VPs. The size of each VP
is determined by calculating the WCRT of each path through
the dataflow subgraph that is mapped to the VP. Because we
consider GALS systems, the TDM wheels of the physical
processors may be misaligned. As each VP may be deployed
on a different physical processor, the WCRT must account for
the worst-case TDM wheel misalignment between VPs.

Consider for example application ε in Figure 2a. Actors x
and y are mapped to V Pε,1, which uses 4 TDM slots out of
a total wheel size of 6. The waiting time twait,1 is two slots,
which is captured by the red actor tw,1 that is inserted in front
of the VP during timing analysis. The WCRT for V Pε,1 thus
consists of the sum of twait,1 and the actor execution times.

The essence of our first contribution is to increase the
number of VPs an application is mapped to. We split V Pε,1
into V Pε,1 and V Pε,2 as shown in Figure 2b. If the slot
allocation of the new VPs would solely be based on the ET,
both receive two slots as indicated by the dark blue and dark
green slots on p1 and p2 respectively. The waiting time is
now 4 slots for both VPs. This may lead to a violation of
the throughput requirement. To counter this, we can reduce
the WCRT by reserving additional TDM slots, as indicated by
the light blue and light green slots in the figure. Note that no
actual work will be performed in those slots, they are necessary
because of the assumed worst-case TDM wheel misalignment.
The extra slots are required to reduce the latency and increase
the throughput. We see that the application now requires 6 slots
in total, and may still be executed on one physical processor.

III. DEPLOYMENT OF VIRTUAL PROCESSORS

The intra-application mapping of actors to VPs described
in Section II is performed at design-time. At runtime the
VPs must be assigned to and started on a physical processor,
through an inter-application deployment. This two-layer design
approach has the advantage that the compute intensive timing
analysis and mapping are only performed at design-time.
No further calculations apart from the deployment itself are
necessary at runtime.

Analysis can only bound the throughput of an application if
VPs are deployed on a predictable platform. An architecture
is predictable if the WCRT of each actor can be captured at
design-time. Any predictable real-time platform such as the
Time-Triggered Architecture (TTA) or CompSOC is suitable
for our method [8], [5]. In this work we select the latter to
illustrate our contributions.

On the CompSOC platform timing interference between
applications is prevented by allocating a budget for each appli-
cation on all hardware resources such as processors, memories,
and the Network-on-Chip (NoC). Processor virtualization is
of specific interest in this work. Applications are mapped to
one or more VPs, which are deployed using TDM arbitration.
As the timing analysis accounts for the worst-case TDM
wheel misalignment between physical processors, the VPs
of an application can be deployed on any processor of the



correct type. This is a requirement for GALS systems, and has
the advantage that new applications that have been analysed
offline can be added to the platform at runtime without re-
analysis, thus separating mapping from deployment. Such
online software updates are becoming standard practice in
many domains such as consumer electronics, medical and
automotive. We use this feature at no extra cost to achieve
fault-tolerance by re-deploying VPs in case of a fault, see
Section V.

Deployment is an instance of the one-dimensional bin-
packing problem, which is known to be NP-hard [9]. Use
of heuristics is inevitable to find a solution at runtime. It
is intuitive that the probability of success increases if the
heuristic is provided with more but smaller items to fill the
bins, if the sum of item sizes is the same. The latter is not
true, as we will see in Section VI. Instead the sum of the
items (VPs) size grows if an application is mapped to more
VPs. We can only expect a benefit if the increase in probability
of success caused by the smaller VPs outweighs the decrease
caused by the growth in total size.

Deployment of VPs on physical processors at runtime must
be performed by a resource manager that is capable of dynamic
loading [10]. In this work we will assume that such a manager
is all-knowing, i.e. that it considers all possible solutions to
the bin-packing problem if it must (re-)deploy an application.
In reality it will only have limited time to find a subset of
the solutions using a heuristic. Both the selection of such a
heuristic and the practical implementation are outside of the
scope of this work. The results that we find are therefore an
upper bound on the fault-tolerance that a real resource manager
will be able to achieve.

IV. FAULT MODEL

Advances in VLSI design lead to a decrease of the feature
size, which increases the power density of chips and causes
higher local temperatures. These hot spots prevent powering
on all transistors simultaneously at the nominal voltage, an
effect known as dark silicon [1]. During operation hot spots
may cause intermittent faults that lead to temporary processor
shutdowns. In the long term, hot spots cause increased elec-
tromigration and speed up the aging process [2]. These effects
make multi-processor platforms more susceptible to faults.

In this work we focus on intermittent faults due to hot
spots and dark silicon, and permanent faults due to aging
and electromigration. As the power density is at its highest
in the processors, such faults are most likely to appear there.
We therefore focus on processor faults and will not consider
the NoC, memory, and other components. Transient faults do
not require re-deployment and may instead be addressed with
techniques such as checkpoint and restart [11].

To re-deploy a running application in case of a fault, its
state must be consistent. Therefore we will now investigate the
storage of state in the dataflow MoC. A dataflow application
consists of actors that fire as soon as data is available, i.e. they
are self-timed and data-driven. An application is captured in
a directed graph such as in the left side of Figures 1a-c. The

nodes are the actors and the edges are the channels. Actors
are stateless, and communicate by producing and consuming
data tokens into and from the channels. All state is therefore
stored in the channels.

An actor firing consists of three parts: consumption of the
input tokens, execution, and production of the output tokens.
During firing an actor may temporarily have internal state that
is not in the tokens. To ensure that state cannot be lost, we
impose the requirement that the input tokens of an actor may
only be discarded after the firing is complete and the output
tokens are updated. This ensures that an actor can always be
re-fired, which guarantees that any fault can be corrected.

The channels must be accessible and in a consistent con-
dition after a fault. To simplify our fault model we use
the conservative assumption that the channels as well as the
instruction memory are stored in a central, protected memory
and are fetched each time when required by a processor. In
reality this will have a major impact on the performance, and
there are schemes to avoid this and still guarantee consis-
tent memory, e.g. error-correcting codes. Discussion of such
schemes is outside of the scope of this work.

Techniques exist for detection of faults on a processor, e.g.
through acceptance tests based on timing, coding, reasonability
and structure, and may be implemented in hardware, software
or both [11], [12], [13]. Upon detection we assume that an
exception handler halts all VPs deployed on that processor.
Because all input tokens of an actor that was firing are still
valid, it can be restarted on another processor as long as the
position in the schedule is known. The current position of the
schedule can be stored in a (self-) edge.

There are many types of dataflow, such as Kahn process
networks, synchronous dataflow, and scenario-aware dataflow.
While each has its own specific rules and restrictions, our work
is sufficiently general to be applied to all these types.

V. FAULT-TOLERANCE CONCEPT

Heterogeneous multi-processor platforms feature multiple
types of processors that differ in clock speed, architecture
and instruction set. The contributions that we present in this
section are not limited by the number or variety of processor
types available on a platform. The minimum number of
processor types necessary to explain our contributions is two,
see Section I. For the sake of brevity we will continue with
such a platform that only consists of general purpose (GP) and
accelerators (ACC) processors throughout this work.

We assume, without loss of generality, that all actors in a
dataflow graph can be executed on a GP. A subset actors can
benefit from execution on an ACC because they have a shorter
WCET on that type. All others cannot be executed on an ACC
at all.

A. Re-deployment

A fault on a processor affects all applications of which
one or more VPs are deployed on that processor. There are
different strategies to deal with such faults. Those applications
may for example be dropped, switched to a safe mode, or
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Fig. 3: Two dataflow graphs of a) the JPEG decoder, and b)
the Susan edge detection algorithm. Actors Thin and Put can
benefit from an accelerator.

the VPs may be re-deployed on different processors [14].
We argue that re-deployment is the preferred strategy because
the functionality is maintained and the interruption of service
minimized. Whether sufficient free capacity is available for re-
deployment can be checked by a resource manager. If this is
not the case, it may still choose another strategy to deal with
the fault. From the system perspective every increase of the
probability of successful re-deployment is significant, because
it reduces the risk of having to drop applications.

Re-deployment of VPs as introduced in Section I is enabled
by two principles. Firstly, the MoC provides a method to
compute the WCRT on a predictable platform given the actor
WCET and a platform model, from which the VP size can be
calculated. Secondly, the WCRT accounts for the worst-case
TDM wheel misalignment between VPs so that a VP may be
deployed on any processor of the correct type (e.g. general
purpose) that has sufficient TDM slots available.

Our first contribution is to improve fault-tolerance on
a platform by increasing the probability on successful re-
deployment. To do this we calculate alternative mappings for
each application in which it is mapped to more VPs than in
the baseline mapping that is explained next.

We consider two baseline mappings for each application.
Firstly an application may be mapped to GP processors only, in
which case it will not profit from the accelerators. We vary the
amount of processors and select the version with the smallest
overall size. This is the homogeneous baseline mapping. We
will see in Section VI that this always results in a mapping to
one VP, denoted with [gp].1 Secondly an application may be
mapped to at least one GP and one ACC processor. Again
we vary the amount of GPs and ACCs and find that the
[gp, acc] mapping (i.e. one GP and one ACC) always results
in the smallest overall size, we refer to this mapping as the
heterogeneous baseline mapping.

B. Resize and Split

Re-deployment of a gp is straightforward, it may only be
deployed on a GP processor with sufficient free capacity. For
an acc on the other hand there are two options. It may be
deployed on an ACC processor with sufficient free capacity,
or we may generate a second mapping in which the acc is
resized (i.e. enlarged) to allow for a GP processor mapping.

1We use the abbreviations GP and ACC to refer to physical processors of
type general-purpose and accelerator, and gp and acc for VPs that may be
deployed on these respective processor types.

This expands the solution space and increases the probability
of successful re-deployment when an ACC processor fails.

Consider for example a failure of the ACC processor to
which the second VP of mapping [gp, acc] is deployed. At
design-time a second mapping [gp, gp] is generated in which
the first gp is forced to be identical, and the second VP
accommodates the acc actors from the first mapping. During
runtime the resource manager can switch to this second
mapping if it cannot re-deploy the acc. The disadvantage is
that the second mapping must be stored during runtime, and
that the resource manager needs the capacity to switch between
mappings.

The resizing strategy can potentially also be applied to
a homogeneous mapping. As explained in Section II, some
TDM slots may be reserved solely to reduce the WCRT. Such
slots may be removed from one VP and transferred to another
without violating the throughput constraint, i.e. the VPs act
like communicating vessels. This could be used to manipulate
the location of available slots over the platform. As it does
not change the total size of an application however, we expect
only a minor benefit and will not explore this strategy further.

Instead we propose as our second contribution to split and
resize VPs only when the ACC processor to which the acc
is deployed encounters a fault at runtime. Consider again the
mapping [gp, acc], for which we generate a second mapping
[gp, gp, gp] to which we switch when a fault occurs on the
ACC. The first gp is again identical, but acc VP is now
spread over the two gp VPs. A split can also be applied to a
homogeneous mapping.

The advantage is that the additional cost for splitting a VP is
only paid when the fault actually occurs, which lowers the cost
and platform utilization in normal operation. This comes again
at the price of storing the additional mapping and extending
the resource manager with the capacity to switch between
mappings. Switching between mappings is more complicated
in comparison to the resize strategy, as the VP has an internal
schedule that must be split in two in a consistent manner. This
split operation may be costly depending on the size and type
of the schedule, and will cause additional switching overhead
at runtime.

VI. EXPERIMENTAL EVALUATION

A. Preliminary

We use eight different applications for our experiments.
Two of these are real-world streaming algorithms, namely a
JPEG decoder and the SUSAN edge detection algorithm. Their
dataflow graphs are depicted in Figure 3.

We furthermore use six synthetic applications to explore the
effect of typical graph structures, see Figure 4. The worst-case
execution times of the JPEG and Susan actors are measured
on an FPGA instance of the CompSOC platform. Each actor
in the synthetic applications has an ET of 10k cycles on a
GP. Actors that can benefit from running on an accelerator are
indicated in gray in the figures, their ET is 1k cycles on an
ACC, representing a speedup of 10x. All other actors cannot
be mapped to an ACC at all.



JPEG Susan seq sota par seqpar parseq diamond
[gp] [40] [40] [40] [40] [40] [40] [40] [40]
[gp, gp] [33, 10] [30, 10] [35, 5] [37, 40] [10, 30] [36, 5] [22, 20] [20, 20]
[gp, gp, gp] [52, 10, 53] [29, 10, 2] [30, 5, 5] [38, 40, 40] [5, 25, 10] [33, 5, 5] [14, 27, 4] [16, 4, 20]
[gp, gp, gp, gp] [1, 9, 53, 52] [1, 3, 1, 36] [25, 5, 5, 5] [25, 5, 5, 31] [5, 20, 10, 5] [29, 5, 5, 5] [10, 27, 4, 4] [4, 4, 8, 27]

TABLE I: Mappings for the homogeneous platform for 8 different applications. The number of VPs varies from 1..4.

Susan seq par seqpar parseq diamond
[gp, gp] [30, 10] [35, 5] [10, 30] [36, 5] [22, 20] [20, 20]
[gp, gp,gp] [−] [−] [−] [−] [−] [−]
[gp, gp, gp] [29, 10, 2] [5, 5, 30] [5, 30, 5] [5, 5, 33] [−] [−]
[gp,gp,gp] [−] [−] [−] [−] [−] [−]

TABLE II: The split strategy applied to the [gp, gp] mapping. The new VPs are indicated in bold. An empty set indicates that
no mapping can be found.

c)
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f )

a)

b)

Fig. 4: Six dataflow applications with different topologies:
a) sequential (seq), b) sequential one-to-all (sota), c) parallel
(par), d) sequential-parallel (seqpar), e) parallel-sequential
(parseq), f) diamond. Actors that benefit from an accelerator
are indicated in gray.

We employ two different platforms to evaluate our contribu-
tions. A homogeneous platform with four GP processors will
be used to investigate re-deployment of VPs to processors of
the same type. A heterogeneous platform with two GPs and
one ACC processor is applied for re-deployment of VPs to
processors of a different type. Both platforms have a TDM
wheel size of 60 slots on all processors, which allows for
easy comparison. On many platforms the wheel size and slot
length of GP and ACC processors will differ. It is important to
note that the cost expressed in TDM slots cannot be compared
between processors if this is the case.

Subsection VI-B describes how we generate different map-
pings for both platforms. In Subsection VI-C we create sets
of applications for each mapping, and generate all possible
deployments. In each deployment we simulate a failure of
each processor and calculate the average probability of finding
a valid re-deployment. The resize and split strategies are
evaluated similarly in Subsection VI-D

The platform utilization is obtained by dividing the number
of used TDM slots used in a certain deployment by the total
number of TDM slots available on the platform. We explore
the trade-offs for different utilizations in VI-E.

B. Mapping
We employ the publicly available SDF3 tool that can gen-

erate a number of Pareto-optimized actor-to-VP mappings for
each application [15]. In the context of this work we modified
the tool to select the mapping that uses the lowest total number
of TDM slots. In other words, we ignore memory usage and
bandwidth that dominate other Pareto points.

We create four mappings per application for the ho-
mogeneous platform by varying the number of VPs to
which an application is mapped between one and four, i.e.
[gp], .., [gp, gp, gp, gp]. The setpoint for the throughput is
determined by mapping each application to a single VP with
a size of exactly 40 TDM slots. The two, three and four VP
mappings are generated with the same throughput setting. We
will deploy four applications so 160 out of 240 TDM slots
or two-thirds of the platform will be used in the baseline
mapping. We consider this a reasonable utilization for a fault-
tolerant platform.

Table I shows the mapping of all applications to 1..4 VPs
using SDF3. The numbers in each cell give the size of the
VPs, the total cost of a mapping is their sum. We observe that
the total cost increases as the number of VPs increases. The
reason for the increase is that the WCRT increases for each
additional VP, as explained in Section II. In case the cost does
not increase (e.g. Susan between 1 VP and 2 VPs), the number
of required cycles increases but is absorbed by the unused part
of the TDM slots already allocated.

The results of the JPEG and sota applications in Table I
stand out. When either is mapped to 2 (sota only), 3 or 4
VPs the total number of required TDM slots is larger than the
TDM wheel size. In case of the JPEG this is caused by the
fact that the ET is concentrated in the IQZZ and IDCT actors.
For the sota application it is caused by the fact that every actor
receives data from the first, therefore the algorithm cannot find
a mapping of actors that reduces the WCRT. As they cannot
be deployed on one processor when mapped to 3 or 4 VPs,
we conclude that our concept does not work for these types
of applications and we exclude them from the re-deployment
experiments.

Additional mappings must be generated to evaluate the split
strategy proposed in Subsection V-B. A fault may affect any



Susan seq par seqpar parseq diamond
[gp, acc] [25, 1] [23, 3] [22, 4] [24, 2] [24, 2] [23, 3]

[gp, gp] [25, 6] [23, 23] [22, 21] [24, 12] [24, 15] [23, 22]
[gp, gp,gp] [25, 2, 5] [23, 18, 7] [22, 12, 12] [24, 8, 4] [24, 7, 7] [23, 10, 15]

[gp, acc, acc] [25, 1, 1] [23, 2, 1] [22, 2, 1] [24, 1, 1] [24, 1, 1] [23, 1, 2]
[gp, gp,gp] [25, 2, 5] [23, 18, 7] [22, 20, 7] [24, 8, 4] [24, 10, 4] [23, 10, 15]

[gp, gp, acc] [4, 22, 1] [7, 18, 3] [17, 7, 4] [10, 16, 2] [10, 14, 2] [19, 5, 3]
[gp, gp, gp] [4, 22, 6] [7, 18, 23] [17, 7, 21] [10, 16, 12] [10, 14, 15] [19, 5, 22]

TABLE III: Mappings for the heterogeneous platform for 6 different applications, including the results of the resize and split
strategies. VPs that are resized or added are indicated in bold.

0% 68.6% 66.8%

[gp,gp]

161 slots

[gp,gp,gp]

162.5 slots

16.7% 74.7% 75.5%

[gp]

160 slots

[gp,gp]

162 slots

[gp,gp,gp]

166 slots

[gp,gp,gp,gp]

166 slots

Fig. 5: Re-deployment results for the homogeneous platform.
Arrows indicate the probability of successful re-deployment,
the boxes contain the number of VPs and cost of the solution.
Black boxes and arrows indicate the default strategy, yellow
the split strategy.

combination of VPs of one application, so we generate a
mapping for each possible permutation of faults. Each faulty
VP must be split, while the others keep their size. In the [gp]
mapping there is only one VP to be split, resulting in the
[gp, gp] mapping in the third row of Table I. Applied to the
[gp, gp] mapping for the homogeneous platform, we obtain
the result shown in Table II. The new VPs are indicated in
bold type. We see that no mappings can be found if a fault is
encountered in either the second VP or in both VPs at the same
time. This is because of the drastic increase of the WCRT in
these two cases, violates the throughput constraint.

We will deploy three applications to the heterogeneous
platform using three different mappings, namely [gp, acc],
[gp, acc, acc] and [gp, gp, acc], see Table III. The setpoint for
the throughput is chosen so that the sum of both VPs in the
[gp, acc] baseline mapping is 26 slots. Table III includes the
results of the resize and split strategies, VPs that are resized
or added are indicated in bold. It is not possible to find
a solution for all applications when using the split strategy
for mappings [gp, acc, acc] and [gp, gp, acc]. As expected, the
required number of slots increases steeply when resizing an
acc for a GP processor because the actor execution times
increase tenfold. We note that splitting the VP comes at a
cost of one or two slots, but the maximum size of the two
new VPs is always smaller than that achieved with the resize
strategy.

C. Re-Deployment

For each of the four mappings on the homogeneous platform
we create fifteen unique sets of four applications, which are
all permutations of four out of six applications. We generate
all possible deployments for each set and consider unique

deployments only, i.e. permutations achieved by swapping
processors are excluded. The total number of deployments for
a 2 VP mapping onto 4 processors is in the order of 102, for
a 3 VP mapping it is 105 and for a 4 VP mapping 107.

In each deployment we simulate a failure of each processor
and calculate the average probability of finding a valid re-
deployment per mapping. These results are summarized in the
upper row of black boxes in Figure 5. The percentages on the
arrows represent the probability of successful re-deployment
averaged over the processors, sets and deployments. The
numbers in the boxes denote the average cost of the re-
deployment, which is in this case equal to the initial mapping.

The baseline [gp] mapping has a cost of 40 slots. There is
exactly one possible deployment, namely one VP per proces-
sor, which leaves 20 free slots per processor. The probability
that a VP can be re-deployed when a processor fails is then
0%. The [gp, gp] mapping has a probability of successful re-
deployment of 68.8%, at an average cost increase of 2 slots
or 0.83% of the overall capacity. The [gp, gp, gp] mapping
results in a probability on successful re-deployment of 66.8%
at a cost of 6 slots. This is lower than for the [gp, gp] mapping,
which can be attributed to the fact that the utilization of the
platform is higher even before the fault occurs, which reduces
the solution space.

The results confirm the validity of our first contribution, i.e.
the fault-tolerance increases when an application is mapped to
more VPs. The success of the approach will however depend
on each unique combination of TDM wheel size, number of
applications and processors, throughput constraints, initial VP
sizes, and dataflow graph topologies. The possible gains from
this strategy should therefore be analysed for each system
independently.

D. Resize and Split

We repeat the re-deployment experiment on the homoge-
neous platform for the split strategy. As shown in Table II it
is not possible to split every VP, those VPs are re-deployed
without any changes. The results are shown in the lower row
of yellow boxes in Figure 5. Note that after re-deployment the
platform contains applications mapped to different numbers of
VPs, indicated by the gray font in the figure. When the split
strategy is applied to the baseline mapping the probability
on successful re-deployment is 16.7%, for the [gp, gp] and
[gp, gp, gp] mappings the probabilities are 74.7% and 75.5%
respectively. We see that the split strategy offers an improve-
ment over the default strategy in all three cases. The cost
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Fig. 6: Re-deployment on the heterogeneous platform. Arrows
indicate the probability of successful re-deployment, the boxes
contain the VP size and cost in slots. Black boxes indicates the
initial deployments, yellow the split strategy and blue, green
and purple the resize strategy for the different mappings.

increases marginally in the 1 and 2 VP case, and not at all for
the 3 VP case because all VPs can be split without additional
cost. We conclude that the split strategy further increases the
fault-tolerance on the homogeneous platform.

For each of the three mappings the heterogeneous platform
we create twenty sets of three applications, all permutations
of three out of six applications. We simulate a failure of the
ACC processor only to zoom in on re-deployment between
processors of different types. The initial deployments are
depicted in the upper row of black boxes in Figure 6. An
acc cannot be re-deployed without either resizing or splitting
it. The resizing strategy for the [gp, acc] mapping is depicted
in the blue box (second from left) in the second row. We
see that the probability on successful re-deployment is 31.7%,
while the total size increases with 42 slots, or 23.3% of
the total platform capacity. The split strategy for the same
deployment is shown in the leftmost yellow box, and yields
a 40% probability of success at a cost of 46 slots. Again
we see that the fault-tolerance increases at the cost of TDM
slots, confirming the second contribution. The higher costs are
caused by the conversion of acc VPs to gp.

The probability on successful re-deployment of the
[gp, acc, acc] mappings with the resize strategy is 35%, which
is a minor improvement over the [gp, acc] mapping but
still not as good as the split strategy. The resource usage
for the [gp, acc, acc] mapping however is significantly lower
than for both [gp, acc] solutions. This is because the actors
are distributed over 3 VPs from the beginning, providing a
better spread of actors than the [gp, acc] split strategy. The
[gp, gp, acc] mapping does not perform well compared to the
others because the utilization of the GP processors is higher
from the beginning, leaving less available capacity for re-
deployment.

E. Trade-Offs

The experiments on both the homogeneous and heteroge-
neous platforms showed a trade-off between fault-tolerance
and TDM slots for a fixed platform utilization at the time of
the fault. Because in reality the utilization is unpredictable,
we vary the utilization on the heterogeneous platform on the
x-axis of Figure 7. The graph furthermore shows the solution
cost for a selected number of data points. The solution shown
in Figure 6 is indicated in the graph by the red box.
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Fig. 7: The probability of re-deployment for a varying initial
platform utilization and different strategies. The cost of the
solution in TDM slots is printed in color for selected data
points.

If the utilization is 54 slots or lower, all strategies result
in successful re-deployment because there is always sufficient
free capacity to re-deploy each VP. Likewise, if the utilization
is 90 or higher, no re-deployment can be found for any of
the strategies because there is insufficient free capacity. These
lower and higher thresholds will exist on every combination
of platform and application set, but their value cannot be
predicted.

In between these thresholds each strategy has a curve that
trades off fault-tolerance with cost. We see that the [gp, acc]
resize strategy provides slightly better fault-tolerance at the
edges of this curve, while [gp, acc] split performs well in the
middle. The [gp, acc, acc] strategy consistently outperforms
the others in terms of the solution cost and always has a
(shared) second place in fault-tolerance. This may well make
it the strategy of choice in this particular setup, unless the
fault-tolerance must be maximized at all cost. In that case
the [gp, acc] split strategy provides the highest probability of
successful re-deployment, averaged over all utilizations.

VII. RELATED WORK

Mapping strategies fall in three categories: design-time,
runtime and hybrid [16]. The hybrid that we use combines
elements proposed in [3], [5] and allows any deployment
of RT applications at runtime at the cost of rigorous timing
analysis at design-time. An alternative method is to calculate
and analyse a fixed number of VP deployments at design-
time [17], [18]. This allows more precise timing analysis,
but the number of deployments grows exponentially with the
number of VPs, processors and re-deployment events. These
deployments must also be stored during runtime, and unlike
our solution no new applications can be accepted.

An online resource manager that combines a greedy heuris-
tic with actor clustering is presented in [19]. Clustering



increases the probability of successful deployment because it
reduces the required bandwidth, except when processors are
almost full. This is in line with our findings. Fault-tolerance
however is not considered. Design-time mapping for mixed-
criticality and runtime deployment is proposed in [14]. Low
criticality tasks can be dropped to guarantee the WCRT of
highly critical tasks in case of faults, but not re-deployed.

Kahn Process Networks (KPN) as used in [18], [20] is a
dataflow MoC that cannot be statically analysed. Therefore
there is no method to compute the WCRT, and our method
for fault-tolerance cannot be applied for such applications but
can still be of use if occasional deadline misses are acceptable.

Spare processors are reserved to cope with faults in [18],
[21]. While this method is safe and easy to verify, it is not
affordable in low-cost, high-performance systems, for which
our method is targeted. In [17] tasks from faulty processors are
re-deployed (migrated) with the goal of minimizing migration
cost and the degradation of application throughput at the same
time. They also generate mappings at design-time, but do not
calculate the probability of successful re-deployment.

Re-deployment strategies focused on performance and the
reduction of the communication energy are presented in [20],
[21]. The former formulates the problem as a Integer Linear
Programming (ILP) problem to generate all deployments for
their KPN applications at design-time. They also propose an
online heuristic for use at runtime. The latter proposes a spare
processor placement technique and assesses its impact on the
fault-tolerant properties. They consider the effect of system
fragmentation but do not try to remedy this by splitting up
applications as we do in this work.

VIII. CONCLUSION

Heterogeneous multi-processor platforms are suitable for
executing a dynamic mix of RT streaming dataflow applica-
tions. The decreasing feature size in VLSI design however
increases the probability of intermittent and permanent faults.
We consider a design flow in which dataflow applications are
analysed and mapped to a set of Virtual Processors (VPs) at
design-time. At runtime a VP may be deployed on any phys-
ical processor of the target type that has sufficient available
TDM slots. This gives the flexibility to add new applications
during runtime, but makes it impossible to predict what the
deployment will be at any given time. When a processor fails,
the available slots on the platform may be too fragmented to
re-deploy the VPs executing on that processor.

In our first contribution we show that the probability of
successful re-deployment increases if applications are mapped
to more VPs of a smaller size, at the cost of additional
TDM slots. This feature can be exploited for fault-tolerance
by starting each application with such a multi-VP mapping,
but the extra slots are also used when no fault occurred.
This is overcome with our second contribution, which is to
split a VP only when a fault occurs. Because of the lower
overall resource usage this further increases the probability
for successful re-deployment at the cost of storing multiple
mappings and splitting the schedule at runtime.

We evaluate the proposed strategies experimentally and
show that mapping an application to more VPs indeed in-
creases the probability of successful re-deployment, both for
processors of the same type and processors of different types
using resizing. This works up to a certain limit, after which the
probability decreases because of the increased total cost. Fur-
thermore we find that splitting VPs only when a fault occurs
increases the probability even more. When running the ex-
periments for sample deployments with different utilizations,
a lower threshold is revealed below which a re-deployment
can be found with all strategies, as well a higher threshold
above which no re-deployment can be found with any strategy.
In between the thresholds we provide insight in the trade-
offs between maximizing fault-tolerance and minimizing costs
offered by the different strategies. The numbers reported
in this work cannot be generalized for other platforms and
applications. In low-cost, high-performance systems however,
any increase of the fault-tolerance that is achieved without
spare processors is an improvement of significance.
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