
DNAsim: Evaluation Framework for Digital
Neuromorphic Architectures

Sherif Eissa
Electronic Systems Group

Eindhoven University of Technology
Eindhoven, The Netherlands

s.s.b.eissa@tue.nl

Sander Stuijk
Electronic Systems Group

Eindhoven University of Technology
Eindhoven, The Netherlands

s.stuijk@tue.nl

Henk Corporaal
Electronic Systems Group

Eindhoven University of Technology
Eindhoven, The Netherlands

h.corporaal@tue.nl

Abstract—Neuromorphic architectures implement low-power
machine learning applications using spike-based biological neu-
ron models trained with bio-inspired or machine learning al-
gorithms. Prior work on simulating Spiking Neural Networks
(SNNs) focused on simulating emerging compute in-memory
(CIM) architectures, while prior work on mapping SNNs focused
mainly on minimizing inter-core communication or resource
utilization and targeted either emerging CIM architectures or
specific target platforms. SNN mapping choices on a neuro-
moprhic multi-processor platform can impact performance and
energy consumption. In this paper, we introduce a simulation
framework that evaluates application mapping on a user-defined
NoC-based multi-core digital neuromorphic architecture. Our
simulator evaluates latency and energy based on mapping and
spike activity traces which indicate the firing of neurons at
specific discrete timesteps defined in the application. We create
two hardware models based on reported work in literature and
show the evaluation of different mapping scenarios for a state-
of-the-art SNN benchmark.

Index Terms—neuromoprhic, simulator, spiking, SNN, model-
ing

I. INTRODUCTION

With Moore’s law and Dennard’s scaling already ending,
and the steep demand for edge processing for IoT devices,
the computing community is looking to leverage new tech-
nologies and new computing architectures to further enhance
performance at the edge.

The field of Artificial Intelligence (AI), particularly the
field of Deep Learning (DL), has gained tremendous attention
during the last decade and supporting their application on the
edge is in rising demand. However, these edge solutions re-
main many orders of magnitude less energy efficient than any
biological nervous system. This problem can be highlighted
from both the algorithmic side as well as the architecture side.

With an intent to break the Von-Neumann architecture bot-
tleneck and to achieve efficient edge processing, neuromorphic
hardware attempts to mimic the structures and models of
computation of biological nervous systems. The human brain
is by far the most complicated and impressive computing
system known to science; it can effectively perform over
trillions of operations every second with a power budget of
20 watts.

This work has been funded by the Dutch Organization for Scientific
Research (NWO) as part of P16-25 eDL project 7.

When viewed as a computing architecture, the human brain
is in fact the complete opposite of a classical Von-Neumann
computing architecture. In Von-Neumann architectures, the
bandwidth and latency between computation and memory
limits the system’s performance and present a bottleneck.
While in the brain, computation and memory are inseparable
and intertwined in neurons and synapses respectively. The
brain is a 3D spatial layout of an intricate mesh of these
neurons and synapses, running independently and in paralell.

Neuromorphic architectures look to mimic the structure of
the brain. However, with our current technology, we cannot
build hardware on the same level of intricate details as of the
brain. In digital technologies, we cannot merge single neurons
and synapses together as in the brain. It is also impractical
or even impossible to replicate the huge connectivity between
neurons found in the brain with any technology [1].

In practice, neuromorphic architectures are a middle-of-the-
road solution between Von-Neumann architectures and the
brain. They are multi-core architectures of typically homoge-
neous processing elements (PEs) where each PE holds a subset
of neurons and their synapses. PEs are usually connected by
a high-speed NoC which enables shared communication [1].

In this paper, we present the following contributions:
• DNAsim, a spike trace-driven simulation framework for

evaluating SNN applications mapped to digital neuromor-
phic multi-core architectures.

• An abstract and modular design that encapsulates user-
defined hardware parameters and simulates any SNN
application at the abstract level of its discrete timesteps
using its spiking trace.

• Demonstrating DNAsim using an SRNN [2] application
benchmark mapped on a multi-core mesh architecture
using models inspired by Loihi [3] and MorphIC [4].

II. BACKGROUND

Spiking Neural Networks (SNNs) are the third generation
of deep learning algorithms [5]. They come in networks
and structures similar to that of Artificial Neural Networks
(ANNs) like feed-forward, recurrent, convolutional and fully
connected. They can also be viewed as dynamical systems [6].

SNNs take inspiration from biological neurons by comput-
ing their states over time using bio-inspired neuron models and



Fig. 1: The response of an LIF neuron (bottom) to incoming
random spikes (top). The LIF neuron potential leaks exponen-
tially in time and it fires when it crosses firing threshold.

by communicating using binary spikes. Similar to biology, a
spike injects charge into a neuron’s soma (body). This charge
is modulated by the strength of the synapse mediating the
spike, similar to weight kernels in ANNs. When a neuron’s
soma accumulates sufficient charge, it releases its charge
as a spike which travels to destination neurons, while the
soma resets back to its resting potential. The neuron model
implemented by an SNN varies from very simple models
like the integrate-and-fire models to much more complicated
models like the Izhikevich neuron model [7].

To solve a neuron model’s ordinary differential equa-
tions, digital SNN computation is performed over discretized
timesteps, which we refer to in this paper as algorithmic
timesteps. During an algorithmic timestep, a neuron integrates
all incoming spikes and, if it exceeds a certain threshold
potential, it fires and releases its potential as an output spike.
Note that in this discrete model, we assume that each neuron
can only spike at-most once per algorithmic timestep.

Figure 1 shows the discretized behavior of a leaky-integrate-
and-fire (LIF) neuron responding to randomly weighed incom-
ing spikes. The LIF neuron immediately integrates incoming
spikes into its potential and it loses its potential exponentially
according to a decay time constant.

Some digital neuromorphic architectures, such as Loihi [3]
and TrueNorth [8], implement time synchronization between
its cores to buffer spikes between algorithmic timesteps. This
synchronized execution can easily match applications correctly
and has more predictable behavior and performance.

Other digital architectures, such as ODIN and µBrain [9]
[10], ignore inter-core synchronization and rely on explicit
decay commands for LIF models, as synchronization has a
periodic overhead cost in energy and latency which scales
with the number of tiles. In this fully event-driven execution,
spikes are produced and consumed instantaneously without
any concept of algorithmic timesteps.

In this work, we consider modeling synchronized execution
due to its predictable behavior. We also see that our simulation,
which is abstracted at the level of algorithmic timesteps
and cost models, can estimate the predictable execution of
synchronized execution platforms.

While most hardware architectures implement periodic leak-
age, event-based leakage can be beneficial for highly sparse
application. Accurate leakage calculation has been shown to

be unnecessary and can be approximated with cheaper circuits
even for highly dynamical systems [11].

Implementing SNNs involves mapping neurons on a multi-
processor neuromorphic system. Such a mapping can be
constrained by the capacity of each tile in terms of neurons,
synapses or input/output axons. Mapping decisions can have
a tremendous effect on performance and sometimes even
accuracy. Similar to typical multiprocessor mapping problems,
digital implementations have a trade-off between spreading
and balancing computation load per tile and the overall com-
munication volume. Finding good partitions between tasks in
not an obvious problem. In fact, task mapping in multicore
processors is considered an NP-hard problem [12].

Unlike analog and mixed-signal architectures, digital neuro-
moprhic architectures often deploy time-shared neuron com-
pute units which serialize the execution of synaptic operations
(SOPs) inside a single core [3] [8]. Hence, the more SOPs a
digital core has to execute during an algorithmic timestep, the
more time it will need to finish said timestep.

Since analog and CIM architectures have completely dedi-
cated spatial layouts, they have fully parallel functional neu-
rons that do not mind the amount of incoming spike traffic.
This is why existing research in SNN mapping for CIM
crossbar-based architectures focuses only on minimizing traf-
fic, maximizing crossbar utilization and/or technology related
issues like endurance to read and write operations [13] [14].

However, for digital time-multiplexed implementations, load
balancing of SOPs balances the computation latency between
cores, which reduces the latency of the busiest core and
increases overall system throughput. The topic of SOP load
balancing for digital neuromorphic implementations is under-
explored in SNN mapping literature.

III. RELATED WORK

In this section, we cover some of the literature in mapping
and simulating SNN implementations on a multiprocessor
neuromorphic architecture.

In some works on SNN mapping from the group of Anup
Das [15], they develop a novel method to simulate and evaluate
SNN partitions using Synchronous Dataflow Graph (SDFG)
models [16]. In these models, which use SDF 3 software [17],
they can model buffer sizes and measure system throughput.
However, one can argue that their models assume fully event-
driven execution, not the synchronized execution which we are
targeting.

PyCarl [18] is a PyNN-based [19] common python program-
ming interface for hardware-software cosimulation of SNN. In
this work, the authors created an interface between PyNN and
CARLsim [20] as well as an interface between CARLsim and
cycle-accurate hardware models. This enables performance
evaluation as well as accuracy evaluation by incorporating
hardware information such as latency. This framework works
at a lower level of abstraction than our work, simulating SNNs
behaviorally and simulating its implementation at cycle-level
rather than algorithmic timestep level.



Noxim++ [13] is an extension of Noxim [21], a cycle-
accurate NoC simulator, tailored for simulating SNN imple-
mentations.

PACMAN [22] is a partitioning tool for mapping applica-
tions on the SpiNNaker system [24]. It fits an application
using bin-packing heuristics without any considerations to
performance.

In NEUTRAMS [23], authors apply Kernighan-Lin (KL)
graph partitioning technique to minimize inter-core commu-
nication by mapping strongly connected nodes together. For
simulation, the authors implemented a modular hardware
model simulator similar to DNAsim. Although they develop
a generic methodology, they limit their simulator to crossbar
synaptic memory structures.

NxTF [25] is a mapping tool for Loihi. Its heuristic iterates
the network from output to input. It maps each layer according
to a multi-objective function based on minimizing resource
usage to reduce energy consumption. Hence, this work fails to
address throughput/latency related mapping issues and focuses
only on energy and resource/area optimization.

In [26], an older mapping tool was developed for Loihi.
The goal of this tool was to maximize input axon sharing.
This peculiar objective was chosen based on the Loihi energy
breakdown. The main source of energy consumption was
attributed to trace variables related to online learning. Sharing
input axons meant sharing these input trace variables which
resulted in reduced energy consumption.

There are many recent SNN compiling and mapping tools
from Anup Das et al. such as [27] [28] [29] [30] [31] [32]. In
these tools, mapping is done based on mapping heuristics like
particle swarm optimization, graph partitioning or bin packing.
However, they mainly consider analog and crossbar archi-
tectures. Their objective functions focus only on minimizing
communication for reduced power consumption and crossbar
utilization for resource efficiency. They do not consider load
balancing issue which is not an issue for dedicated or analog
architectures.

SNEAP [33] is a tool for SNN partitioning and mapping.
It applies a two-step heuristic to partition and then map
SNNs. They use k-way multi-level graph partitioning and use
three different mapping heuristics with the goal of minimizing
overall spike traffic and spike hops. They use Noxim++ [13]
to evaluate latency and energy of their mapping.

[34] is a software-hardware co-exploration framework.
On the software side, spikes are dropped to save latency at
the expense of accuracy and traces are extracted. While on
the hardware side, we map the SNN and evaluate it using
a hardware simulator that can estimate performance. Their
hardware simulator leverages Booksim 2.0, a NoC simulation
tool [35].

In MigSpike [36], authors use min-cut graph-based mapping
algorithms to minimize inter-cluster communication volumes.
In addition to that, they consider faults in CIM-based neurons
and apply a novel heuristic to migrate neurons from a cluster
to another.

In [37], authors create a framework for NoC design space
exploration. They apply a seach heuristic based on simulated
anealing and its objective function looks to maximize system
throughput. They use Booksim 2.0 [35] to simulate their NoC
design and SNN mapping.

In TAMA [38], meta-heuristics based on Genetic algorithm
and Ant Colony Optimization algorithm are used to map
neurons while minimizing spike hops (distance) as well as
spike turns inside routers for more efficient implementation.
They use Garnet2.0 [39] for evaluation.

To our knowledge, our work is the first to recognize com-
putational load balancing as one of the issues to consider in
SNN mapping on digital multi-core architectures. This paves
the way for multi-objective mapping optimization problems
that try to balance between system energy consumption and
throughput [40].

IV. DNASIM

DNAsim is a framework for simulating the implementation
of SNNs on a multi-processor NoC as well as estimating
performance. It is separated into well-defined modules that
enable plugging in different user-requirements according to
the user-defined hardware and system-level software models.

It consists of 5 modules: Application, Spike trace, Hardware
model, Mapper, and Simulator. Figure 2 shows a simple
diagram of our framework. DNAsim is open-source available
at https://github.com/TUE-EE-ES/DNAsim.

SimulatorSimulator

Run application on hardware

Mapper Mapper 

Binds application and 
hardware 

ApplicationApplication

Network description

Trace GeneratorTrace Generator

Numpy arrays

HardwareHardware

NoC

System-level Software

Tile

Fig. 2: DNAsim framework.

A. Application
The application definition module describes the SNN appli-

cation to be deployed. In general, neurons can be represented
as task nodes that sparsely and sporadically communicate
using spikes. The SNN spiking activity is described over
discretized algorithmic timesteps. Hence, we decided to use
a directed graph model to represent our application. This also
enables the use of graph-theortic mapping techniques which
are widely used in the domain of multi-processor task mapping
and allows us to put the problem of SNN mapping in the
context of generic multi-processor mapping problems which
have been studied extensively in the literature [40].

In this version of DNAsim, we only support fully and
recurrently connected layers of neurons. However, we plan
to introduce other connections in our future releases such as
convolution layers, pooling operations and sparse connections.

https://github.com/TUE-EE-ES/DNAsim


B. Spike Trace

We rely on spike traces as input for our simulator. These
traces describe the spiking activity of each neuron at each al-
gorithmic timestep. We have opted for a trace-based simulator
for multiple reasons:

• Application-independent: No need to worry about im-
plementing the application’s model as this has already
been done on the application’s framework (e.g Pytorch).

• Complexity: A trace-based evaluation is far simpler than
a cycle accurate hardware simulator. This comes at the
cost of accuracy, however accuracy loss can be minimized
in synchronized execution platforms by appropriately
modeling the system-level software.

• Abstraction: Our DSE methodology relies on statistics
regarding spiking activity only at the granularity of a
discrete timestep. This level of abstraction is in line with
MP-SoC mapping techniques [40].

Each node in the application graph is associated with a firing
rate vector that indicates its firing rate at each algorithmic
timestep, which has a value between 0 and 1. The firing rate
vector corresponds to data obtained from inference runs on
the application. These values can correspond to average cases
or corner-cases that exhibit the highest neuron activity.

The volume of communication between neurons as well
as the SOPs performed by each neuron can be derived from
spiking activity traces. We use numpy arrays [41] for our trace
files due to its prominence among DL applications developed
on Python.

C. Hardware model

The hardware model can be described as a two-layer mod-
ule. At the top layer, the NoC architecture is described as
well as the system-level software which describes things like
the communication, routing, and synchronization protocols. At
the bottom layer, the router and core are described in terms of
routing costs as well SOP, neuron update, and neuron spiking
costs, in addition to idle power and leakage power.

In DNAsim, we have implemented a 2-D mesh topology,
static XY routing, as well as uni-cast and multi-cast commu-
nication protocols and a configurable spike packet header cost.

Each tile implements user-defined cost model that describes
the cost of different operations. The latency of an algorithmic
timestep is determined by the slowest core in the mesh while
the energy of an algorithmic timestep is the aggregate energy
consumed by all cores.

In addition to latency and energy, the tile module also
records statistical information such as spike traffic, spikes
produced and consumed, and number of SOPs performed at
each timestep which provide insights to what is affecting
performance in the system.

D. Mapper

The mapper module is responsible for binding the ap-
plication to tiles in the hardware model. Mapping must be
constrained according to hardware resources.

The mapping process can be automated with the help of
heuristics, which have been extensively studied in MPSoC
mapping problems, with hardware constraints encoded. [12]

For this work, however, we demonstrate a few manually
generated mappings and we plan to automate mapping in
future work using graph-theoretic mapping techniques.

E. Simulator

The simulator runs the mapped application model on top of
the hardware model by issuing transfer transactions between
nodes of the hardware model according to the trace files.

There are two modes of simulation depending on the
hardware model. For simple hardware models that assume no
spike propagation delay or congestion, we have coarse-grained
simulator that runs transactions in parallel, across different
tiles, across different algorithmic timesteps, and in one shot
from source to destination. Another fine-grained simulator
runs transactions in a chronological order and step by step
fashion which slower, memory demanding and has limited
parallelism but enables modeling of spike delay and router
congestion.

V. EXPERIMENTS

We report several mapping experiments demonstrating the
functionality of our simulator using a state-of-the-art SRNN
benchmark and two approximated hardware models.

For our application, we use a network called SRNN
[2] which provides state-of-the-art benchmarks for recurrent
SNNs. We use the Spiking Heidelberg Dataset (SHD) [42]
benchmark application from SRNN. This network consists of
700 input neurons, 20 output neurons and 2 hidden layers of
size 128 neurons each. The network is fully connected, from
input to output. Each hidden layer is also fully connected
recurrently with itself. Figure 3 shows the structure of this
network.

Fig. 3: SRNN SHD network.

For our traces, we extracted a corner-case with the most
spiking activity within the test dataset. After analyzing the
corner-case and average traces, we concluded that the input
layer spikes dominate the total spiking activity and thus invoke
a high number of SOPs on the first hidden layer. Figure 4
shows the spikes produced and synaptic operations performed
by each spiking layer for our corner-case under study.

Our hardware model is a 2-D mesh structure with static XY
routing and multi-cast communication. We ignore the cost of



0 20 40 60 80 100
Algorithmic timestep

0

50

100

150

200

250

300
Sp

ik
e 

co
un

t
Input layer
Hidden layer 1
Hidden layer 2

0 20 40 60 80 100
Algorithmic timestep

0

10000

20000

30000

40000

SO
Ps

Hidden layer 1
Hidden layer 2
Output layer

Fig. 4: Spikes produced (top) and Synaptic operations per-
formed (bottom) by each layer of the SHD network. Input
layer spikes dominate the activity.

synchronization in our experiments. We use numbers reported
from Loihi [3] and MorphIC [4] to create an approximate
model of our tile. Table I shows values extracted for our hard-
ware models. These values are used to generate performance
estimates. Energy per Hop corresponds to the energy needed to
transfer one spike from tile to tile. Energy and latency per SOP
correspond to the energy and time consumed due to execution
of an SOP on a tile respectively while energy and latency per
active neuron is the added overhead needed to update (leak) a
neuron at each algorithmic timestep. We ignore idle power and
leakage power in this cost model. We also assume no delay
due to spike propagation or congestion, hence we use our fast
coarse-grained simulator.

Our model estimates energy based on the total amount
of spike hops, SOPs and neuron updates while it estimated
latency based on the distribution of SOPs and neuron updates
between cores. The two missing components in our model are
the effects of the NoC size and dimensions as well as the
effects of spike propagation delays and traffic congestion. The
latter component requires more intricate simulations using the
fine-grained simulator. As our model ignores these effects, our
results should be rather taken with a pinch of salt.

For our mapper, we consider 4 different scenarios. Firstly,
we consider cores having a synaptic memory of size 16K. For
these 16K cores, we need a 3x3 mesh to map our application.
For such a scenario we create two different mappings; one

TABLE I: Hardware model parameters

Model Hardware Model
Parameters Loihi MorphIC

Energy per Hop 4.0 pJ 9.0 pJ
Energy per SOP 24 pJ 30 pJ
Latency per SOP 3.5 ns 36 nsa

Energy per active neuron 52 pJ N/A
Latency per active neuron 5.3 ns N/A
aDeducted from reported core bandwidth of 27.5MSOP/s/core [4].

having the two hidden layers separated on different cores, and
another having the two hidden layers merged. Secondly, we
consider cores having synaptic memory of size 8K. For these
8K cores, we need a 4x4 mesh to map SHD efficient. For such
a scenario we again consider two different mappings where we
separate and merge the two hidden layers on the cores.

Figures 5 and 6 show the synaptic operations and spike hops
per tile for the two 3x3 mappings. We notice that merging
layers results in more balanced SOP load between tiles, but
higher spike communication volume.

0 20 40 60 80 100
Algorithmic timestep

0

1000

2000

3000

4000

5000

6000
SO

Ps

0 20 40 60 80 100
Algorithmic timestep

0

1000

2000

3000

4000

5000

6000

SO
Ps

Fig. 5: Synaptic operations performed by each tile for 3x3
mesh mapping with different layers separated (top) and with
different layers merged together (bottom). Merging hidden
layers together on all cores results in more balanced SOP load.

Figures 7 and 8 show the synaptic operations and spike hops
per tile for the two 4x4 mappings. We notice that merging
layers results in more balanced SOP load between tiles but
higher spike communication volume. Additionally, compared
to 3x3 mappings, spreading our application on a 4x4 NoC



0 20 40 60 80 100
Algorithmic timestep

0

50

100

150

200

250

300

350
To

ta
l H

op
 c

ou
nt

0 20 40 60 80 100
Algorithmic timestep

0

50

100

150

200

250

300

350

To
ta

l H
op

 c
ou

nt

Fig. 6: Spike hops passing through each tile for 3x3 mesh
mapping with different layers separated (top) and with differ-
ent layers merged together (bottom). Merging hidden layers
together on all cores results in increased communication.

results in lower SOP load per tile but higher communication
volume.

Figures 9 and 10 compare the latency and energy costs
of different mappings for the MorphIC and the Loihi models
respectively. We notice in our models that the cost of synaptic
operations heavily outweigh the cost of spike propagation,
which results in heavily favoring the merging of layers.
We also contribute the favorable performance of spread-out
mappings to the fact that we ignored overhead costs in latency
and energy of synchronization and turning on extra cores.

Table II shows total performance estimates, based on table
I, produced by our simulator for all mapping experiments.
We notice how the contribution of increased spike traffic is
negligible in our model. Increasing the number of cores from
3x3 to 4x4 resulted in roughly doubling the system throughput.

TABLE II: Inference performance of different mappings of
SRNN SHD benchmark on Loihi and MorphIC models.

Mapping Total Inference Performance
Configuration Loihi MorphIC

Energy Time Energy Time
3x3 Separated 566 µJ 1.12 ms 704 µJ 11.2 ms
3x3 Merged 568 µJ 972 µs 707 µJ 9.81 ms

4x4 Separated 569 µJ 631 µs 711 µJ 6.37 ms
4x4 Merged 572 µJ 521 µs 718 µJ 5.25 ms

0 20 40 60 80 100
Algorithmic timestep

0

500

1000

1500

2000

2500

3000

3500

4000

SO
Ps

0 20 40 60 80 100
Algorithmic timestep

0

500

1000

1500

2000

2500

3000

SO
Ps

Fig. 7: SOPs performed by each tile for 4x4 mesh mappings
with different layers separated (top) and merged together
(bottom). Merging layers balances SOP load. 4x4 mappings
perform less SOPs per tile compared to 3x3 mappings.

VI. DISCUSSION

Spreading an application on more cores results in less
computational load which can lead to better system through-
put. However, as typical to MPSoC mapping problems, this
results in increased inter-core traffic which increases energy
consumption. Having more cores also results in higher energy
consumption attributed to the extra idle power and leakage
power consumed. Overspreading an application can even result
in reduced system throughput or accuracy due to explosive
increase in communication traffic and possible spike dropping
as well as the steady increase in synchronization costs with
increasing mesh dimensions [3].

Mixing groups of neurons within an application can balance
the load of synaptic operations on each core which can lead
to better system throughput. However, mixing them results
in increased inter-core communication which directly influ-
ences energy consumption and can indirectly influence system
throughput through spike congestion.

Our experiments verify, although not precisely, the tra-
ditional trade-offs found in MPSoC mapping problems; a
trade-off between balancing loads and limiting communication
volumes as well as the trade-offs of parallelizing execution
by spreading an application. In our models and for our
application, we notice that synaptic operations dominate both
energy consumption and system latency.



0 20 40 60 80 100
Algorithmic timestep

0

50

100

150

200

250

300

350
To

ta
l H

op
 c

ou
nt

0 20 40 60 80 100
Algorithmic timestep

0

50

100

150

200

250

300

350

To
ta

l H
op

 c
ou

nt

Fig. 8: Spikes routed by each tile for 4x4 mesh mappings with
different layers separated (top) and merged together (bottom).
Merging layers together on cores increases spike traffic. 4x4
mappings have more spike traffic compared to 3x3 mappings.

VII. CONCLUSION AND FUTURE WORK

In this work, we present a framework for simulating and
analyzing SNNs implemented on a multi-processor digitial
neuromorphic system. Our simulator is based on application-
independent traces that indicate spiking activities. We have
conducted experiments based on approximate models inpired
from values reported for Loihi and MorphIC and using SRNN
SHD benchmark. Our experiments highlighted the importance
of mapping for SNNs and multi-processor neuromorphic sys-
tems. We highlight issues relevant to MP-SoC mapping prob-
lems: load balancing versus communication volume reduction
as well as application spreading trade-offs.

For our future work, we intend to implement an automated
mapping module that applies multi-objective partitioning and
mapping heuristics that are novel to SNNs.

We also plan to enhance the accuracy of our model by
incorporating factors like synchronization, idle power and
leakage power. We would also like to incorporate a spike delay
and congestion model within our future models.

We will also work on applications involving larger deeper
SNNs with convolutional connections as well as structural
sparsity. We believe such applications can bring different
observations and create more interesting mapping problems
than a non-sparse fully connected application.

0 20 40 60 80 100
Algorithmic timestep

0

50

100

150

200

250

La
te

nc
y 

[
s]

3x3 Separated
3x3 Merged
4x4 Separated
4x4 Merged

0 20 40 60 80 100
Algorithmic timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

En
er

gy
 c

on
su

m
ed

 [
J]

3x3 Separated
3x3 Merged
4x4 Separated
4x4 Merged

Fig. 9: Latency (top) and energy (bottom) estimates per algo-
rithmic timestep for MorphIC model. We notice performance
is overwhelmingly dominated by SOPs and not spike hops.

0 20 40 60 80 100
Algorithmic timestep

0

5

10

15

20

La
te

nc
y 

[
s]

3x3 Separated
3x3 Merged
4x4 Separated
4x4 Merged

0 20 40 60 80 100
Algorithmic timestep

0.0

0.2

0.4

0.6

0.8

1.0

1.2

En
er

gy
 c

on
su

m
ed

 [
J]

3x3 Separated
3x3 Merged
4x4 Separated
4x4 Merged

Fig. 10: Latency (top) and energy (bottom) estimates per
algorithmic timestep for Loihi model.



REFERENCES

[1] M. Bouvier et al, ”Spiking Neural Networks Hardware Implementations
and Challenges: A Survey”. J. Emerg. Technol. Comput. Syst. 15, 2,
Article 22 (April 2019), 35 pages. doi: 10.1145/3304103

[2] B. Yin, F. Corradi, and S. Bohté, ”Accurate and efficient time-domain
classification with adaptive spiking recurrent neural networks”. Nature
Machine Intelligence, 3(10), pp.905-913, 2021.

[3] M. Davies et al, ”Loihi: A Neuromorphic Manycore Processor with
On-Chip Learning,” in IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan-
uary/February 2018, doi: 10.1109/MM.2018.112130359.

[4] C. Frenkel et al, ”MorphIC: A 65-nm 738k-Synapse/mm2 Quad-Core
Binary-Weight Digital Neuromorphic Processor With Stochastic Spike-
Driven Online Learning,” in IEEE Transactions on Biomedical Circuits
and Systems 2019, vol. 13, no. 5, pp. 999-1010, Oct. 2019, doi:
10.1109/TBCAS.2019.2928793.

[5] Wolfgang Maass, ”Networks of spiking neurons: The third generation of
neural network models”, Neural Networks, 10, 9, 1997, p.p 1659-1671,
ISSN 0893-6080, doi: 10.1016/S0893-6080(97)00011-7.

[6] Wolfgang Maass, ”Liquid State Machines: Motivation, Theory, and
Applications” from ”Computability in Context”, pp. 275-296, 2011,
doi:10.1142/9781848162778 0008

[7] W. Gerstner, W. Kistler, R. Naud, and L. Paninski, ”Neuronal Dynamics:
From Single Neurons to Networks and Models of Cognition,” 2014,
Cambridge University Press, USA.

[8] F. Akopyan et al., ”TrueNorth: Design and Tool Flow of a 65 mW 1 Mil-
lion Neuron Programmable Neurosynaptic Chip,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 10, pp. 1537-1557, Oct. 2015, doi: 10.1109/TCAD.2015.2474396.

[9] C. Frenkel et al, ”A 0.086-mm2 12.7-pJ/SOP 64k-Synapse 256-Neuron
Online-Learning Digital Spiking Neuromorphic Processor in 28-nm
CMOS,” in IEEE Transactions on Biological Circuits and Systems, vol.
13, no. 1, pp. 145-158, Feb. 2019, doi: 10.1109/TBCAS.2018.2880425.

[10] J. Stuijt et al, ”µBrain: An Event-Driven and Fully Synthesizable
Architecture for Spiking Neural Networks,” in Frontiers in Neuroscience,
vol. 15, 2021, doi:10.3389/fnins.2021.664208

[11] S. Eissa, S. Stuijk and H. Corporaal, ”Hardware Approximation of
Exponential Decay for Spiking Neural Networks,” 2021 IEEE 3rd
International Conference on Artificial Intelligence Circuits and Systems
(AICAS), 2021, pp. 1-4, doi: 10.1109/AICAS51828.2021.9458560.

[12] M. Gupta et al, ”Mapping techniques in multicore processors: cur-
rent and future trends”. J Supercomput 77, 9308–9363 (2021).
https://doi.org/10.1007/s11227-021-03650-6

[13] A. Balaji et al,”Mapping Spiking Neural Networks to Neuromorphic
Hardware,” in IEEE Transactions on VLSI Systems, vol. 28, no. 1, pp.
76-86, Jan. 2020, doi: 10.1109/TVLSI.2019.2951493.

[14] T. Titirsha et al, ”Endurance-Aware Mapping of Spiking Neural Net-
works to Neuromorphic Hardware,” in IEEE Transactions on Parallel and
Distributed Systems, vol. 33, 2022, doi: 10.1109/TPDS.2021.3065591.

[15] A. Balaji and A. Das, ”A Framework for the Analysis of Throughput-
Constraints of SNNs on Neuromorphic Hardware,” in 2019 IEEE
Computer Society Annual Symposium on VLSI, pp. 193-196, doi:
10.1109/ISVLSI.2019.00043.

[16] E. A. Lee and D. G. Messerschmitt, ”Synchronous data flow,” in
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-1245, Sept. 1987,
doi: 10.1109/PROC.1987.13876.

[17] S. Stuijk, M. Geilen and T. Basten, ”SDF 3: SDF For Free,” Sixth
International Conference on Application of Concurrency to System
Design (ACSD’06), 2006, pp. 276-278, doi: 10.1109/ACSD.2006.23.

[18] A. Balaji et al., ”PyCARL: A PyNN Interface for Hardware-Software
Co-Simulation of Spiking Neural Network,” In 2020 International
Joint Conference on Neural Networks (IJCNN), 2020, pp. 1-10, doi:
10.1109/IJCNN48605.2020.9207142.

[19] A. Davison et al, “PyNN: a common interface for neuronal network
simulators,” Frontiers in Neuroinformatics, 2009.

[20] T. Chou et al., ”CARLsim 4: An Open Source Library for Large Scale,
Biologically Detailed SNN Simulation using Heterogeneous Clusters,”
In 2018 International Joint Conference on Neural Networks (IJCNN),
2018, pp. 1-8, doi: 10.1109/IJCNN.2018.8489326.

[21] V. Catania et al, ”Noxim: An open, extensible and cycle-accurate
network on chip simulator,” 2015 IEEE 26th International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2015, pp. 162-163, doi: 10.1109/ASAP.2015.7245728.

[22] F. Galluppi et al, ”A hierachical configuration system for a mas-
sively parallel neural hardware platform”. In Proceedings of the
9th conference on Computing Frontiers (CF ’12), p.p 183–192.
https://doi.org/10.1145/2212908.2212934

[23] Y. Ji et al, ”NEUTRAMS: Neural network transformation and co-
design under neuromorphic hardware constraints,” 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016, pp. 1-13, doi: 10.1109/MICRO.2016.7783724.

[24] S. B. Furber et al, ”The SpiNNaker Project”, in Proceedings
of the IEEE, vol. 102, no. 5, pp. 652-665, May 2014, doi:
10.1109/JPROC.2014.2304638.

[25] B. Rueckauer et al, ”NxTF: An API and Compiler for Deep Spiking
Neural Networks on Intel Loihi”. J. Emerg. Technol. Comput. Syst. 18,
3, Article 48 (July 2022), 22 pages. https://doi.org/10.1145/3501770

[26] Chit-Kwan Lin et al, ”Mapping spiking neural networks onto a manycore
neuromorphic architecture”, In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI 2018). Association for Computing Machinery, New York, NY,
USA, 78–89. https://doi.org/10.1145/3192366.3192371

[27] S. Song et al, ”A Design Flow for Mapping Spiking Neural Networks
to Many-Core Neuromorphic Hardware”. In 2021 IEEE/ACM ICCAD.
IEEE Press, 1–9. doi: 10.1109/ICCAD51958.2021.9643500

[28] A. Balaji et al, ”NeuroXplorer 1.0: An Extensible Framework for Ar-
chitectural Exploration with Spiking Neural Networks”. In International
Conference on Neuromorphic Systems 2021 (ICONS 2021), Article 10,
1–9. doi: 10.1145/3477145.3477156

[29] S. Song et al, ”DFSynthesizer: Dataflow-based Synthesis of Spik-
ing Neural Networks to Neuromorphic Hardware.”ACM Trans. Em-
bed. Comput. Syst. 21, 3, Article 27 (May 2022), 35 pages.
https://doi.org/10.1145/3479156

[30] A. Balaji et al, ”Run-time Mapping of Spiking Neural Networks to
Neuromorphic Hardware”. J. Signal Process. Syst. 92, 11 (Nov 2020),
1293–1302. https://doi.org/10.1007/s11265-020-01573-8

[31] S. Song et al. ”Compiling Spiking Neural Networks to Neuromorphic
Hardware”. In The 21st ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES ’20).
Association for Computing Machinery, New York, NY, USA, 38–50.
https://doi.org/10.1145/3372799.3394364

[32] M. L. Varshika, A. Balaji, F. Corradi, A. Das, J. Stuijt and F. Catthoor,
”Design of Many-Core Big Little µBrains for Energy-Efficient Em-
bedded Neuromorphic Computing,” 2022 Design, Automation Test
in Europe Conference Exhibition (DATE), 2022, pp. 1011-1016, doi:
10.23919/DATE54114.2022.9774613.

[33] S. Li et al, ”SNEAP: A Fast and Efficient Toolchain for Mapping
Large-Scale Spiking Neural Network onto NoC-based Neuromorphic
Platform”. In Proceedings of the 2020 on Great Lakes Symposium
on VLSI (GLSVLSI ’20). Association for Computing Machinery, New
York, NY, USA, 9–14. https://doi.org/10.1145/3386263.3406900

[34] S. Wang et al, ”A Software-Hardware Co-exploration Framework
for Optimizing Communication in Neuromorphic Processor”. In Ad-
vanced Computer Architecture (ACA) 2020. Communications in
Computer and Information Science, vol 1256. Springer, Singapore.
https://doi.org/10.1007/978-981-15-8135-9 7

[35] N. Jiang et al, ”Booksim 2.0 user’s guide”. Standford University (2010)
[36] K. Dang et al, ”MigSpike: A Migration Based Algorithms and Architec-

ture for Scalable Robust Neuromorphic Systems,” in IEEE Transactions
on Emerging Topics in Computing, vol. 10, no. 2, pp. 602-617, 1 April-
June 2022, doi: 10.1109/TETC.2021.3136028.

[37] Z. Kang et al. ”Application-specific network-on-chip design space
exploration framework for neuromorphic processor”. In 17th ACM
International Conference on Computing Frontiers (2020).

[38] R. Aligholipour et al, ”TAMA: Turn-aware Mapping and Architecture
– A Power-efficient Network-on-Chip Approach”. ACM Trans. Embed.
Comput. Syst. 20, 5, 44, 2021, 24 pages. doi: 10.1145/3462700

[39] Niket Agarwal et al, ”GARNET: A detailed on-chip network model
inside a full-system simulator”, In IEEE International Symposium on
Performance Analysis of Systems and Software, 2009. IEEE, 33–42.

[40] M. Deveci et al, ”Hypergraph partitioning for multiple communication
cost metrics: Model and methods”, J. of Parallel and Distributed Com-
puting, V. 77, 2015, p,p 69-83, doi: 10.1016/j.jpdc.2014.12.002.

[41] C. Harris et al, ”Array programming with NumPy”. Nature (2020).
[42] B. Cramer et al, ”The Heidelberg Spiking Data Sets for the Systematic

Evaluation of Spiking Neural Networks”. IEEE Transactions on Neural
Networks and Learning Systems 1–14 2020.


	Introduction
	Background
	Related work
	DNAsim
	Application
	Spike Trace
	Hardware model
	Mapper
	Simulator

	Experiments
	Discussion
	Conclusion and Future work
	References

