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Abstract— Motion patterns in newborns contain important
information. Motion patterns change upon maturation and
changes in the nature of motion may precede critical clini-
cal events such as the onset of sepsis, seizures and apneas.
However, in clinical practice, motion monitoring is still limited
to observations by caregivers. In this study, we investigated
a practical yet reliable method for motion detection using
routinely used physiological signals in the patient monitor.
Our method calculated motion measures with a continuous
wavelet transform (CWT) and a signal instability index (SII)
to detect gross-motor motion in 15 newborns using 40 hours
of physiological data with annotated videos. We compared
the performance of these measures on three signal modal-
ities (electrocardiogram ECG, chest impedance, and photo
plethysmography). In addition, we investigated whether their
combinations increased performance. The best performance
was achieved with the ECG signal with a median (interquartile
range, IQR) area under receiver operating curve (AUC) of
0.92(0.87-0.95), but differences were small as both measures had
a robust performance on all signal modalities. We then applied
the algorithm on combined measures and modalities. The full
combination outperformed all single-modal methods with a
median (IQR) AUC of 0.95(0.91-0.96) when discriminating
gross-motor motion from still. Our study demonstrates the
feasibility of gross-motor motion detection method based on
only clinically-available vital signs and that best results can be
obtained by combining measures and vital signs.

I. INTRODUCTION

Nowadays, more than 30 million newborns suffer from
low birthweight (<2500 g), prematurity or small gestational
age each year [1]. Due to physiological immaturity, these
infants are often hospitalized in a neonatal intensive care unit
(NICU) or a medium care unit (MCU) where physiological
data are continuously monitored, such as electrocardiogram
(ECG), chest impedance (CI) and photo plethysmography
(PPG). This data provides real-time vital sign information of
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heart rate, breathing rate and pulse rate. Additionally, clinical
observations of patient status (including motion patterns) are
performed as part of the routine care.

Body motion in newborns has shown to be an important
predictor for critical clinical events. For instance, research
shows that lethargy, the lack of spontaneous motion, is
predictive for onset of sepsis [2][3]. Adding motion measures
to sepsis prediction models in infants improves the model
performance [4]. Other studies report that motion bursts
are related to respiratory instability and apneic events [5].
Infants’ maturation is also associated with the occurrence
of short and long motion bouts [6]. Therefore, continuous
motion monitoring can be as important as other vital signs,
implying the need for automatic motion measurement in this
population.

A challenge for continuous motion monitoring is that in
NICU/MCU environments, the use of additional sensors is
limited due to the fragility of infants’ skin. Non-obtrusive
or contactless techniques like camera-based techniques, may
suffer from limited light conditions and visual disturbances,
e.g. motion detection would be complex when parents or
caregivers block the field of view.

Instead of using additional sensors or cameras, some
research focuses on measuring motion using motion artifacts
in routinely used sensors in clinical practice. For instance,
Zuzarte et al. [7] used a continuous wavelet transform (CWT)
based method to extract motion from PPG. In our previous
study, a signal instability index (SII) based approach was
applied on vital signs and compared to a more sensitive non-
obtrusive ballistographic signal (BSG) [8]. Both algorithms
show promising results for body motion detection.

In this study, we focus on determining motion detection
performance using existing vital sign sensors in daily clinical
practice. First, we optimized and compared the CWT-based
and the SII-based motion estimation algorithms on three
routinely used signals acquired from a patient monitor.
Second, the performance of the combined measures and
signal modalities was evaluated.

II. METHODS
A. Experimental Data

The patient population in our study consisted of 15 infants
in the MCU of the neonatal ward in the Maxima Medical
Center (MMC) in Veldhoven, the Netherlands. The median
(IQR) postmenstrual age of the infants on the day of the study
was 35.9(34.9-38.0) weeks. Video recordings were acquired
using three thermal cameras (FLIR Lepton 2.5) positioned



around the infants’ bed. In total, 40-hour video data was
recorded for 15 infants. Infants with different lying positions
were filmed when possible to evaluate the robustness of the
algorithms for all lying positions.

The signals ECG, PPG and CI (which shared sensors
with ECG) were acquired from neonatal patient monitors
(Philips IntelliVue MX 800, Germany) via a data warehouse
(Philips PIIC iX, Data Warehouse Connect, Andover, MA)
in routine patient monitoring. The waveform signals and
video recordings were sampled at the following rates: 250Hz
(ECG), 62.5Hz (CI), 125Hz (PPG), and 9fps (video).

For this study, the ethical committee of MMC provided
a waiver (MMC N19.074). Informed consent was obtained
from the infants’ parents prior to that study.

B. Annotations
The video recordings were annotated by one of the

authors, as described in a previous study on respiration
monitoring [9]. The resulting labels were used as ground
truth to evaluate motion detection performance.

The labels can be divided into three categories including
infant activity, intervention and other [9]. Infant activity was
annotated into gross-motor motion, fine-motor motion and
still. Gross-motor motion involves torso or chest motion and
fine-motor motion means motion only by head, hands, arms,
fingers or even facial expressions. Intervention consists of
parents and caregivers’ interventions. Other is made up of
someone (e.g. caregiver) in the background, infant out of bed,
camera moving and incorrect camera position. It is worth
mentioning that the labels are not exclusive, i.e. multiple la-
bels can be true simultaneously. This study focused on three
classes including gross-motor motion, fine-motor motion and
still. All videos having one of these three labels were used
in this study that focused on motion detection.

After excluding all segments for which motion could
not be determined or waveform signals were not available
(such as out of bed and part of parents and caregivers’
interventions) 84% of the dataset remained, with 21.4% of
the time labelled as still, 33.2% as fine-motor and 45.4% as
gross-motor motion.

C. Data Preprocessing
We applied a second-order band-pass Butterworth filter

with zero-phase shift correction on all raw physiological
signals (ECG, PPG and CI). The cutoff frequencies of lower
and upper bands were empirically set as 0.001 Hz and 0.40
Hz, respectively, to capture the low-frequency body motion
information (i.e. motion artifacts) and suppress the breathing
and heartbeat motion related signals.

D. Motion Measures
To estimate motion, two measures (i.e. CWT in the fre-

quency domain and SII in the time domain) were extracted
from the filtered signals. We used the characteristic that the
cardiorespiratory signal waveforms are highly periodic and
the disruptions caused by motion (i.e. motion artifacts) can
be used to quantify motion. We implemented and optimized
two measures.

The first measure is CWT [7], which was motivated by
frequency differences between body motion and cardiores-
piratory motion in a non-stationary time series. CWT was
used to convert a time series to the time-frequency domain.
CWT measures similarity between the signal and the wavelet
function ψ(t) for different scales and locations in the signal.
It is defined as [10]

T (a, b) =
1√
a

∫ ∞
−∞

x(t)ψ?(
t− b
a

)dt, (1)

Where x represents the signal, ψ? is the complex conjugate
of wavelet function ψ, a denotes scale and b is the location.
The wavelet power spectrum (scalogram) is given by

P (a, b) = |T (a, b)|2. (2)

In our application, the CWT with a Morse wavelet function
was implemented on filtered vital sign waveforms in such
a way that it suppresses cardiorespiratory periodic motion.
We set a fixed period threshold 1.5 s for heartbeat-related
signals (ECG and PPG) and 0.4 s for respiration signal (CI).
In addition to this, a window size of 6 seconds was utilized
for all waveform signals with a moving step (sampling
period) of 0.4 seconds. Only the middle 0.4 seconds range
CWT scalogram of the window was extracted in order to
reduce the edge effects produced by finite-length wavelet
transform. Next, the 0.4-second scalogram was averaged
along the temporal axis. When the period is greater than the
corresponding threshold, the maximum value of the averaged
scalogram was taken as the instantaneous motion measure to
estimate the intensity of the motion.

The second measure is SII, which is a measure for signal
instability based on kernel density estimation (KDE) [11].
KDE can be interpreted as a smoothed histogram and can be
calculated by following equation:[8]

f(x) =
1

nh

n∑
i=1

K(
x− xi
h

), (3)

where f(x) is the KDE of a signal x, K is the kernel
centered at point i and h is the bandwidth of the kernel.
This bandwidth contains information on the instability of
the signal and is extracted as the SII. n is the number of
equidistance points in signal x. In this study, we set the
number of points to be n = 100 using Gaussian kernel and
we estimated the bandwidth using 1.06σ/n1/5 where σ is
the standard deviation of the kernel, similar to our previous
implementation [8]. Similar to CWT, the motion measure
based on SII was also calculated using a 6-second moving
window with a sampling period of 0.4 seconds.

Considering that CWT detects motion from the frequency
perspective and SII is a motion indicator in the time domain,
there could be a complementary effect in their combination.
Motion measures calculated by both CWT and SII were
normalized and summed as a combined motion measure for
motion detection.



E. Combining Signals for Motion Detection

ECG and CI shared the same sensors on the infants chest
but their underlying acquisition methods and functionalities
were different. Additionally PPG sensors were clinically used
in different positions such as arms and feet. Complementary
information can be provided by combining these signals.
Therefore the normalized motion measures from different
signal modalities were added to detect motion.

F. Motion Detection Experiments and Metric

We categorized the motion data in three experiments for
binary classification.
• GrossMotorMotion-Others: we merged the fine-motor

motion into still to evaluate the ability to discriminate
the gross-motor motion from others for different mea-
sures and waveform signals.

• GrossMotorMotion-Still: We removed fine-motor mo-
tion segments from the dataset in order to discriminate
the gross-motor motion from still. It is supposed to
have better performance since it is to evaluate the
performance in a simple and ideal case.

• FineMotorMotion-Still: Additionally, we designed the
last experiment to test if we can discriminate fine-motor
motion from still.

For performance comparison of aforementioned measures
(i.e., CWT, SII) and vital sign waveforms (i.e., ECG, PPG,
CI), we evaluated the classification performance using a
threshold-independent approach by directly calculating the
area under the receiver operating curve (AUC) with motion
measures. Each sample in the motion measure served as a
threshold for classification. The threshold was not fixed, so
that we can calculate AUC values with varying thresholds.

III. RESULTS

Fig.1 illustrates an example of an annotated signal, the
corresponding ECG signal of one hour from one infant and
the two motion measures CWT and SII. It can be observed
that the gross-motor motion and still were captured by both
motion measures quite well. Fine motion however is not well
reflected in the motion measures. Particularly noteworthy
is that a few but not all of the fine-motor motion periods
introduce disruption to ECG (e.g. fine-motor motion periods
from 16:40 to 16:45 in Fig.1).

Table I shows the median(IQR) of the AUC for the 15
subjects corresponding to all three vital sign waveforms
calculated by two measures and their combination in all three
experiments. It is clear that CWT yields a better performance
than SII, particularly to discriminate gross-motor motion
from still with a medium(IQR) AUC of 0.92(0.87-0.95).
Amongst all waveform signals, the best-performing signal
for gross-motor motion detection is ECG. CI performs best
when classifying fine-motor motion and still. The combined
CWT+SII motion measures outperformed the single measure
cases.

Table II shows performance for the combined waveform
signals. The best performance in both Gross-motor-motion-
others and Gross-motor-motion-still experiments comes from

Fig. 1. (a) Annotations (GMM: Gross-motor motion involves torso or chest
motion. FMM: Fine-motor motion means motion from head, hands, arms,
fingers or face). (b) electrocardiogram (ECG). (c) Motion measure from
CWT. (d) Motion measure from SII.

TABLE I
MOTION DETECTION PERFORMANCE IN AUC FROM SINGLE SIGNAL

MODALITY USING CWT AND SII. RESULTS ARE PRESENTED IN

MEDIAN(IQR)

AUC Gross-motor
Motion-Others

Gross-motor
Motion-Still

Fine-motor
Motion-Still

CWT
ECG 0.88(0.82-0.91) 0.92(0.87-0.95) 0.64(0.57-0.71)
PPG 0.83(0.81-0.86) 0.91(0.85-0.93) 0.64(0.60-0.68)
CI 0.84(0.81-0.87) 0.91(0.87-0.93) 0.67(0.63-0.7)

SII
ECG 0.86(0.81-0.89) 0.90(0.84-0.93) 0.65(0.57-0.7)
PPG 0.82(0.81-0.86) 0.89(0.86-0.92) 0.64(0.59-0.66)
CI 0.81(0.78-0.83) 0.87(0.85-0.90) 0.63(0.60-0.68)

CWT+
SII

ECG 0.89(0.83-0.92) 0.92(0.86-0.96) 0.67(0.58-0.73)
PPG 0.83(0.81-0.89) 0.91(0.86-0.94) 0.65(0.62-0.68)
CI 0.87(0.83-0.90) 0.92(0.89-0.94) 0.70(0.65-0.72)

the full signal combination (ECG+PPG+CI). It reaches
median(IQR) AUC of 0.90(0.86-0.93) and 0.95(0.91-0.96)
respectively. Best-performing signal combination to detect
fine-motor motion from still, with a median(IQR) AUC of
0.71(0.65-0.73), is the combination of PPG and CI, while
using both CWT and SII.

IV. DISCUSSION

Our study shows that the vital sign signals are disrupted
in most gross-motor motion periods and that both motion
measures manage to capture the gross-motor motion pres-
ence in all available vital sign signals. However, there is
limited performance in detecting fine-motor motion for both
measures.

We observed that the CWT outperforms SII in all motion
detection experiments, meaning that the lower-frequency
power introduced by motion is more informative than the
regularity and amplitude change of the signal. For gross-
motor-motion detection, ECG is the best performing signal
followed by CI and next comes PPG. This is in line with our
previous study, where the variation in SII was much larger



TABLE II
MOTION DETECTION PERFORMANCE IN AUC BY COMBINING SIGNAL

MODALITIES. RESULTS ARE PRESENTED IN MEDIAN(IQR)

AUC Gross-motor
Motion-Others

Gross-motor
Motion-Still

Fine-motor
Motion-Still

ECG+
PPG

CWT 0.89(0.84-0.90) 0.93(0.88-0.95) 0.65(0.62-0.72)
SII 0.87(0.83-0.89) 0.92(0.87-0.94) 0.64(0.61-0.69)
CWT+SII 0.90(0.85-0.92) 0.94(0.88-0.96) 0.66(0.63-0.72)

ECG+
CI

CWT 0.88(0.83-0.91) 0.93(0.87-0.94) 0.68(0.62-0.71)
SII 0.85(0.81-0.88) 0.90(0.86-0.93) 0.66(0.60-0.70)
CWT+SII 0.90(0.85-0.93) 0.94(0.89-0.95) 0.70(0.63-0.74)

PPG+
CI

CWT 0.86(0.83-0.90) 0.94(0.88-0.95) 0.68(0.63-0.71)
SII 0.86(0.82-0.88) 0.92(0.88-0.93) 0.67(0.64-0.70)
CWT+SII 0.90(0.85-0.92) 0.95(0.91-0.96) 0.71(0.65-0.73)

ECG+
PPG+
CI

CWT 0.89(0.84-0.91) 0.94(0.90-0.96) 0.67(0.63-0.72)
SII 0.86(0.84-0.90) 0.93(0.88-0.94) 0.67(0.63-0.71)
CWT+SII 0.90(0.86-0.93) 0.95(0.91-0.96) 0.69(0.65-0.74)

when applied on the PPG compared to application to ECG
[8]. Unlike ECG and CI, which are placed on the infant’s
chest, PPG is typically placed on one of the feet of the infant,
it might be more prone to noise due to poor contact with
the skin. Zuzarte et al [7] applied CWT to PPG signals and
they found that motion patterns changed with maturation,
however they did not apply filter to suppress cardiorespi-
ratory motion signal and did not use the ECG and CI as
additional signals. In our study, we evaluated performance
using video acquisition, and the measured performance may
be influenced by the limited camera view that may have
impact on the accuracy of the annotations. We found that
fine-motor-motion detection based on PPG-signal detection
performed worse than CI-based detection, even though the
collected raw CI signals suffered from signal truncation in
some periods leading to poorer signal quality compared with
ECG. Combining PPG and CI gave best performance on
fine-motor-motion detection, suggesting that it is useful to
combine available signals in motion detection studies.

It is not surprising to see the poorer performance in fine-
motor-motion detection, because the positions of the sensors
are not always sensitive to fine-motor motion from face, head
or arms. Improvement of fine-motor motion detection should
be sought in incorporating other promising video and audio
processing technologies [9][12][13] or using motion sensitive
mattresses [8][14] in future work.

The performance improvement introduced by combined
measures also can be seen clearly in both tables. This
indicates that motion information acquired from frequency
domain and time domain has a complementary effect on mo-
tion detection. Besides, the best performance provided by full
signal combination in gross-motor motion detection demon-
strates that sensors with different functionalities and placing
positions can also provide complementary information for
motion detection. Generally, all waveforms perform well
for gross-motor motion detection, and the signal with best
signal quality can be chosen in clinical application, though
– when available- using a combination of signals would be
preferred for gross-motor-motion detection. The users can

flexibly choose the approximate threshold to determine the
specificity and sensitivity based on the applications.

V. CONCLUSIONS

This study compared body motion detection performance
for CWT and SII using multiple vital sign waveforms and
evaluated the performance based on video annotations as
ground truth. Regarding gross-motor motion detection, our
findings suggest that using the combined CWT+SII measure
outperformed the cases of using a single measure when all
vital signs are available. The combined measure also worked
better than the single measure when less sensing modalities
are involved, showing that it is more resilient when some of
the signal sources become less reliable or disconnected when
detecting the body motion of preterm infants. Our study
demonstrates the feasibility of gross-motor motion detection
based on clinically-available vital signs.
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