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Abstract

Signal processing and multimedia applications are often implemented on resource constrained em-
bedded systems. It is therefore important to find implementations that use as little resources as possible.
These applications are frequently specified as synchronous dataflow graphs. Communication between ac-
tors of these graphs requires storage capacity. In this paper, we present an exact method to determine the
minimum storage capacity required to execute the graph using model-checking techniques. This can be
done for different measures of storage capacity. The problem is known to be NP-complete and because of
this, existing buffer minimisation techniques are heuristics and hence not exact. Modern model-checking
tools are quite efficient and they have been successfully applied to different scheduling-related problems.
We study the feasibility of this approach with a number of examples.

1 Introduction

Problem Statement Synchronous Dataflow Graphs [10] are representations of signal processing applica-
tions or multimedia applications that allow for powerful analysis and synthesis techniques. The techniques
can be used to quickly and automatically generate efficient implementations of signal processing applica-
tions. Since these implementations are typically used for embedded systems or systems on chip, resource
usage (compute power, energy, and so forth) is of eminent importance. Memory requirements should be
kept as small as possible. Part of the memory requirements are in the data that needs to be stored in the
channels connecting the computational components. Traditionally, SDFs have been mainly used for synthe-
sis of sequential DSP programs in which case both code and data memory are important [5, 10, 12]. SDFs
are also being used to analyse or design multiprocessor systems on a chip, possibly based on network-on-
chip communication infrastructures [14]. The aim of such systems is to realise a predictable performance.
In this case, the length of the schedule does not contribute to the code size, the elements of the graph are
mapped on a parallel architecture. Scheduling is on-line and data driven. Minimising buffer capacity how-
ever is very important to reduce cost and improve energy efficiency. In this paper, we study the problem
of minimising buffer storage capacity and we do this by using techniques and tools from the domain of
model-checking.

Some examples of synchronous dataflow graphs are depicted in Figures 1, 4, 5 and 6 (taken from [5]), 7
(from [1]) and 8. The nodes of these graphs are called actors; they represent functions that are computed by
reading data items from their input ports, and writing the results of the computation as tokens on the output
ports. An essential property of synchronous dataflow graphs is that every time an actor fires (performs a
computation), it consumes the same amount of tokens from its input ports and produces the same amount
of tokens on its output ports. These amounts are called the rates of the ports. The edges in these graphs
represent data that is communicated from one actor to another. To allow actors to execute asynchronously,
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some storage capacity is required for these channels to store data that is produced by one actor, but has not
yet been consumed by the next.

If the storage capacity in the channels that connect output ports to input ports is insufficient, an actor
may not be able to fire, which in turn may lead to a deadlock situation in which the graph can no longer
perform its computations. The buffer minimisation problem for SDF graphs as we consider it in this paper
is to find the smallest size storage capacity for which the graph can be executed without the risk of a
deadlock and to determine a schedule that realises a continuing, infinite execution within these bounds.
Note that a further increase in storage capacity could increase the throughput of the dataflow graph [8],
but studying this trade-off is outside of the scope of this paper. The schedule itself is not always explicitly
required; a data driven execution of the graph with the computed storage capacities will realise the correct
schedule automatically. Variations of the specific measure of required storage capacity can be used [12].
One option would be to look at every instant of the schedule and determine the amount of memory that is
being used by all the channels together. For the whole schedule, the maximum of the sum of used storage
is required. This would be appropriate if memory can be shared between buffers. The life times of data
items in the memory can be taken into account (this approach is taken in [12, 13]). Another variation
would be to consider the buffers between actors as being mapped onto separate storage elements, so empty
space in one cannot be used for the other. Then, the maximum amounts over the entire schedule need to
be determined per buffer, and the total amount of memory required is obtained by adding them up. This
approach is proposed in [1, 5]. Our approach allows modelling of different measures of storage, including
both mentioned above as well as hybrid forms of these measures.

The buffer minimisation problem described above is known to be NP-complete [4]. However, the
graphs that we want to analyse are often moderately sized. Advances in model-checking techniques have
improved their efficiency and they have been successfully applied to solve different NP-complete (and
even worse) scheduling problems [2, 3, 16]. In [3], for instance, the Times tool uses a timed-automata
based model-checker for solving real-time scheduling problems. [16] uses model-checking to determine
low power schedules. These applications have inspired us to try to apply them to the buffer minimisation
problem as well.

The contribution of this paper is a technique for reducing the SDF buffer minimisation problem to
a model-checking problem on the state-space of the graph. The technique is shown to be amenable to
different measures of buffer storage capacity and provides an exact solution to the minimisation problem.
The principle is proved on a number of SDF graphs.

1.1 Related Work
Buffer minimisation Minimisation of buffer requirements has been studied before by several authors.
The proof of NP-completeness is given in [4]. Traditionally, for DSP software synthesis, a so-called single
appearance schedule (SAS) is used to minimise code size. In a SAS, the functional code of the actors is
included in a nested loop structure, such that each piece of code occurs only once. Then, amongst the
different ways of defining the nested loop structure, the one with the least buffer requirements is chosen.
Heuristics for finding such SAS schedules can be found in [5]. The SAS constraint is somewhat relaxed
in [17], allowing for a reduction in buffer memory size. In the standard approach, it is assumed that every
buffer has its own private part of the memory. Looking at the life times of data elements, one may conclude
that it can be advantageous to share the same piece of memory between buffers [12, 13, 16].

In a parallel architecture, where the length of the schedule does not lead to extra code size, further
reductions are possible. This is for instance the case if we use SDFs for modelling networks-on-chip
[14], parallel implementations on FPGA [1] or use a data-driven form of scheduling such as static order
scheduling. This context is what this paper is concerned with and this approach is also taken in [11,
1]. [1] and [11] present different heuristic algorithms to determine small but sufficient buffer sizes. [7]
presents an approach for buffer minimisation for on-line EDF scheduled dataflow graphs and demonstrates
that on-line scheduling can cause large memory gains over off-line scheduling techniques. The method
works on acyclic graphs and does not necessarily give optimal results. In contrast, this paper investigates
an exact method to solve the same problem and investigates its feasibility in the light of the problem’s
complexity. Moreover, our method can deal with different measures of buffer capacity. [8] focusses on
buffer minimisation for rate-optimal schedules. Only those schedules that achieve the maximal throughput
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2 Operational Semantics of SDF ESR-2005-01

are considered as potential candidates. The obtained buffer sizes are not always the smallest possible. The
problem is solved by constructing an (integer) linear programming formulation of the problem and using
linear programming algorithms for efficiency.

[18] presents a minimisation method giving close to minimum results for separate memories per buffer.
The complexity of the algorithm is exponential and it yields exact minimum buffer requirements only for a
subclass of networks.

Model-checking Techniques for Scheduling Problems Besides function hardware or protocol verifica-
tion (such as [15]), model-checking has been used in the past for many kinds of scheduling and scheduling-
related problems [3, 2, 16]. It has often shown that is can be competitive compared to existing scheduling
heuristics and often allows for heuristics, and suboptimal results as well, in case the problems are too large
to be dealt with in an exact manner.

1.2 Paper Overview
The remaining parts of the paper are structured as follows. Section 2 introduces an operational semantics
of SDF. Section 3 defines scheduling of the SDF graphs and computation of the corresponding buffer re-
quirements. The reduction of the buffer minimisation problem to a model-checking problem is discussed in
Section 4. Section 5 deals with other measures of storage capacity. Experimental support for the approach
can be found in Section 6. Section 7 discusses complexity issues of the problem and the approach of this
paper and Section 8 concludes.

2 Operational Semantics of SDF
In this section, we first formalise the behaviour of an SDF graph using a transition system. Since, in this
paper, we are only interested in the amount of data stored in channels, we will abstract from the actual data
that is being communicated and data transformations that are being performed by the actors. A similar
approach, which does include data, is suggested in [6]. We will initially assume that all channels have
unbounded storage capacity.

Let IN∞ = IN∪ {∞} be the set of natural numbers, extended with infinity (∞). To measure quantities
related to channels, such as the number of tokens present in or read from or written to channels, or the
capacities of channels, we define the following structure.

Definition 1 (CHANNEL QUANTITY) A channel quantity on a set C of channels is a mapping C → IN∞.
If δ1 is a channel quantity on C1, δ2 is a channel quantity on C2, C1 ⊆ C2 and for every c ∈ C1,
δ1(c) ≤ δ2(c), we write δ1 � δ2.

The set of channel quantities with the relation � forms a bounded complete partial order (cpo). A channel
quantity δ is finite if for every channel c, δ(c) < ∞ (i.e. if it is a finite element of the cpo). If δ1 and
δ2 are finite channel quantities on C and δ1 � δ2, then δ2 − δ1 denotes the channel quantity δ such that
δ(c) = δ2(c)− δ1(c) for all c ∈ C. Similarly, δ1 + δ2 denotes the channel quantity obtained by adding the
individual quantities, (δ1 + δ2)(c) = δ1(c) + δ2(c).

Definition 2 (PORT) We assume a set Ports of ports and with every p ∈ Ports , we associate a rate
Rate(p) ∈ IN.

Definition 3 (ACTOR) An actor a = (In,Out) consists of a set In ⊆ Ports (denoted by In(a)) of input
ports and a set Out ⊆ Ports (denoted by Out(a)) of output ports.

The execution of an actor is defined by discrete firings. When an actor fires, it consumes Rate(p) ∈ IN
tokens on every input port p ∈ In(a) and produces Rate(p) ∈ IN tokens on every output port p ∈ Out(a).
Such a firing can be described by a channel quantity Rd(a) = {(p,Rate(p)) | p ∈ In(a)} describing the
tokens that are read and Wr(a) = {(p,Rate(p)) | p ∈ Out(a)} denoting the tokens that are written.
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Figure 1: Example SDF graph
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Figure 2: State space of the example SDF graph

Definition 4 (SYNCHRONOUS DATAFLOW GRAPH) An SDF graph is a tuple (A,C) consisting of a set A

of actors and a set C of channels. Every channel c ∈ C is connected to its source, one output port Src(c)
of an actor a ∈ A, and to its destination, one input port Dst(c) of an actor a ∈ A. Every port is connected
to at most one channel.

An SDF graph may have input and output ports in the form of ports of its actors that are not connected
to channels.

Definition 5 (CONFIGURATION) A configuration of an SDF graph (A,C) is a channel quantity γ on C,
that associates with every channel c ∈ C, the number of tokens present in that channel in that configuration.

Definition 6 (FIRING) Given a configuration γ of SDF graph (A,C). Actor a ∈ A can fire if Rd(a) � γ,
resulting in the configuration γ − Rd(a) + Wr(a). This is denoted as γ → γ − Rd(a) + Wr(a).

Definition 7 (SDF STATE SPACE) Firings define a relation on graph configurations. With an SDF graph
(A,C), we associate the state space (Γ,→), where Γ is the set of configurations of C.

Example In Figure 1, the SDF graph ({a, b, c}, {α, β}) (consisting of actors a, b and c and channels α

and β) is shown. a = (∅, {p}), b = ({q}, {r}) and c = ({s}, ∅). Src(α) = p, Rate(p) = 2, Dst(α) = q,
Rate(q) = 3, Src(β) = r, Rate(r) = 1, Dst(β) = s, Rate(s) = 2. From the initial configuration
{(α, 0), (β, 0)} with empty buffers, a firing of actor a changes the configuration to {(α, 2), (β, 0)} having
2 tokens on channel α. Actor b cannot fire yet, since it requires 3 input tokens. A second firing of actor a

changes the configuration to {(α, 4), (β, 0)}. Now b is enabled and when it fires, the configuration becomes
{(α, 1), (β, 1)}. Similarly, as illustrated by the bold transitions in Figure 2 that shows the state space of the
graph, subsequent firings of actors a, b and c return the graph to the initial configuration.

3 Scheduling
Every path in the state space of an SDF graph constitutes a schedule of that graph.

Definition 8 (SCHEDULE) Let (A,C) be an SDF graph. A schedule of (A,C) is a finite or infinite se-
quence σ = γ0γ1γ2 . . . of channel quantities on C such that for all 0 ≤ i < |σ|, γi → γi+1.
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Note that although the schedule contains only the channel configurations, from such a sequence, one can
derive the corresponding sequence of actor firings. We assume that the initial token distribution is given.
We use σ1 · σ2 to denote the concatenation of schedules σ1 and σ2 and σ∞ to denote the infinite (periodic)
repetition of finite schedule σ. We also use σ(i) to denote γi.

Definition 9 (PERIODIC SCHEDULE) An infinite schedule σ is called periodic iff it is of the form σ =
σpre · σ∞

per
, consisting of a finite prefix σpre followed by periodic repetition of schedule σper .

For software synthesis, a periodic schedule is sought, so that it can be converted into an infinite loop to
implement the graph. Given a schedule, we can determine the amount of buffer storage that is required,
being the least upper bound of the channel quantities along the schedule. This is the maximum amount of
storage used, or ∞ if such a maximum does not exist.

Definition 10 (CHANNEL BOUNDS) Let σ be a schedule of SDF graph (A,C). The required channel
bounds, are given by

⊔
{σ(i) | 0 ≤ i < |σ|}.

⊔
X denotes the least upper bound of the set X w.r.t. �.

Theorem 1 There exists a schedule σ for SDF graph (A,C), with finite channel bounds β, iff there exists
a periodic schedule with channel bounds β.

PROOF Let σ be a non periodic schedule with channel bounds β. Since the number of configurations within bounds
β is finite, there is at least one configuration γ that appears infinitely often in the schedule. Thus, the schedule has the
form σpre · γ · σ1 · γ · σ2. Because the configurations are memory-less, σpre · γ · (σ1 · γ)∞ is a periodic schedule
within bounds β. �

According to Theorem 1, it is sufficient to test if the graph with bounds allows a periodic schedule to
determine whether it allows any schedule at all. In the next section, we show how a model-checking tool
can be used to determine if a periodic schedule exist for given channel bounds.

4 Model-checking Approach
To apply the model-checking approach, we encode the operational semantics of SDF in the model-checker
SPIN [9]. Additionally, we encode the desired channel bound constraints. One typical approach to solve
scheduling problems with a model-checking tool is to formulate the logical property that an execution
satisfying all constraints does not exist ([2, 3]). Hence, we challenge SPIN to disprove our claim that
an execution within given channel bounds does not exist. If SPIN proves us wrong, it produces a counter
example. This is an execution (a schedule) of the system that satisfies all constraints. The counter examples
it finds are always periodic. From Theorem 1, we know that for bounded-channel constraints, if such a
schedule does not exist, then no schedule exists. Iteratively, we can now vary the memory limit, applying
a binary search (hence, few iterations will be required) for the lowest amount that allows a schedule to
be constructed. One can test whether such a bound exists using the balance equations [10]. An upper
bound on the channel bounds can be derived from the balance equations, a tighter one from an existing
sub-optimal buffer minimisation method. This makes that the iterative approach described above always
ends. (At least in principle. In practice, memory and time requirements of the algorithm may prevent this.)
We continue to make the approach sketched above precise. To this end, we continue to define the actual
state-space that will be computed by the model-checker. This is the state space of the SDG graph extended
with information on the channel bounds required up to that point.

Let (Γ,→) be the state space of the SDF graph. Define the model-checking state space (Γ × Γ,⇒) as
follows. The states are elements of Γ×Γ where the first channel quantity is the current configuration of the
graph and the second encodes the storage bounds required for the schedule so far. Then (γ, b) ⇒ (γ ′, b′) iff
γ → γ′ and b′ = b t γ′, b′ is the least upper bound of b and the new configuration γ and hence sufficiently
large for the schedule including the new configuration γ ′.

It is easy to see that in the model-checking state space, the second channel quantity computes the
required channel bounds. For a finite schedule, the bounds in the last configuration are the required channel
bounds; for infinite schedules, the bounds converge to the required bounds, or in technical terms, they form
a chain of bounds with as least upper bound the required channel bounds.
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Lemma 1 Let σ = γ0γ1 . . . be a schedule of (Γ,→). Then there exists a path τ = (γ0, b0)(γ1, b1) . . . of
(Γ × Γ,⇒) with b0 = γ0 in the model-checking state space, such that {bi | 0 ≤ i < |σ|} is a chain of
channel bounds and

⊔
0≤i<|σ| bi =

⊔
0≤i<|σ| γi. In particular, if σ is finite, then b|σ|−1 =

⊔
0≤i<|σ| γi.

PROOF Straightforward. �

Note that from this lemma it follows that the model-checking state space computes the channel bounds
explicitly.

Theorem 2 The state space (Γ × Γ,⇒) has a periodic schedule with length n ∈ IN iff the state space
(Γ,→) has a periodic schedule with length n.

PROOF It is easy to see that a periodic schedule of (Γ× Γ,⇒) can be transformed into a periodic schedule of (Γ,→)
by removing the additional information on the bounds. We continue with the proof of the other direction. Let σ =
σpreσ

∞

per be a periodic schedule of (Γ,→). We ‘simulate’ the prefix σpreσper on (Γ×Γ,⇒) starting from (σ(0), σ(0))
which gives the schedule τpre ending in (γ, b). Let σper = γ0γ1 . . . γn−1. γn−1 → γ0 and hence (γn−1, b) ⇒ (γ0, b)
since γi � b for all 0 ≤ i < n by Lemma 1. Similarly (γ0, b) ⇒ (γ1, b) and so forth for σper with bound b leading to
(γn−1, b) = (γ, b) completing the cycle τper of length n. Hence, τpreτ

∞

per is a periodic schedule of (Γ × Γ,⇒) with
length n. �

We now show how the model-checking state space can be encoded in PROMELA, the modelling lan-
guage of SPIN. The model corresponding to the example of Figure 1 is shown in Figure 3. Every SDF
graph model uses a global variable ch, an array of integers, to encode the number of tokens in the indi-
vidual channels in the current configuration. The array has two elements representing the two channels α

(ch[0]) and β (ch[1]). Another global array sz is used to remember the maximum number of tokens
that were stored in a channel at any given moment of the schedule. Thus, it encodes the bound b ∈ Γ of
a state (γ, b) in the model-checking state space. The #define directives at the top facilitate the mod-
elling of actors by translating synchronisation, production and consumption of tokens into operations on
ch and sz. PRODUCE(c,n) (produce n tokens on channel c) for instance is implemented as adding n to
the appropriate element of the channel array and after that update the bounds if necessary (UPDATE(c)).
WAIT(c,n) is used as a condition; the execution of the actor is blocked until channel c contains sufficient
(n) token for the immediately following CONSUME operation. The atomic{...} clauses ensure that the
statements inside are executed together as one, single transition. The proctype definitions define the
behaviour of the individual actors. do :: ... od specifies an infinite loop. Inside the loop are the WAIT,
CONSUME and PRODUCE operations appropriate for the actor. Finally, the init clause tells SPIN that of
every type of actor, one instance should be run.

The verification challenge can be formulated as: “Every schedule will eventually require a storage
capacity larger than b.”. The PROMELA specification of the corresponding formula in Linear Temporal
Logic is shown in the box in Figure 3. It states that eventually (<>) the sum of the memories needed by
the individual channels (SUM=sz[0]+sz[1]) will exceed the imposed bound BOUND=6. If this claim is
false, SPIN will provide a counter example, which is a schedule within the required storage bounds.

5 Other measures of storage
We have seen that depending on the memory organisation of the system described by the SDF graph,
different measures of storage may be appropriate. In this section, we generalise the measure of storage so
as to include both variations described earlier, as well as hybrid situations.

Our model of the memory organisation of the buffers is that the set of channels of the SDF graph can
be partitioned into sets of channels that each can use a shared memory for their storage. Across these parti-
tions, channels cannot share data. In a network-on-chip architecture for instance, communication channels
within a local tile could be mapped on a single memory, while channels across tiles reside in separate mem-
ories. Note that this model includes both cases described earlier. The finest possible partitioning assumes a
separate memory for every channel, while the coarsest partitioning uses a single memory for all channels.

Let P be a partitioning of the channels C of SDF graph (A,C). A channel bound is then a structure
that contains the required memory size for every set of channels in P: P → IN∞. The bound now is an
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#define UPDATE(c) if :: ch[c]>sz[c] -> sz[c] = ch[c] :: else fi
#define PRODUCE(c,n) ch[c] = ch[c] + n; UPDATE(c)
#define CONSUME(c,n) ch[c] = ch[c] - n
#define WAIT(c,n) ch[c]>=n

int ch[2]; int sz[2];

proctype Actor_a(){
do
:: atomic{

PRODUCE(0,2);}
od

}
proctype Actor_b(){

do
:: atomic{

WAIT(0,3) ->
CONSUME(0,3);
PRODUCE(1,1)}

od
}
proctype Actor_c(){

do
:: atomic{

WAIT(1,2) ->
CONSUME(1,2);}

od
}
init{

atomic{
run Actor_a();
run Actor_b();
run Actor_c();}

}

#define BOUND 6
#define SUM sz[0]+sz[1]
<> SUM>BOUND

Figure 3: PROMELA code of an SDF graph

upper bound on the memory used by the channels of one partition combined, at any given point in time.
Given a configuration γ of the SDF graph, its memory requirements can be computed as follows:

∑
P γ

which denotes {(π, s) | π ∈ P, s =
∑

c∈π
γ(c)}. The memory requirements are expressed in terms of

token sizes. If the tokens in different channels have different sizes, an additional weight factor wc (equal
to the token size) can be introduced for every channel c ∈ C: {(π, s) | π ∈ P, s =

∑
c∈π

wc · γ(c)}. It is
not hard to verify that this generalised measure of storage capacity can be used with the method described
in this paper, in essentially the same way as the simpler one used to explain the procedure.

6 Experiments

We know that we cannot hope that our algorithm will always quickly produce an answer to the problem.
The state-space of a dataflow graph can be exponential in its size. We have performed a few experiments
and see how the approach performs in practice, for the two types of storage requirements, separate mem-
ories per channel (a) and shared memory for all channels (b). From [1, 11], we know that a lower bound
on the memory on an edge with production rate p, consumption rate c and initial number of tokens t can
be computed as p + c − gcd(p, c) + t mod gcd(p, c). This lower bound can be used to initialise the size
to a value closer to the final channel sizes, which speeds up the model-checking analysis. We have done
the experiments starting from 0 size channels as well as starting from these lower bounds. We have used
the simple example of Figure 1, the example SDF graphs of [5], depicted in Figures 4, 5 and 6, a graph
from [1] (Figure 7); a constructed graph for which [1] does not compute the optimal bounds (Figure 8),
the INMARSAT mobile receiver of [7] (the main strongly connected component only, see Section 7) and a
model of an H.263 decoder.

Table 1 shows the results for storage requirements of type (a), with (low.bounds) and without (zero)
lower bounds, and type (b). The minimum total buffer capacity is shown, as well as the sizes of the state
spaces examined by the model-checker to prove the feasibility of the given bounds (St. space sched.) and
the one to demonstrate the infeasibility of smaller bounds, the minimum bounds minus one (St. space
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Figure 4: Sample rate conversion ([5])
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Figure 5: Modem application ([5])

infeas.) respectively. We have also measured computation time of the results and the amount of memory
that was used on a 1.5GHz Pentium IV PC. Computation time is directly related to the size of the state
space and typically smaller than 1s in the small cases. Showing infeasibility for the sample rate conversion
for instance took 3.8s and the modem 117.6s. Similarly, memory usage was very low, except for the same
cases: 16Mb for infeasibility of the sample rate conversion and 419Mb for infeasibility of the modem, 2Gb
was used for the cases that failed to produce an answer.

Note that the experiments with adding lower bounds show that for separate memories many examples
do not require more memory than the lower bound! We also found that the feasibility proofs where often
given very quickly, while the infeasibility proofs failed to complete. Apparently, a valid schedule can be
found in many places in the state space. For proving absence of a schedule, the entire state-space needs to
be searched.

The INMARSAT model has large up- and down-sampling coefficients (240 to 1). The same is true
for the H.263 decode (2376 to 1, but for fewer channels). Interleaving the many individual read and write
actions blows up the state space.

7 Complexity Issues
The buffer minimisation problem is NP-complete [4]. Efficient heuristic algorithms exist. Model-checking
is linear in the size of the state space and PSPACE in the length of the formula to be checked. In our
method, the length of the formula is constant, independent of the size of the graph. The size of the state
space however, can be exponential in the size of the SDF graph.

We have explored the possibilities of using model-checking techniques for buffer minimisation, but
we feel that there is still some room left for improvements in efficiency of the approach. Dataflow graphs
are deterministic and the state space could be reduced by exploiting this determinacy using the partial
order reduction techniques. Moreover, it might be possible to apply some of the non-exact techniques or
heuristics in the model-checking approach as well.

From [1, 11], we know a lower bound on the memory on an edge with production rate p, consumption
rate c and initial number of tokens t. We have used this lower bound to initialise the size to a value closer to
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Figure 6: Bipartite graph ([5])

Figure 7: Example SDF graph ([1])

the final channel sizes, speeding up the model-checking analysis. These lower bounds are in fact sufficient
for edges that are not on a cycle through the SDF graph (when the edges are interpreted as undirected edges,
so two parallel branches in the graph may constitute a cycle). This allows one to break up an SDF graph
into its strongly connected components and perform the analysis on the components individually (as we did
for the INMARSAT mobile receiver). Then, for the channels between the strongly connected components,
the computed lower bounds suffice. From this, it follows directly, for instance, that for the graph of Figure
1, the lower bounds are sufficient. The same holds for the graph of Figure 4. An upper bound for the total
amount of memory required for all channels together can be derived from existing, heuristic buffer sizing
algorithms such as [1]. In many of the SDF graphs we found, there is little or no space between these
bounds and in those cases the minimal bounds are relatively easily proved.

8 Conclusions
In this paper, we have presented a method to obtain the exact minimum memory requirements for deadlock-
free execution of an SDF graph. It differs from existing minimisation methods because these revert to
heuristics to deal with the complexity of the problem. Different measures of storage are considered. Exper-
iments on some well-known examples of SDF graphs show encouraging results, although further improve-
ments are necessary. Future work includes a further analysis of the scalability of the method for larger
graphs, how the approach can be further optimised by taking into account additional properties of the prob-
lem domain, such as the determinacy of dataflow models. Another important direction for future work is
the extension of the model with timing information, so that the throughput vs. memory tradeoff can be
explored using these kind of models. Since the behaviour of the SDF graph is modelled very operationally
and straightforwardly in PROMELA, it is fairly easy to add additional constraints or implementation details.
This way it might for instance be possible to encode the constraint to single appearance schedules. Addi-
tionally, the framework presented in this paper is in principle not restricted to SDF. It would be interesting
to investigate if the approach could be made to work for instance for some BDF graphs. (That problem is
undecidable in general, but that does not exclude that it might work for many BDF graphs in practice.)
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Figure 8: Example graph with optimum between lower bound and upper bound of [1]

Table 1: Experimental results
Simple Bipartite Samp.Rate Modem Ex. [1] Fig. 8 Inmarsat [7] H.263

Stor. req. (a) 6 28 32 38 83 42 1508 7133
Lower bound 6 28 32 38 49 39 1508 7133

St. space sched., zero 13 129 4281 447 1204 242696 > 11.2 · 106 9514
St. space infeas., zero 9 48 193441 2.03 · 106 7751 192099 > 11.2 · 106

> 22.3 · 106

St. space sched., low. bounds 11 88 4127 210 497 1708 2862 4758
St. space infeas., low. bounds 2 2 2 2 2441 8602 2 2

Stor. req. (b) 4 26 16 13 67 18 732 4754
State space sched. 9 124 755 1231 366 156 180369 9511
State space infeas. 4 150 3542 853 303 140 > 17.9 · 106

5.7 · 106
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