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Abstract Dataflow models have proven their usefulness for specifying signal processing and streaming applica-
tions. However, traditional dataflow models such as Synchronous Dataflow (SDF) and Kahn Process Networks
(KPN) either lack the capability of expressing the dynamic aspects of modern streaming applications or do not
support desirable analysis techniques. The dynamism often originates from various modes of operation in which
resource requirements differ considerably. Such scenarios cover for example variations in the amount of data to
process or variations in the functionality to perform. Neglecting dynamism may lead to unrealistic performance
analysis results and therefore to dimensioning the system inefficiently. To enable obtaining more realistic per-
formance results than with traditional design-time analysable dataflow models, a scenario-aware generalisation
of SDF was recently introduced. Next to representing the data processing part of an application, this Scenario-
Aware Dataflow model (SADF) also captures the control part responsible for determining the various scenarios
in which the data processing part may operate. Although improving the expressive power of traditional design-
time analysable dataflow models with the possibility to express (more forms of) dynamism, design-time analysis
of correctness and performance remains possible. This report presents SADF in detail, including all features for
specifying complex correlations between scenario occurrences. The potential of using SADF for modelling and
analysing modern streaming applications is illustrated for an MPEG-4 SP decoder and an MP3 decoder.

Keywords Dataflow· Synchronous Dataflow· Dynamism· Verification· Performance Analysis

1 Introduction

Streaming applications are often specified as a set of tasks, actors or processes with data and control depen-
dencies to allow exploiting the parallel and pipelined execution capabilities of hardware platforms. Modern
streaming applications are becoming increasingly dynamic, which originates from variations in the functional-
ity to perform and in the amount and/or complexity of the data to process. Such dynamism may lead to large
variations in the amount of resources required to execute an application. Various dataflow models have been
proposed to specify and analyse streaming applications. They can be characterised by their expressive power and
the availability of techniques to analyse correctness and performance properties like absence of deadlock and
throughput. Analysing such properties is essential for designing effective and efficient streaming systems. Kahn
Process Networks (KPN) [21] can capture many dynamic aspects of modern streaming systems, but evaluating
their correctness and performance is in general undecidable. On the other hand, Synchronous Dataflow (SDF)
[24] graphs (also known as Weighted Marked Graphs or T-Systems in Petri Net theory) allow analysis of many
correctness and performance properties but lack support for expressing any form of dynamism. Cyclo-Static
Dataflow (CSDF) [5] is a design-time analysable extension of SDF that can express a fixed periodic pattern in
varying resource requirements. When such variations are not according to a fixed periodic pattern but probabilis-
tic information is available on the occurrence of the various situations, the recently introducedScenario-Aware
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the Embedded Systems Institute. The address for both institutes is: P.O. Box. 513, 5600 MB Eindhoven, The Netherlands.
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Dataflow (SADF) model [37] can be used. It captures the dynamism in modern streaming applications using
scenarios. They denote distinct modes of operation (like processing I, P or B frames in MPEG-4), in which a
process can have substantially different resource requirements [16]. Although improving the expressive power
compared to SDF and CSDF, analysis of correctness and performance properties remains possible at design-time.

The advantage of using SADF instead of SDF or CSDF is the potential of obtaining more realistic perfor-
mance analysis results. We illustrate the impact of dynamism on the performance with an MPEG-4 decoder for
the Simple Profile. Such MPEG-4 SP decoder supports video streams consisting of I and P frames only. These
frames include a number of macro blocks, each requiring operations like Variable Length Decoding (VLD),
Inverse Discrete Cosine Transformation (IDCT), Motion Compensation (MC) and Reconstruction (RC) of the
resulting image. When processing an I frame, all macro blocks must be decoded using VLD and IDCT, while the
resulting image is reconstructed by RC straightforwardly. Assuming an image size of176 × 144 pixels (QCIF),
there are99 macro blocks to decode for I frames. There are however no motion vectors to be taken into account
for I frames. Motion vectors are only an important input to MC in case of processing a P frame that involves
determining the new position of macro blocks from the previous frame. In such cases, the resulting image is
corrected with the pixel data contained in freshly decoded macro blocks. The number of motion vectors and the
number of macro blocks to decode may differ for different P frames and ranges from0 to 99. The case of0
motion vectors reflects decoding still video, for which VLD and IDCT must not be performed while MC simply
copies the previously decoded frame. The MPEG-4 SP decoder clearly shows a lot of dynamism in the function-
ality to perform and in the amount of data to communicate between the operations. These aspects imply high
variations in resource requirements. The order in which the different situations occur strongly depends on the
video content and is therefore unlikely to be according to a fixed periodic pattern.

SDF allows constructing conservative performance models by considering the worst-case situation of all
possible variations that may occur. For the MPEG-4 SP decoder, this boils down to considering the worst-case
amount of macro blocks to process and communicate between processes and the worst-case execution times for
each process that can ever occur. When computing the throughput of the MPEG-4 SP decoder based on an SDF
graph capturing these worst-case circumstances [14], a mere0.252525 frames are decoded per1000 clock cycles
on an ARM7TDMI processor. The result basically reflects the throughput achieved when only the worst-case
circumstances occur. In reality, the MPEG-4 SP decoder does not always operate in the situation with worst-case
resource requirements (actually, it never operates in the captured situation as shown in Section 2). To predict the
throughput realised in practice, it is necessary to take the variations in resource requirements into account. Since
these variations do not occur according to a fixed periodic pattern, CSDF is not a suitable dataflow model. On
the other hand, SADF allows constructing a performance model that captures all dynamism in the MPEG-4 SP
decoder to reveal that the throughput for worst-case execution times is0.425571 frames per1000 clock cycles
(assuming the same scheduling policy and throughput definition as in the previous case of using SDF).

The MPEG-4 SP decoder example showed how the dynamism of an application depends only on one aspect,
namely the frame type. In other applications, there may exist different aspects that determine the mode in which
they operate. The basic SADF model as defined in [37] allows capturing such cases as long as no correlation
exists between the various aspects. To illustrate that this is not always realistic, we consider the example of MP3
decoding. MP3 audio streams consist of frames of three different types (Long, Short and Mixed) [33]. Each of
these frame types consists of different numbers and orderings of two block types (Long and Short). Long frames
consist of 32 Long blocks, Short frames include 96 Short blocks and Mixed frames are composed of 2 Long
blocks succeeded by 90 Short blocks. The frame type and block type together determine the operation mode.
Assuming that the frame types and specific block type sequences are not correlated leads to unrealistic analysis
results since it allows the occurrence of any of the three possible block type sequences for all frame types.
The occurrences of the block types is however a refinement of the frame type occurrences. This observation
matches intuitively with the structure of the application’s source code. We use the termhierarchical controlto
express this kind of correlations between different aspects determining the scenario. It reflects that the frame
type determines the block type orderings, which then give the scenario in which processes operate. Next to
introducing hierarchical control, this report relaxes some technical restrictions of [37]. In addition, we discuss
key properties of the transition system defined by the formal semantics of an SADF graph and illustrate how SDF
and CSDF graphs can be expressed in SADF. Finally, we elaborate on the SADF graph modelling the MPEG-4
SP decoder that is only superficially described in [37], while modelling the MP3 decoder is a new case study.

The remainder of this report is organised as follows. The next Section informally introduces SADF by ex-
plaining how the MPEG-4 SP decoder and MP3 decoder can be modelled. It also illustrates how the CSDF
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Fig. 1 Modelling the MPEG-4 SP decoder with SADF.

graph for a Channel Equalizer can be captured in SADF. Section 3 discusses related research on dataflow mod-
els to complete motivating the introduction of SADF. Readers interested in the formal definition of SADF and
theoretical background of the semantics may consider Section 4. In Section 5, we summarise the conclusions.

2 Example SADF Graphs

This section informally introduces SADF by showing how some real-life streaming applications could be mod-
elled. A formal definition of SADF is given in Section 4, which includes all considerations underlying its design.

2.1 MPEG-4 SP Decoder

Figure 1a depicts an SADF graph for the MPEG-4 SP decoder. The vertices denote the tasks orprocessesof the
application. Two types of processes are distinguished.Kernels(solid vertices) model the data processing part
of a streaming application, whereasdetectors(dashed vertices) represent the part that dynamically determines
scenarios and controls the behaviour of processes. The Frame Detector (FD) represents for example that segment
of the actual VLD code responsible for determining the frame type and the number of macro blocks to decode.
For simplicity, we assume an equal number (0 or x ∈ {30, 40, 50, 60, 70, 80, 99}) of motion vectors and macro
blocks to decode. The possible values ofx denote conservative approximations for a range of different numbers of
motion vectors that can occur in reality. The SADF graph in Figure 1 captures the varying resource requirements
in 9 different scenarios (one for each possible combination of frame type and number of macro blocks to decode).

The edges in an SADF graph are calledchannels. They denote (potential) dependencies between processes
originating from exchanging information. SADF distinguishesdatachannels (solid edges) andcontrol channels
(dashed edges). Atokenis a unit of information that is communicated via a channel. The availability of tokens
in the (in principle unbounded) FIFO buffer corresponding to a channel is indicated with a dot. Control channels
communicate tokens that are scenario-valued, while tokens on data channels are non-valued as in SDF and CSDF.
Dots on data channels are labelled with the number of tokens that is available, while a dot on a control channel
is labelled with the sequence of scenario values of the tokens in the corresponding FIFO buffer. The token on the
channel from RC to MC in Figure 1a models for example exchanging the previously decoded frame. The three
tokens on the channel from RC to FD capture the capability of decoding up to 3 frames in a pipelined fashion.
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The start and end points of channels are labelled withproductionandconsumption ratesrespectively. They
refer to the number of tokens that is atomically produced/consumed by the corresponding process upon its exe-
cution orfiring. In SADF, rates can be fixed (as in SDF) or parameterised. Fixed rates are shown with positive
integer values, while parameterised rates are valued with non-negative integers that may vary for different sce-
narios. The parameterised rates for the MPEG-4 SP decoder are listed in Figure 1b. It shows that a parameterised
rate can be0 in certain scenarios. Such cases express that data dependencies are absent or that the functionality
of a kernel must not be performed in those scenarios. An example is skipping VLD and IDCT when decoding P
frames for still video, which is modelled by scenarioP0. Carefully studying the rates in Figure 1 reveals that the
VLD and IDCT kernels fire once per decoded macro block, while the MC and RC kernels fire once per frame.

Next to the possibility of skipping operations in certain scenarios, the computation resource requirements
may also depend on the data that is being processed. Where the concept of scenarios allows expressing varia-
tions in communication resource requirements and coarse-grain changes in computation resource requirements,
SADF allows modelling fine-grain variations in computation resource requirements by means of assigning ex-
ecution time distributions to processes. Table 1c shows that such distributions can be point distributions, which
yields a fixed execution time per scenario1. We can now summarise that a scenario refers to a set of values for
parameterised rates and to a certain execution time distribution. A key feature of the scenario concept is the abil-
ity to capture correlations that often exist between the dynamic changes in resource requirements for different
processes. In the MPEG-4 SP decoder for example, the frame type coherently affects the rates and execution
time distributions of the VLD, IDCT, MC and RC operations as modelled by the SADF graph in Figure 1.

The scenario in which a kernel will operate is determined externally by the detector(s) controlling it. For
detectors, the story is somewhat more complicated. The operation mode of a detector is established only partly
externally (in case it has control inputs). Next to establishing the scenario of the VLD, IDCT, MC and RC kernels,
detector FD also affects its own mode of operation. To distinguish the internal and external forces determining
the operation mode of a detector, we use the termsubscenarioto refer to those aspects that are established
internally. For detectors, it is actually the subscenario that refers to a set of values for parameterised rates and a
certain execution time distribution. The set of subscenarios for detector FD is equivalent to the set of scenarios
for the VLD, IDCT, MC and RC kernels. The control tokens that FD produces on its outputs are valued equal to
the subscenario in which it operated. This legitimates the use of the summarising tables in Figures 1b and 1c to
specify the parameterised rates and execution time distributions. A more detailed explanation of the difference
between scenarios and subscenarios for detectors is given in Section 2.2 for the MP3 decoder example.

What remains to be specified for the SADF graph in Figure 1 is how the subscenarios of detector FD are es-
tablished. In reality, the frame type and number of macro blocks is determined based on the content of the video
stream. Because SADF abstracts from such content, an abstract mechanism is needed to capture the possible oc-
currences of scenarios. Various types of automata can be exploited for this. We follow the proposal of [37] to use
a (discrete-time) Markov chain [8] as it facilitates both best/worst-case and average-case performance analysis.
Such a Markov chain can be seen as a state machine, where each state refers to a specific subscenario. The tran-
sitions occur according to a certain probability, which reflects what subscenario may occur in the next firing and
with what probability. For the MPEG-4 SP decoder, we use a Markov chain with9 states to uniquely determine
the subscenario in which detector FD is going to operate and hence, also the scenario in which the VLD, IDCT,
MC and RC kernels will operate. Assuming that the frame types and numbers of macro blocks may occur in any
order, the Markov chain associated with FD resembles a fully connected graph. The transition probabilities are
specified such that the probability of being in a certain state (the equilibrium probability of that state) equals the
probability that the involved frame type and number of macro blocks occur. The throughput result reported in
the Introduction for the SADF graph in Figure 1 is obtained assuming that the occurrence probabilities of the
(sub)scenariosI, P0, P30, . . . , P99 equals3/25, 1/50, 1/20, 1/4, 1/4, 9/100, 9/100, 9/100, 1/25 respectively.

We briefly describe the behaviour of the SADF graph in Figure 1. The firing of detector FD starts with
determining the subscenario (independent of the availability of tokens in this case). It is given by the state
that is entered after making one transition in the Markov chain. By establishing the subscenario, FD fixes the
parameterised production ratec according to Figure 1b. Then, FD waits until at least1 token is available at its
input. When a token has become available, FD performs its behaviour which takes an amount of time given by a
sample drawn from the execution time distribution corresponding to the subscenario in which FD operates (being

1 Table 1c lists the maximum value of the original execution time distributions obtained by profiling the MPEG-4 SP decoder on
an ARM7TDMI processor. The results in [35] are based on the mean value of the original distributions, which have been used in [37].
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Fig. 2 Approximating the worst-case behaviour of the MPEG-4 SP decoder in SDF (auto-concurrency is excluded implicitly).

0 in all cases). Firing FD ends with removing1 token from the input and writing a number of tokens to each
output. The number of produced tokens corresponds to the production rates as established by the subscenario.
The produced control tokens are valued with the subscenario in which FD has operated.

The firing of a kernel like VLD, IDCT, MC and RC starts with reading1 token from the control input when it
becomes available. The value of that token determines the scenario in which they will operate. It results in fixing
the parameterised ratea, b, d ande and the execution time distributions. After establishing the scenario, a kernel
waits until sufficient tokens are available at every data input in accordance with the now known consumption
rates. At the moment that sufficient tokens have become available, the data processing behaviour is performed.
It takes an amount of time given by a sample drawn from the previously established execution time distribution.
Firing ends with removing a number of tokens from each data input and writing a number of tokens to each
output, where these numbers correspond to the consumption and production rates as established based on the
scenario. In addition, one token is removed from the control input. Notice that blocking the firing until sufficient
tokens are available implies that processes may be operating in different scenarios at a given point in time.

The example in Figure 1 illustrates that SADF can capture a collection of SDF graphs for a single application
operating in different modes, while transitions between scenarios occur in a pipelined fashion. The key difference
between SADF and SDF is the establishment of the (sub)scenario in which a process operates as an additional
step in firing a process. In fact, an SADF graph with only kernels and point distributions for the execution times
is equal to an SDF graph. Conversely, any SDF graph that excludes auto-concurrency is an SADF graph. The
phenomenon of auto-concurrency refers to the possibility of firing a process multiple times simultaneously. The
operational semantics of SADF excludes such auto-concurrency in order to ensure determinacy, see Section 4.3.

We conclude this Section with the SDF graph in Figure 2. It concerns a straightforwardly constructed SDF
graph following the traditional approach to approximate the worst-case resource requirements for the MPEG-4
SP decoder. The worst-case amount of communication resources occurs for scenarioP99, in which all processes
and channels are used. The worst-case execution time for kernels VLD and IDCT as well as MC are in scenario
P99, while for RC it is scenarioI. The throughput result mentioned in the Introduction is obtained based on the
SDF graph in Figure 2 with these execution times. From the SADF graph in Figure 1, it is however clear that
this combination of execution times can never occur. Hence, the SDF approximation in Figure 2 is inadequate.

2.2 MP3 Decoder

MP3 decoding is a frame-based algorithm, which transforms the incoming compressed bitstream into normal
pulse code modulated data. Each frame consist of 1152 mono or stereo frequency components. These are di-
vided into two granules of 576 components, which are further divided into 32 subbands of 18 frequency compo-
nents each. The algorithm includes operations like Huffman Decoding (H), Requantisation (RQ), Reorder (RO),
Stereo (S), Alias Reduction (AR), Inverse Modified Discrete Cosine Transform (IMDCT), Frequency Inversion
(FI), Synthesis Polyphase Filterbank (SPF), and Write (W) back of decoded sound samples [33]. Most of these
operations are to be performed for both left and right sound channels. Figure 3 depicts an SADF graph that
models the MP3 decoder, where the subscripts L and R in the process names indicate the involvement in the left
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Fig. 3 Modelling an MP3 decoder with SADF using hierarchical control.

or right sound channel respectively. A first observation is that kernels HM, SPFL , SPFR and W have no control
inputs, which means that they always operate in the same default scenario (which is indicated withǫ). The Frame
Detector (FD) and Block Detectors (BD) are responsible for determining the scenarios in which the other kernels
operate. Observe that BDL and BDR are controlled by FD. Figure 4 lists the parameterised rates, execution time
distributions (which are point distributions2 in this example) and the properties for detectors FD, BDL and BDR.

As explained in the Introduction, three frame types (Long, Short and Mixed) and two block types (Long and
Short) are distinguished. The frame type determines the main characteristics of the MP3 decoder’s operation
mode while the block type refines those characteristics to identify the operation mode precisely. In practice, only
5 different combinations of frame types occur for the two sound channels. Using a two-letter combination to
indicate the fame type for the left and right sound channel respectively, we identify the situations LL, SS, LS and
SL. The fifth situation is named M and denotes that a Mixed frame must be processed for both sound channels.
Detector FD (which has no control inputs) determines the frame type based on a Markov chain with 5 states. Each
of these states uniquely identifies a subscenario in{LL , SS, LS, SL, M}. The transition matrix for the Markov
chain associated to FD is given in Figure 4c, which shows that the occurrence of Mixed frames is very rare.
Kernel S requires knowledge about the frame types for both sound channels and therefore operates according to
a scenario in{LL , SS, LS, SL, M} that equals the subscenario determined by FD. The scenario of kernels RQL ,
ROL and RQR, ROR is only determined by the frame type for the left and right sound channel respectively. The
set of scenarios for these kernels is{S, M, L}. They basically receive control tokens from FD valued with the left
or right letter in the combinations LL, SS, LS, SL or with M. This illustrates that the produced control tokens
may be valued differently from the set of subscenarios of a detector (which is another extension of [37]).

The scenario of kernels ARL , IMDCTL , FIL and ARR, IMDCTR, FIR merely requires knowledge about the
block type for the left and right sound channel respectively. Their set of scenarios is{BL, BS}, where BL and
BS denote Long and Short blocks respectively. A Long block contains 18 frequency components, while a Short
block includes only 6 components. Detectors BDL and BDR identify the appropriate number and order of Short
and Long blocks based on control tokens valued L, S or M received from FD. From the perspective of BDL

and BDR, the two different block types BL and BS are subscenarios of the scenarios S, M and L established
externally by detector FD. Multiple Markov chains are associated with detectors that have control inputs, one
for each possible scenario in which they can operate. Figure 4d gives graphical representations of the three
Markov chains associated with both BDL and BDR. Each of their states implies one of the possible subscenarios
in {LBL , SBS, MBL , MBS}. The control tokens produced by BDL and BDR to kernels ARL , IMDCTL , FIL and
ARR, IMDCTR, FIR respectively in each of the 4 possible subscenarios matches the last two letters of the subsce-
nario name. Although subscenarios LBL and MBL both imply sending control tokens valued BL, the difference
between them is the number of such tokens, see Figure 4a. A similar observation holds for subscenarios SBS

2 Table 4b shows the mean value of the execution time distributions obtained by profiling the MP3 decoder on an ARM7TDMI.
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L S M
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Rate
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i, j 18 0
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Rate
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RQ
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M 42911

RO
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S 34684
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S
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IMDCT
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BS 5561

FI BL, BS 4912
SPF ǫSPF 1865001
W ǫWB 42896
FD All 0
BD All 0

a) Parameterised Rates b) Mean-Value Execution Times

LL SS LS SL M
LL 0.9605 0.0345 0.0029 0.0020 0.0001
SS 0.6267 0.3482 0.0125 0.0125 0.0001
LS 0.7154 0.1428 0.1223 0.0194 0.0001
SL 0.6873 0.1422 0.0282 0.1422 0.0001
M 0.9605 0.0345 0.0029 0.0020 0.0001

Scenario L Scenario S

���

�

���

�

Scenario M

��� ���

�

�

c) Markov chain associated with detector FD d) Markov chains associated with detectors BDL and BDR

Fig. 4 Properties of the SADF graph modelling the MP3 decoder in Figure 3.

and MBS. The behaviour of detectors with control inputs like BDL and BDR is as follows. Firing starts at the
moment that a token becomes available at the control input(s). Their value determines the scenario by means
of selecting the corresponding Markov chain. The subscenario is determined by the state visited after making
a transition in the selected Markov chain. After establishing the scenario and subscenario, firing continues as
described previously. We exemplify the start of a firing by assuming that an M-valued token is available on the
control port of detector BDL . Interpreting this token leads to one transition in the 2-state Markov chain shown in
Figure 4d. In case this Markov chain was in state MBS, receiving the M-valued token leads to transiting to state
MBL with probability 1 (and hence, fixing MBL as the subscenario). Notice that detector FD will always sent
two M-valued tokens. As a result, BDL will fire twice according to scenario M. Considering the 2-state Markov
chain in Figure 4d, BDL establishes subscenario MBL for its first firing and subscenario MBS for the second fir-
ing. In subscenario MBL, detector BDL submits 2 tokens valued BL to kernel ARL , IMDCTL and SPFL , while 90
tokens valued BS are produced in subscenario MBS. Hence, the model captures that ARL , IMDCTL and SPFL
first process 2 Long blocks and subsequently 90 Short blocks for each Mixed frame. This behaviour matches
with processing the 92 blocks that constitute a Mixed frame as described in the Introduction. Notice that the link
between the value of tokens received on the control port of detector BDL and the three Markov chains (through
scenarios) represents in fact a choice between mutual exclusive options. This reflects the deterministic decisions
made by the actual implementation of the detector based on the value of the received control tokens.

The MP3 decoder example shows that an SADF graph can be more than a collection of SDF graphs with
similar structure. Separately considering the scenarios that model decoding Long and Short frames reduces the
SADF graph into similarly structured SDF graphs. This is however not true for the scenario of decoding Mixed
frames due to processing different block types. It is possible to describe the scenario of decoding Mixed frames
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Fig. 5 SDF graph capturing the decoding of Mixed frames by the MP3 decoder (execution times of SyncL and SyncR are 0).

by means of an SDF graph, see Figure 5. To capture the processing of the Long and Short block types for
Mixed frames correctly, duplicates of IMDCT and FI are needed since they behave differently for these two
cases. In addition, processes SyncAL , SyncBL , SyncAR and SyncBR (all with execution time 0) are introduced to
express similar pipelining behaviour as the SADF graph in Figure 3 exhibits. The SyncA processes ensure that
performing IMDCT for the first Short block does not start before finishing IMDCT on the last Long block for
each granule. On the other hand, the SyncB processes ensure that performing IMDCT for the second granule in a
frame does not start before finishing IMDCT for the first granule. Notice that modelling the scenario of decoding
Mixed frames in SADF could be based on the SDF graph in Figure 5. However, the necessity of introducing
various non-intuitive artifacts would yield an SADF graph with a structure that does not match with the structure
of the application’s source code. Using hierarchical control instead circumvents this disadvantage.

2.3 Channel Equalizer

SADF can be used as an alternative to other dataflow models that allow expressing dynamism. This is useful in
case analysis is not or insufficiently supported. Examples of dataflow models that can be expressed succinctly
in SADF include Cyclo-Static Dataflow (CSDF) [5] and certain forms of Boolean Dataflow (BDF) [6]. SADF
can also be used to develop analysis models of for example Kahn Process Networks (KPN) [21] and Reactive
Process Networks (RPN) [13]. A more elaborate comparison of SADF with these and other dataflow models is
given in Section 3. This Section discusses how CSDF graphs can be expressed straightforwardly in SADF.

Figure 6 depicts the CSDF graph of a Channel Equalizer application as described in [28] (slightly modified).
The processes load, avg, lvl and cu exhibit cyclo-static behaviour consisting of 8 phases, while the other processes
do not include dynamism. The abbreviation p refers to the sequence [1, 0, 0, 0, 0, 0, 0, 0] of rates in the subsequent
phases, while q is shorthand notation for the sequence [1, 1, 1, 1, 1, 1, 1, 1]. Figure 6b gives the (sequences of)
execution times, where for example 8*224 is short for 224, 224, 224, 224, 224, 224, 224, 224.

Converting a CSDF graph into an SADF graph is based on capturing the phases of processes with the concept
of scenarios. In this way, the conversion merely involves replacing CSDF processes that exhibit dynamism with
a detector. Such detector includes one Markov chain with a state for each phase. The Markov chain uses only
transition probabilities of1 to resemble a strongly connected graph that expresses the cyclo-static sequence of
phases. Hence, the phase in which a CSDF process is becomes explicit as state in the Markov chain. Notice that
several phases for the CSDF graph of the Channel Equalizer imply the same behaviour. By associating the same
subscenario to the involved states of the Markov chain, one only has to specify each different behaviour once.

Although the described procedure converts any CSDF graph into an SADF graph, the correlation between
the behaviours of the different detectors remains implicit. In case processes have the same sequence length, it is
easy to make the correlation explicit in the SADF graph. This is shown in the SADF graph of Figure 7, where
process load is replaced by a detector that coherently controls the behaviour of kernels avg, lvl and cu. Detector
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Process E
load [8*224]
absx 114
avg [704, 7*416]
log 114
lvl [440, 7*24]

norm 328
cu [4944, 7648, 6*4966]
fir 144
cf 328

absy 144

a) Processes and Channels b) Execution Times

Fig. 6 CSDF graph modelling a Channel Equalizer [28].

load captures the three different behaviours for the 8 phases in subscenarios P0, P1 and P2-7. Here, P0 represents
the first phase, P1 the second phase and P2-7 the 6 other phases. Kernel cu has the same three scenarios in which
only its execution times differ. On the other hand, kernels avg and lvl have only two different behaviours that
are captured by scenarios P0 and P1-7. These scenarios model the behaviour of the involved kernels in the first
phase and the other 7 phases respectively. Detector load values control tokens that are sent to these kernels with
P0 in case of operating in subscenario P0 and with P1-7 when operating in subscenarios P1 and P2-7. Notice that
processes absx and log only fire in the first phase of the CSDF graph due to not receiving a token on their input
in any of the other phases. This behaviour is captured similarly in the SADF graph of Figure 7.

The Channel Equalizer example showed that CSDF graphs can be converted (in various ways) into SADF
graphs. A conversion in the other direction is less trivial. Even the subset of SADF that excludes hierarchical
control and probabilistic choices (i.e., all execution time distributions are point distributions and all transition
probabilities for the Markov chains associated to detectors are1) is more expressive than CSDF. This originates
from the possibility of a behavioural prologue due to initial control tokens and transient states in the Markov
chains. Such behavioural prologue may not match with the cyclo-static behaviour that can be captured in CSDF.

3 Related Research

When comparing SADF with traditional dataflow models, the most notable differences are the support for param-
eterised rates, the explicit support for correlated execution time distributions for different processes (by means
of the scenarios and hierarchical control) and the use of a stochastic approach to model the scenario occurrences.
In this section, we consider earlier research related to these topics and other work related to semantical aspects.

Many generalisations of SDF have been proposed before, often focussing on support for dynamically chang-
ing rates. Section 2.3 already compared SADF with CSDF. In Scalable Synchronous Dataflow (SSDF) [30],
integer multiples of the rates in a consistent SDF [24] can be used, where these multiples are determined by
an external scheduler. SADF can express the occurrence of the different rates by using scenarios and modelling
the external scheduler with a detector. In [4], a meta-modelling approach was introduced that allows extend-
ing dataflow models like SDF with parameterised rates. Application of this approach to SDF is known as the
Parameterised Synchronous Dataflow (PSDF) model, which is also formalised in [4]. SSDF and PSDF require
parameterised rates to be valued with positive integers while the homogeneous version of PSDF additionally re-
quires the parameter value of the consumption and production rates of a specific channel to be equal. SADF (and
also CSDF) is more expressive than PSDF by supporting the value0 for parameterised rates in certain scenarios.
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Process (Sub)Scenario E
load All 224
absx ǫabsx 114

avg P0 704
P1-7 416

log ǫlog 114

lvl
P0 440

P1-7 24
norm ǫnorm 328

cu
P0 4944
P1 7648

P2-7 4966
fir ǫfir 144
cf ǫcf 328

absy ǫabsy 144

a) Processes and Channels b) Execution Times

Rate
SubScenario

P0 P1 P2-7
r 1 0 0

Rate
Scenario

P0 P1-7
p 1 0

����������������

������������
� � �

� � �

�
�

c) Parameterised Rates d) Detector load

Fig. 7 SADF graph modelling the Channel Equalizer in Figure 6 showing scenario correlations explicitly.

Boolean Dataflow [6] and Integer Controlled Dataflow [7] follow the approach of restricting KPN such that
the control part of an application is captured by certain predefined process types. Well-behaved forms like the
one in [18] even allow for limited analysis. These dataflow models can capture scenarios and the corresponding
correlation between processes for each scenario by using subgraphs that are enabled by control tokens, similarly
as how Control Flow Graphs describe possible paths through the application code. Instead of using the mentioned
dataflow models, one could also use Conditional Process Graphs [11] to express scenarios by using the same
approach. However, the resulting models for this approach will in general have many more processes than an
equivalent SADF graph, which avoids duplicating a process that participates differently in multiple scenarios.

Another way to extend SDF for expressing dynamism is described in [17,23], where a Finite State Machine
(FSM) is associated to each process of an SDF. The approach is similar to how SADF associates Markov chains
to detectors. FSMs require however to specify the internal behaviour of processes in full detail of the imple-
mentation, i.e., one cannot abstract from data-dependent conditions based on which choices between alternative
behaviours are made. In addition, the approach lacks a way to explicitly indicate correlations between the be-
haviour of different processes. [17,23] also propose the opposite; the association of an SDF graph to each state
of an FSM. This enables representing scenarios with separate SDF graphs that are combined via a detector-like
approach described with the FSM. Disadvantages include the need to specify multiple copies of a process that
participates in different scenarios and a pipelined transition from one scenario to another is not supported. SADF
expresses such pipelined reconfiguration by default. A very general model of computation related to hierarchi-
cally combining state machines with processes is that of Reactive Process Networks (RPN) [13]. It concerns a
non-deterministic extension of KPN that allows capturing the occurrence of sporadic (control) events. Evalu-
ating the correctness and performance of applications expressed as RPN is in general undecidable. SADF is a
deterministic dataflow model [37] that requires continuous communication of control tokens, even if no scenario
changes occur. This is similar to the approach in for example [10]. By making adequate abstractions, SADF can
straightforwardly serve as a basis for developing analysis models of RPNs.
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Several researchers proposed to use probabilities for modelling dynamism in an abstract way as well as to
support extensive performance analysis. We are not aware of previous research that uses Markov chains to cap-
ture the possible orders of different behaviours in dataflow models. On the other hand, the suggestion of using
(independent) discrete execution time distributions for SDF is not new. The approach was however declared in-
feasible for practical applications in [32] because it was considered to suffer too much from state-space explosion
problems. SADF combines discrete execution time distributions with scenarios, thereby capturing that execution
times of different processes are in practice usually not independent. Although such correlations limit the state
space in comparison to using independent distributions, the impact of multiple possible execution times per sce-
nario still contributes considerably to state-space explosion. Nevertheless, for some examples, the state-space
explosion is manageable by applying on-the-fly state-space reduction techniques as implemented in the model
checking tools for SADF graphs [35]. To circumvent state-space explosion problems, [32] suggested to use (in-
dependent) exponentially distributed execution times for SDF. These distributions have been extensively studied
in the context of formalisms other than dataflow models such as stochastic process algebras like PEPA [20] and
EMPA [3], stochastic Petri Nets [27] (including stochastic forms of Weighted Marked Graphs or T-Systems) as
well as queueing networks [2]. Similarly to SADF, all these formalisms implicitly define Markov processes as
the means for evaluating performance metrics [37]. However, by supporting exponential distributions only, these
formalisms disable for example worst-case timing analysis since the sample spaces of exponential distributions
are unbounded. On the other hand, there exist several queueing network based approaches that support general
distributions. We are however unaware of approaches that allow taking correlations between such distributions
associated to concurrent processes (i.e. different servers in a queueing network) into account.

The semantic model of SADF is that of Timed Probabilistic Systems (TPS) [1,31], which refers to a variant
of Markov Decision Processes [9] that explicitly distinguishes actions and time steps. This semantic model forms
the mathematical foundation for evaluating correctness and/or performance properties [37,35]. The TPS defined
by an SADF graph may include both non-deterministic and probabilistic choices for actions, whereas no such
choices exist for time steps (See Section 4.3). EMPA and the generalised form of stochastic Petri Nets in [26]
also decouple actions and time, but they associate stochastic (and non-deterministic) choices with progress in
time instead. Probabilistic Timed Automata (PTA) [22] and the Parallel Object-Oriented Specification Language
(POOSL) [36] use the same semantic model as SADF to found performance evaluation. Performance analysis
with PTA as discussed in [22] is limited to metrics that can be described as a (probabilistic or expected) reach-
ability property, while actually performing such analysis involves restricting the time domain of PTA to a finite
set of possible values. SADF limits its time domain similarly by definition. On the other hand, SADF allows
analysis of a larger class of metrics [35], including delay-type long-run metrics like throughput and jitter. Such
metrics can also be evaluated when using POOSL [38,34], which is much more expressive than SADF. Due to
this expressive power, POOSL models generally have an exceptionally large or even infinite state space, which
renders exact analysis infeasible. On the other hand, their alternative of simulation-based performance analysis
relies on assuming ergodicity [34]. For an SADF graph, verifying properties like the finiteness of the state space
and ergodicity can be based on structural analysis of its specification as briefly discussed in [37].

In summary, SADF allows for compact models of modern streaming applications with varying resource
requirements, which are design-time analysable for a wide range of correctness and performance properties. No
other dataflow model combines these capabilities with using stochastic abstractions and the concept of scenarios.

4 Formal Definition

This section formally defines SADF, thereby extending the basic model introduced in [37]. We discuss both the
syntactical definition of SADF graphs and how the operational semantics defines Timed Probabilistic Systems.

4.1 Preliminaries

To simplify the mathematical notation, we consider processes (kernels and detectors) to be connected through
ports. Three types of ports are distinguished;(data) input ports, output portsandcontrol (input) ports. The finite
sets of input, output and control ports of a processp are denoted byIp, Op andCp respectively. All port sets are
pairwise disjoint and we defineI, O andC to be the union of all input, output and control port sets respectively.
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A channel reflects an unbounded FIFO buffer that uniquely connects an output port to either an input port
(data channel) or a control port (control channel). A channel that connects ports of the same processp is also
called aself-loopchannel ofp. For any channelb, Σb indicates the finite set of all possible values of the tokens
thatb can transfer.Σ∗

b denotes the set of all finite sequences of the tokens inΣb. For a sequenceσ = σ1 . . . σn in
Σ∗

b , theith token inσ is indicated withσi, whereas|σ| is the numbern of tokens inσ. For sequencesσ, τ, υ ∈ Σ∗
b ,

we useσ + τ to represent the concatenation ofσ andτ . In caseυ = σ + τ , we also writeυ − σ to denoteτ .
The non-empty finite set of scenarios in which a processp can operate is denoted bySp. A detectord also

has a non-empty finite set of subscenariosΩd. UsingN = {0, 1, . . .} to represent the natural numbers, function
Rs

k : Ik ∪ Ok ∪ Ck → N specifies for scenarios ∈ Sk the rates of a kernelk. For subscenarioω ∈ Ωd of a
detectord, functionRω

d : Id ∪Od ∪ Cd → N gives the rates. The sequence of tokensd produces when operating
in subscenarioω onto an output porto ∈ Od connected to a control channelb is denoted bytωd (o) and is inΣ∗

b .
The execution time distribution of a kernelk for scenarios ∈ Sk is captured by discrete random variableEs

k.
The probability thatEs

p is equal to a certain valuee in its sample space is denoted byP(Es
p = e). For a detector

d, discrete random variableEω
d captures the execution time distribution for subscenarioω ∈ Ωd. Similarly as for

kernels,P(Eω
d = e) denotes the probability thatEω

d equals valuee in its sample space. The sample spaces of
each random variableEs

k andEω
d is a finite subset of the non-negative real numbersR+

0 . Using random variables
with finite sample spaces is a prerequisite for obtaining a finite state space. In addition, it ensures the existence of
lower and upper bounds on execution times, which is required to facilitate best/worst-case performance analysis.

As discussed in Section 2, we choose to associate finite-state discrete-time Markov chains [8] to detectors for
capturing the occurrences of subscenarios. In this report, we denote a Markov chain with a tuple(S, ι,P), where
S is a non-empty finite state-space,ι ∈ S denotes the initial state from which the Markov chain departs with
probability1 andP is the matrix of one-step transition probabilities such that

P
y∈S

P(x, y) = 1 for all x ∈ S.

4.2 Scenario-Aware Dataflow

To define SADF, we first introduce the functionsφ andψ that capture the status of data and control channels.

Definition 1 (Channel Status)Let B denote the set of all channels of an SADF graph, whereBc ⊆ B is the set
of control channels. A(data) channel statusis a functionφ : B \ Bc → N that returns the number of tokens
stored in the buffer of each data channel.

Definition 2 (Control Status) LetBc denote the set of all control channels of an SADF graph. Acontrol (chan-
nel) statusis a functionψ : Bc →

S
c∈Bc

Σ∗
c that returns the sequence of tokens stored in each control channel.

Notice that a channel status abstracts from the values of tokens. Definition 3 extends the definition of the
basic SADF model in [37] with the possibilities of having none or multiple control ports, parameterised rates for
the input ports of detectors, initial tokens for control channels and hierarchical control.

Definition 3 (SADF Graph) An SADF graph is described by a tuple(K,D,B, φ∗, ψ∗), where

1. K andD are pairwise disjoint finite sets of kernels and detectors respectively such thatK ∪D 6= ?;
2. each kernelk ∈ K denotes a tuple(Ik,Ok, Ck,Sk, {(Rs

k, Es
k) | s ∈ Sk}) with

– Sk =
Q

c∈Ck
Σb with b the control channel connected toc

– for each scenarios ∈ Sk, Rs
k(c) = 1 for all control portsc ∈ Ck.

3. a detectord ∈ D is a tuple(Id,Od, Cd,Sd, {(Ss
d, ιsd,Ps

d, Φs
d) | s ∈ Sd}, Ωd, {(Rω

d , tωd , Eω
d ) | ω ∈ Ωd}) with

– Sd =
Q

c∈Cd
Σb with b the control channel connected toc

– for each scenarios ∈ Sd, (Ss
d, ιsd,Ps

d, Φs
d) refers to a Markov chain(Ss

d, ιsd,Ps
d) with non-empty finite

state space and a functionΦs
d : Ss

d → Ωd that returns the subscenario associated to each state inSs
d;

– for each subscenarioω ∈ Ωd, Rω
d (c) = 1 for all control portsc ∈ Cd;

– for each subscenarioω ∈ Ωd, Rω
d (o) > 0 andtωd (o) ∈ {υ ∈ Σ∗

b | |υ| = Rω
d (o)} for all output ports

o ∈ Od that connectd to a control channelb.
4. B ⊆ O × (I ∪ C) is the finite set of channels withBc = B \ (O × I) the set of control channels. A channel

includes an unbounded FIFO buffer and uniquely connects an output port to either an input port or a control
port. Furthermore, each port inI ∪ O ∪ C is uniquely connected to one channel;
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5. φ∗ : B \ Bc → N is the initial channel status;
6. ψ∗ : Bc →

S
c∈Bc

Σ∗
c indicates the initial control status.

Some observations can be made from Definition 3. The first item specifies that a process is either a kernel
or a detector and that an SADF graph consists of at least one such process. It also clarifies that an SADF graph
may include only kernels or only detectors. Considering the second and third items, it follows that the scenario in
which a process operates is determined based on the combination of tokens available on its control inputs. In case
a processp does not have control ports, it always operates according to a default scenarioǫp. It means that the
behaviour ofp is independent of the behaviour of other processes. Furthermore, the rates associated with control
channels are always positive and hence, only data dependencies may be absent in a scenario. The consumption
rates for control channels are actually fixed to 1. This originates from the observation that control information is
usually considered to be indivisible. It also eases the way of establishing the scenario for a process. Where the
scenario determines the rates and execution time distribution for a kernel, it is the subscenario that determines
the rates and execution time distribution for a detector. The scenario of a detector identifies which Markov chain
is used to establish the subscenario (according to some mappingΦ from its state space to the set of subscenarios).
Section 2 exemplified how the Markov chains reflect knowledge about the order in which subscenarios are likely
to occur. The fourth item in Definition 3 states that channels may be absent and that multiple channels can exist
between two processes as shown in Section 2. An SADF graph may also consist of unconnected components.
The last two items formalise that tokens might be available in any channel before the application starts running.

Figure 8 depicts the SADF graph that is used throughout the next section to illustrate the definition of the
operational semantics. Kernel A has no control inputs and always operates in default scenarioǫA . Kernels B, C
and D can operate in three different scenariosSB = SC = SD = {s1, s2, s3} as controlled by detector E. Since
E has no control inputs,SE = {ǫE}. Its set of subscenariosΩE is equal to the set{s1, s2, s3} of scenarios for B,
C and D. The tokens E produces on the channels to B, C and D are valued the same as the subscenario in which
E operates. Figure 8c exemplifies the use of multiple possible execution times per scenario for A, B, C and D.
Figure 8d shows Markov chain(SǫE

E , ιǫE
E ,PǫE

E ) with SǫE
E = {x, y, z} andιǫE

E = x and the mappingΦǫE
E . Figures 4d

and 7d only indicate the subscenarios associated to each state. Observe that we also did not specify the initial
state of the Markov chain associated with detector FD in Figures 1 and 3; they can be chosen arbitrarily without
affecting any correctness and most performance properties (an exception is the expected response delay [35]).

4.3 Operational Semantics

The operational semantics of an SADF graph is defined as a Timed Probabilistic System (TPS) [1,31]. Timed
Probabilistic Systems describe behaviour in terms ofconfigurations(states) andtransitions, where timeless ac-
tions are explicitly distinguished from advancing time. We useΘ to denote the set of all reachable configurations
of an SADF graph and defineD(Θ) as the set of probability distributions overΘ given byD(Θ) = {� : Θ →

[0, 1] |
P

c∈Θ �(c) = 1}. The TPS defined by an SADF graph is a labelled transition system of the form
(Θ, C∗,A,A, T ,T), whereC∗ ∈ Θ is an initial configuration,A is a set of actions andT ⊆ R+

0 denotes the
time domain.A andT are two sets of labelled transition relations.A is a subset ofΘ×A×D(Θ) and defines the
action transitions.T denotes the time transitions and is a subset ofΘ×T + ×D(Θ) whereT + = T \ {0}. In the
remainder of this section, we defineΘ, C∗,A,A, T andT concretely for any SADF graph(K,D,B, φ∗, ψ∗). We
start with defining how a configuration inΘ looks like. To this end, we introduce the kernel and detector status.

Definition 4 (Kernel Status) A kernel statusfor an SADF graph(K,D,B, φ∗, ψ∗) is a functionκ that assigns
to each kernelk ∈ K a pair in(Sk ∪ {−}) × (R+

0 ∪ {−}) denoting the current scenario in whichk operates and
the remaining execution time for firingk or (−,−) if k is not firing.

Definition 5 (Detector Status)A detector statusfor an SADF graph(K,D,B, φ∗, ψ∗) is a functionδ that as-
signs to each detectord ∈ D a tuple in

Q
s∈Sd

Ss
d × (Ωd ∪ {−}) × (R+

0 ∪ {−}) denoting the current states
Ss1 , . . . , SsN

of all N = |Sd| Markov chains associated withd, the subscenario in whichd operates as well as
the remaining execution time for firingd or (Ss1 , . . . , SsN

,−,−) if d is not firing.

Definitions 4 and 5 implicitly exclude the possibility of multiple simultaneous firings of a process. This
phenomenon is for SDF also known asauto-concurrency[32]. If such auto-concurrency would be allowed for
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a) Processes and Channels b) Parameterised Rates
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Φ
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E (x) = s1

Φ
ǫE
E (y) = s2

Φ
ǫE
E

(z) = s3

c) Execution Times d) Detector E

Fig. 8 A small SADF graph to illustrate the definition of the operational semantics.

SADF, then simultaneous firings of a process in different scenarios may ‘overtake’ each other due to the potential
differences in execution times (resulting in consuming tokens in another scenario than in which they were pro-
duced). Even if the execution times of all processes would be fixed, tokens are produced in a non-deterministic
order when simultaneous firings end at the same time (this also happens for SDF). In case the value of tokens
is relevant (as for control tokens in SADF), allowing multiple simultaneous firings would complicate ensuring
determinacy3. The desirable property of determinacy ensures that the functional behaviour is independent of how
the inherent non-determinism originating from the concurrency in a dataflow model is resolved (See also [37]).
Despite excluding auto-concurrency, multiple simultaneous firings could still be captured by using a number of
copies of a process and properly distributing and gathering the tokens to be consumed/produced.

Definition 6 (Configuration) A configurationof an SADF graph is a tuple(φ, ψ, κ, δ) denoting a channel status,
control status, kernel status and detector status respectively. SADF graph(K,D,B, φ∗, ψ∗) has initial configu-
rationC∗ = (φ∗, ψ∗, κ∗, δ∗), where the initial kernel statusκ∗ is defined byκ∗(k) = (−,−) for all k ∈ K and
initial detector statusδ∗ is defined byδ∗(d) = (ιs1

d
, . . . , ιsN

d
,−,−,−) for all N = |Sd| scenarios of eachd ∈ D.

Before defining the action and time transitions, we give an informal description of the operational semantics
that is more detailed and more general compared to the explanations provided for the examples in Section 2.

If a kernelk has control ports, its firing starts with reading one token from all control ports after they have
become available. The combination of their values determines the scenarios ∈ Sk in which k will operate. If
k has no control ports,s always equalsǫk and there is no need to wait for tokens to become available on any
port. After establishing the scenario,k waits untilRs

k(i) tokens are available at every input porti ∈ Ik. At the
moment that sufficient tokens are available,k can perform its data processing behaviour, which takesEs

k units of

3 One could allow auto-concurrency without consequences in case produced tokens are not valued. Allowing auto-concurrency
for kernels without control inputs and fixed execution times (the equivalence of SDF actors) would for example only complicate the
semantics but does not invalidate the determinacy result. In this report, we choose however to disallow auto-concurrency completely.



15

��

�������	
�

���

��

���

���

�

������	��
��

���

������	��

��

���

�����	
�
���

��

���

���

����	�

����	���

����	�

����	���

�

�

�

�

���	
�

���	
�

�

�

���

���

�

�

�

�

���	
�

���	��

���	
�

���	��

�

�

�

�

���	
�

���	
�

���	��

���	��

�������	��

�������	��

�������	��

��

�

���
�����	��

�

�

��

��

��

��

��

�� 

��

��

�������	
�

�������	
�

�

�

������	��

������	��

�����	
�

�����	
�

�����	
�

�����	
�

���

��

���

��

��

���

��

���
��

���

��

���

��� ���

���

� 

��

�

��

��

��

��

��

��

�����	
�

�����	
�

�������	
�

�������	
�

�����	��

�����	��

��

�� 

��

���

���

��

�

�

�

�

���

��

���

���

�����	��

�����	��

�����	
�

�����	
�

�����	
�

�����	
�

�����	��

�����	��

�

�

�

�

���

��

���

��

���

��

��

���

���

���

����	�

����	���

����	�

����	���

�

�

�

�

���

���

�� ������	��

���

�������	
�

�������	
�

�����	��

�����	��

�

�

�

�

Fig. 9 Fragment of the TPS defined by the example SADF graph in Figure 8.

time. The firing ofk ends with removing theRs
k(i) tokens from the input portsi ∈ Ik and writingRs

k(o) tokens
to each output porto ∈ Ok as well as removing one token from each control port (ifk has control ports).

The firing of a detectord also starts with determining the scenarios ∈ Sd in a similar way as for a kernel.
In addition, a subscenarioω ∈ Ωd is established as the result ofΦs

d(x) wherex ∈ Ss
d is the state entered after

Markov chain(Ss
d, ιsd,Ps

d) performed one transition. After establishing the scenario and subscenario, detector
d waits untilRω

d (i) tokens become available at every input porti ∈ Id
4. When sufficient tokens have become

available on all input ports,d performs its behaviour which takesEω
d units of time. Firing ofd ends with removing

theRω
d (i) tokens from its input ports, writingRω

d (o) tokens to each output porto ∈ Od and removing one token
from each control port (ifd has control ports). The tokens written to an output port connected to a control channel
are valued according totωd such that they can be interpreted by the receiving process for determining its scenario.

Notice that in reality, consumption and production of tokens may occur at any time during firing. This
could be captured in an abstract way by stochastically distributing the consumption and production of tokens
for a process over its execution time. However, we choose in this report for the distribution where tokens are
consumed and produced at the end of a firing. This approach yields conservative results of performance metrics
related to the occupancy of the buffers in channels in case reservation of buffer space is taken into account [34]
at the start of a firing. Performance analysis of SADF as implemented in [35] is therefore based on an extended
version of the operational semantics presented in this report, which also keeps track of buffer space reservation.

Figure 9 shows a part of the TPS defined by the SADF graph in Figure 8 (assuming action urgency or
self-timed execution, see below). The nodes represent configurations inΘ. The initial configurationC∗, which
is identified with symbol>, captures the channel and control status as depicted in Figure 8. Transitions are
visualised with double (multi) arrows. The first part of the double (multi) arrow is a directed arrow labelled with

4 We remark that [37] required rates of input ports for detectors to be fixed, while (sub)scenarios were determined only after
sufficient tokens had become available on the input ports. This report relaxes that restriction. Despite the corresponding semantical
differences, the analysis results presented in [37] remain valid.
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the performed action or the amount of time that advances. The second part is a fan-out of directed arrows labelled
with the probabilities�(C′) for each possible target configurationC′. The gray arrows reflect transitions to parts
of the TPS that are omitted. Six different action types are distinguished forA in Definitions 7 through 12 below.

Definition 7 (Control Action Transition) A control action transition
control(k)

−→ ⊆ Θ × D(Θ) represents fixing

the scenario in which a kernelk is going to operate. The relation(φ, ψ, κ, δ)
control(k)

−→ � with �(φ, ψ, κ′, δ) = 1

holds ifκ(k) = (−,−) and|ψ(bc)| ≥ 1 for each channelbc connected to a control portc ∈ Ck, where

κ′ =

(
κ[k → (ǫk,−)] if Ck = ?
κ[k → (

Q
c∈Ck

ψ(bc)1,−)] otherwise
(1)

Definition 7 formalises howcontrolactions capture the first step of firing kernels5. Notice that the condition
regarding the availability of control tokens is trivially satisfied when a kernel does not have control ports. Equa-
tion (1) specifies that the scenario in which a kernel will operate is determined by the combination of the first
tokens on all control ports if the kernel has control ports or that it equals the default scenario. Furthermore, a
control action yields a single target configuration that is entered with probability1. For the example of Figure 8,
only kernel A can immediately perform a control action from the initial configurationC∗ leading to configuration
C1. The other kernels cannot start firing because there are no initial tokens available on the control channels.

Determining the scenario and subscenario for a detector is captured bydetectactions conform Definition 8.

Definition 8 (Detect Action Transition) A detect action transition
detect(d)
−→ ⊆ Θ × D(Θ) denotes establishing

the scenario and subscenario in which a detectord is going to operate. Transition relation(φ, ψ, κ, δ)
detect(d)
−→ �

holds if δ(d) = (Ss1 , . . . , Ssi−1 , Ssi
, Ssi+1 , . . . , SsN

,−,−) for some combination of states for theN = |Sd|

Markov chains associated withd and if |ψ(bc)| ≥ 1 for each channelbc connected to a control portc ∈ Cd. The
distribution function� is given by

�(φ, ψ, κ, δ′) =

(
Pǫd

d
(Sǫd

, T ) for eachT ∈ Sǫd

d
if Cd = ?

Psi

d
(Ssi

, T ) for eachT ∈ Ssi

d
with si =

Q
c∈Cd

ψ(bc)1 otherwise

where detector statusδ′ is defined as

δ′ =

(
δ[d → (T, Φǫd

d
(T ),−)] for eachT ∈ Sǫd

d
if Cd = ?

δ[d → (Ss1 , . . . , Ssi−1 , T, Ssi+1 , . . . , SsN
, Φsi

d
(T ),−)] for eachT ∈ Ssi

d
otherwise

Observe that the condition in Definition 8 regarding the availability of control tokens is trivially satisfied
when a detector has no control ports. In such case, the scenario is equivalent to the default scenario. Otherwise,
the scenario is established based on the combination of the (first) tokens available on the control ports, similarly
as for kernels. The scenario identifies the Markov chain used for determining the subscenario. Given the current
state in which the involved Markov chain resides, the subscenario results from the state entered after performing
one transition in that Markov chain. Because several target states might be possible (potentially implying differ-
ent subscenarios), a probabilistic fan-out is obtained in the TPS where the resulting configurations differ in the
target state reached for the involved Markov chain (and hence also the subscenario may differ). The probabilistic
fan-out corresponds with the outgoing probabilities for the current state of the considered Markov chain. Figure 9
illustrates that detector E can perform a detect action fromC∗ since it has no control ports. The Markov chain as-
sociated with E initially resides in state x and according to Figure 8, there are 2 states to which it can transit, each
implying a different subscenario. These 2 options surface in the TPS as a probabilistic fan-out to configurations
C2 andC3. These configurations merely differ in the new state for the Markov chain and subscenario.

The second step of firing a process involves waiting for the availability of sufficient tokens on the input ports
and fixing the execution time. This is formalised bykernel startanddetector startactions in Definitions 9 and 10.
Such start actions imply a probabilistic fan-out in the TPS that reflects the characteristics of the execution time
distribution corresponding to the previously established scenario (for kernels) or subscenario (for detectors).

5 Because kernels without control ports always operate in a default scenario, one can actually skip control actions for such uncon-
trolled kernels. Performance analysis of SADF as implemented in [35] exploits this observation to limit the number of configurations.
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Definition 9 (Kernel Start Action Transition) A kernel start action transition
start(k)
−→ ⊆ Θ × D(Θ) indicates

the start of processing data by a kernelk. Relation(φ, ψ, κ, δ)
start(k)
−→ � holds ifκ(k) = (s,−) for some scenario

s ∈ Sk and if φ(bi) ≥ Rs
k(i) for each channelbi connected to input porti ∈ Ik. Function� is defined by

�(φ, ψ, κ′
e, δ) = P(Es

k = e) with κ′
e = κ[k → (s, e)] for all execution timese in the sample space ofEs

k.

Definition 10 (Detector Start Action Transition) A detector start action transition
start(d)
−→ ⊆ Θ × D(Θ)

completes starting the firing of a detectord. Relation(φ, ψ, κ, δ)
start(d)
−→ � holds if δ(d) = (Ss1 , . . . , SsN

, ω,−)

for some combination of states for theN = |Sd| Markov chains associated withd, a subscenarioω ∈ Ωd

and if φ(bi) ≥ Rω
d (i) for each channelbi connected to an input porti ∈ Id. The function� is defined by

�(φ, ψ, κ, δ′e) = P(Eω
d = e) with δ′d = δ[d → (Ss1 , . . . , SsN

, ω, e)] for all e in the sample space ofEω
d .

When residing in configurationC1, kernel A can continue its firing because sufficient tokens are available
on the input port (see Figure 8). There are two possible target configurationsC7 andC8 in accordance with
execution time distributionEǫA

A . Conform Definition 9,C7 andC8 only differ in the remaining execution time
for A (which is 2 time units forC7 and 2.1 time units forC8). On the other hand, detector E cannot perform
a start action from configurationsC2 andC3 because there are no tokens on its input port. Such tokens only
become available after kernel A has finished firing (see below). Notice however that A can still perform a control
action (and subsequently a start action) fromC2 andC3. Similarly, E can still perform a detect action fromC1.
The subgraph covering configurationsC∗ andC1 throughC14 shows that there are 4 different configurations
C11 throughC14 that can be entered after E has performed a detect action and A has completed starting its
firing. These 4 configurations can be reached via various paths fromC∗, where the chosen path reflects how the
non-deterministic choices between alternative enabled actions from each intermediate configuration are resolved.

Firing a kernel may finish whenever its remaining execution time reduced to0. Definition 11 formalises this
with akernel endaction by consuming the appropriate number of tokens from its input ports and one token from
each control port (if it has such ports) as well as producing the proper number of tokens to the output ports. There
is one target configuration in which the kernel returns to a state where it is willing to perform the next firing.

Definition 11 (Kernel End Action Transition) A kernel end action transition
end(k)
−→ ⊆ Θ × D(Θ) reflects

finalising the firing of a kernelk. Transition relation(φ, ψ, κ, δ)
end(k)
−→ � with �(φ′, ψ′, κ′, δ) = 1 holds ifκ(k) =

(s, 0) for some scenarios ∈ Sk. The resulting configuration(φ′, ψ′, κ′, δ) is given by

φ′ =

8><>:
φ[bi → φ(bi) − Rs

k(i)] for each non self-loop channelbi connected to an input porti ∈ Ik

φ[bo → φ(bo) + Rs
k(o)] for each non self-loop channelbo connected to an output porto ∈ Ok

φ[bl → φ(boi) + Rs
k(o) − Rs

k(i)] for each self-loop channelboi connecting ano ∈ Ok to ani ∈ Ik

andψ′ = ψ[bc → ψ(bc) − ψ(bc)1] for each channelbc connected to ac ∈ Ck andκ′ = κ[k → (−,−)].

Below, we explain that the remaining execution time of kernel A reduces to0 in configurationsC15 andC16,
thereby enabling the end action toC17 andC18 respectively. Observe that finishing the firing of A results in
producing tokens on the channel to detector E. Because the subscenario for E is know to bes2 for C17 ands3

for C18, E can perform a start action conform Definition 10. Since E has only one possible execution time for all
its subscenarios, there is one target configuration (C20 andC21 respectively) for such start action.

Finalising the firing of a detector with adetector endaction is similar to finalising the firing of a kernel
except that it also involves the production of scenario-valued tokens onto control channels. When detector E
finishes firing by an end action, it produces tokens valued equal to the subscenario in which it operated. As a
result, kernels B, C and D can then start firing with a control action. Figure 9 exemplifies how B can perform a
control action from configurationC40 where E has produced tokens valueds3 onto control channels to B, C and
D. Definition 12 specifies that the end action returns detectors in a state that may enable a detect action again.

Definition 12 (Detector End Action Transition) A detector end action transition
end(d)
−→ ⊆ Θ × D(Θ) fi-

nalises the firing of a detectord. Transition relation(φ, ψ, κ, δ)
end(d)
−→ � with �(φ′, ψ′, κ, δ′) = 1 holds if δ(d) =
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(Ss1 , . . . , SsN
, ω, 0) for some combination of states for theN = |Sd| Markov chains associated withd and

subscenarioω ∈ Ωd. The resulting configuration(φ′, ψ′, κ, δ′) is defined by

φ′ =

8><>:
φ[bi → φ(bi) − Rω

d (i)] for each non self-loop channelbi connected to ani ∈ Id

φ[bo → φ(bo) + Rω
d (o)] for each non self-loop data channelbo connected to ano ∈ Od

φ[bl → φ(boi) + Rω
d (o) − Rω

d (i)] for each self-loop channelboi connecting ano ∈ Od to ani ∈ Id

and

ψ′ =

8>>>>>><>>>>>>:
ψ[bc → ψ(bc) − ψ(bc)1] for each non self-loop channelbc connected to ac ∈ Cd

ψ[bo → ψ(bo) + tωd (o)] for each non self-loop control channelbo connected to

with tωd (o) ∈ Σ∗
bo

and|tωd (o)| = Rω
d (o) an output porto ∈ Od

ψ[bl → ψ(boc) + tωd (o) − ψ(boc)1] for each self-loop channelboc connecting an output

with tωd (o) ∈ Σ∗
boc

and|tωd (o)| = Rω
d (o) porto ∈ Od to a control portc ∈ Cd

andδ′ = δ[d → (Ss1 , . . . , SsN
,−,−)].

Notice that Definition 12 allows specifying the production of any sequence of tokens onto a control channel
that has the appropriate length. In this report, we assume that such sequences consist of equally valued tokens.

Next to the six types of action transitions, the TPS may includetime transitionsto represent progress in
time. Like in traditional dataflow models, SADF has one notion of time, which means that time advances for all
processes together (synchronously) and with the same amount. Definition 13 specifies that this amount equals
the smallest remaining execution time of all processes with positive remaining execution time. Alternatively, one
could choose to allow advancing time with anything not greater than this smallest time. That would however
imply infinite sets of configurations and transitions. This originates from having real valued time, which would
enable all possible ways (there are infinitely many) of splitting progress in time with exactly the smallest re-
maining execution time into (infinitely many) smaller steps, see for example [12]. Choosing to always advance
time with the smallest remaining execution time ensures that the TPS defined by any SADF graph excludes the
possibility of multiple enabled time transitions from a configuration.

Definition 13 (Time Transition) A time transition
time(t)
−→ ⊆ Θ × D(Θ) denotes progress in time witht units.

Transition relation(φ, ψ, κ, δ)
time(t)
−→ � with �(φ, ψ, κ′, δ′) = 1 holds if there exists a process with a positive

remaining execution time and no end action transitions are enabled, wheret is the smallest remaining execu-
tion time of all processes with a positive remaining execution time. The resulting configuration(φ, ψ, κ′, δ′)

is defined byκ′(k) = (s, n − t) if κ(k) = (s, n) for somes ∈ Sk and n > 0 for each kernelk, while
δ′(d) = (Ss1 , . . . , SsN

, ω, n− t) if δ(d) = (Ss1 , . . . , SsN
, ω, n) for some combination of states for theN = |Sd|

Markov chains associated with detectord, someω ∈ Ωd andn > 0 for each detectord.

Next to advancing time with the smallest positive remaining execution time, Definition 13 requires no end
actions to be enabled. In other words, finalising the firing of processes is prioritised over advancing time. A
process can only perform an end action in case its remaining execution time is0. Hence, the TPS defined by an
SADF graph excludes the possibility of advancing time without intermediately performing (end) actions.

Observe that Definition 13 does not prescribe how non-determinism between advancing time and performing
actions other then end actions should be resolved. Consider a configurationC that is entered after some process
performed a start action such that its remaining execution time is positive. Then, a time transition is enabled
from all configurations reachable fromC up to configurations in which an end action is enabled. Although
Definition 13 captures all possible scheduling policies, it is often convenient to choose for a specific class of
scheduling policies that prescribes when time should advance compared to performing actions. An important
class of scheduling policies are those policies that perform actions without delays (i.e., all actions are performed
before time advances, which then enables performing actions again). Suchaction urgency[29] matches withself-
timed executionfor SDF graphs [32]. Self-timed execution of SDF graphs ensures obtaining maximal throughput
[19]. Assuming action urgency may however be disadvantages for other metrics like latency [15]. The assumption
of action urgency emerges in Figure 9 in not considering subgraphs due to time transitions from configurations
C20, C21 andC23 throughC30. Observe on the other hand that action urgency does not prescribe how non-
determinism between alternative actions should be resolved, thereby leaving several scheduling options open.
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5 Conclusions

This report describes the full model of Scenario-Aware Dataflow, covering all considerations encountered during
its design. Despite extending the basic model of [37] in several ways, all properties and analysis techniques de-
scribed in [37] are still valid. The tools for analysing SADF graphs in [35] already support this full SADF model
both for model checking and simulation-based estimation of various worst/best-case, (probabilistic/expected)
reachability and average-case performance metrics. Future work lies in extending the tool set with additional and
more efficient analysis facilities. Approaches to (semi-)automatically derive SADF models from source code of
streaming applications and incorporation in automated design flows are other directions of future research.
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