
  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Performance Analysis of Weakly-Consistent 
Scenario-Aware Dataflow Graphs 

 
Marc Geilen, Joachim Falk, Christian Haubelt, Twan Basten, Bart Theelen 
and Sander Stuijk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ES Reports 
ISSN 1574-9517 

 
ESR-2011-03 
12 December 2011 

 

Eindhoven University of Technology 
Department of Electrical Engineering 
Electronic Systems 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2011 Technische Universiteit Eindhoven, Electronic Systems. 

All rights reserved. 

 

 

 

 

http://www.es.ele.tue.nl/esreports 

esreports@es.ele.tue.nl 

 

Eindhoven University of Technology 

Department of Electrical Engineering 

Electronic Systems 

PO Box 513 

NL-5600 MB Eindhoven 

The Netherlands 



Performance Analysis of Weakly-Consistent Scenario-Aware
Dataflow Graphs

Marc Geilen1, Joachim Falk2, Christian Haubelt3,
Twan Basten4,1, Bart Theelen4 and Sander Stuijk1

1Dept. Electrical Engineering, Eindhoven University of Technology
2Dept. Computer Science, University of Erlangen-Nuremberg

3Dept. Computer Science and Electrical Engineering,University of Rostock
4Embedded Systems Institute, Eindhoven, The Netherlands

Email: {m.c.w.geilen,s.stuijk, a.a.basten}@tue.nl, falk@cs.fau.de,
christian.haubelt@uni-rostock.de, b.d.theelen@esi.nl

December 12, 2011

Abstract

The timed dataflow model of computation is a useful performance analysis tool for
Electronic System Level Design automation and embedded software synthesis. It is used
to model systems, including platform mapping and resource scheduling, of components
communicating and synchronizing in regular patterns. Its determinism gives it strong
analysability properties and makes it less subject to state-space explosion problems. Be-
cause of its monotonic temporal behaviour it can provide hard real-time guarantees on
throughput and latency. It is expressive enough to cover a fairly large class of appli-
cations and platforms. The trend however, in both embedded applications and their
platforms is to become more dynamic, reaching the limits of what the model can express
and analyse with tight performance guarantees. Scenario-aware dataflow (SADF) is an
extension that allows more dynamism to be expressed, introducing a controlled amount
of non-determinism into the model to represent different scenarios of behaviour. The
combination of a relatively infrequent switching between scenarios and still deterministic
dataflow behaviour within scenarios stretches the expressiveness of the model while keep-
ing sufficient analysability. In this report we investigate so-called weakly consistent graphs
in which the scenario changes are not tightly coupled with periods of repetitive behaviour
of the static dataflow behaviour in scenarios as in previous methods. We define their
semantics in terms of (max,+) algebra and we introduce a method to analyse throughput
using a generalisation of (max,+)-automata.

keywords: performance analysis, synchronous dataflow, (max,+)-algebra
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1 Introduction

To develop concurrent embedded software applications and the platforms on which they exe-
cute, it is important to be able to efficiently assess whether or not performance requirements
will be met. The possible parallel tasks and resource arbitrations create dependencies be-
tween tasks that manifest themselves as synchronisations between tasks and time delays to
capture processing or execution times, data dependencies and synchronization constraints.
Such synchronisations and delays are captured well by performance models that build upon
the (max,+) semiring [1], such as Network Calculus [5], Real-Time Calculus [29], timed Petri-
nets [8,24], max-plus automata [13], and the timed dataflow models. In this work we use timed
dataflow models to study the performance of stream-based applications mapped on a platform
under allocated resources.

An important feature of timed dataflow models for performance analysis is their determi-
nacy. Dependencies between tasks cannot change because of variations in timing or scheduling.
There exist different classes of dataflow models. In the most restricted ones, such as timed
Synchronous Dataflow (SDF) [21, 26], dependencies must also be independent of input data,
while some more dynamic models (for instance Dynamic Dataflow [7]) do allow such variation
with different input data. A consequence of the fact that the structure of dependencies is
fixed, is their monotonicity. Whenever a task requires less time to execute than the modelled
worst-case execution time, this cannot lead to a situation where any other task completes
its work later. (This would for instance be possible for tasks being scheduled under a non-
preemptive scheduling policy.) The great benefit is that while in reality execution timing may
be non-deterministic, it can be conservatively, accurately modelled by a completely determin-
istic execution. This avoids or reduces state-space explosion problems during performance
analysis.

The growing challenge is that the static structures of data dependencies and regular execu-
tion times with limited variation are becoming more and more exceptional as both applications
and platforms are becoming more dynamic. Applications are becoming more dynamic, for
instance, because of complex data reduction schemes, which introduce strong data-content
dependencies. Video codecs will have very low data rates for static scenes, while data rates
may increase a lot for moving action scenes. Hand held devices need to support a wide range
and diversity of communication protocols. More and more is handled in software by software-
defined radio implementations. Novel cognitive radio protocols have strong adaptivity to
environmental conditions. For MP3 compression, different parts of the audio, called frames,
may be encoded using different methods. These methods cannot be accurately captured in a
single, static dataflow model. Besides the application, also the platforms are becoming more
dynamic. They need to dynamically handle various use-case scenarios of applications and use
dynamic QoS management to match available resources with applications.

In order to deal with the increasing amounts of dynamic behaviour in applications and
platforms, there is a growing need for performance models that can deal with more dynamic
behaviour and can still provide tight performance guarantees. Most importantly, they should
remain at the same high level of abstraction and they should not fall victim to state-space ex-
plosion problems more than necessary. For this reason, the so-called Scenario-Aware Dataflow
(SADF) timed dataflow model [28] tries to maintain as much as possible of the determinacy
of dataflow behaviour, while introducing the possibility for non-deterministic variations in the
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form of scenarios. In MP3 decoding for instance, there are five individual coding schemes
for audio frames. Each of these schemes can be represented accurately by a static dataflow
graph, while the types of frames may occur non-deterministically in arbitrary orders. The
SADF model and analysis techniques exploit the determinacy in behaviour within a single
scenario, while allowing for non-deterministic selection of the scenarios that occur. A crucial
aspect is the concurrency among different scenarios. Concurrent implementations of stream-
ing applications are often pipelined. For the MP3 decoder this means that different frames
in different scenarios may simultaneously be decoded. Yet, it turns out that for the analysis,
scenario behaviour can be separately and sequentially handled, despite their overlap in time.

The SADF model, introduced in [28], models how scenarios of behaviour can be detected
in an input stream being processed and how the application responds differently to different
scenarios. In this way more accurate performance bounds can be computed or estimated. Ini-
tial analysis methods were based on the construction of a labelled transition system based on
the operational semantics of the model. Because of a limited separation of non-deterministic
scenario behaviour and the determinate dataflow computations, the methods could suffer
from state-space explosion problems. Analysis methods for the Synchronous Dataflow model,
based on spectral analysis techniques in the linear algebra on the (max,+) semi-ring have
been introduced to the analysis of a particular subset of SADF models that are called strongly
consistent, which means that every individual scenario behaviour corresponds to a complete
iteration of an SDF graph. For the analysis of the combination of non-deterministic sequences
of scenarios which are modelled as SDF behaviour, the theory of (max,+)-automata [13] has
been used [15].

The contribution of this report is to generalise the performance analysis approach of [15] to
the case of [28], where scenarios may occur at a finer granularity than complete SDF iterations.
This class is called weakly consistent SADFs, as opposed to the strongly consistent case, in
which every scenario corresponds to a full iteration and hence is consistent in the sense that
on every dependency edge, the number of produced and consumed data elements during that
scenario are equal. For weakly consistent graphs, this is not necessarily the case, although
in the long run, they need still be consistent (explained more precisely in Section 4), hence
the name ‘weakly consistent’ graphs. In particular, we introduce methods to determine the
worst-case throughput of a weakly consistent SADF and a compact state-space from which
latency type of properties can be determined.

Example An example of the type of system that we are addressing is shown in Figure 1,
which depicts an MP3 decoder. Figure 1(a) shows its structure. The decoder gets its input
from some data source, e.g., a file, in an input buffer that is being refilled when it becomes
empty. The input data is decompressed by an entropy decoder based on an Huffman code.
Every now and then an audio frame is completed and can be processed by the synthesis filter
banks. Figure 1(b) shows a dataflow model of the decoder. Note that the bigger ellipse in
the figure, labelled ‘MP3 Synthesis’ is in fact a large dataflow graph, which depends on the
audio frame type and consists of up to 20 separate actors taking hundreds of actor firings
to complete the synthesis of the frame. The three tokens shown on the edges sticking out
of the synthesis graph represent the dependencies carried over from one frame to the next.
In this example, we have mapped the decoder onto three processors. The three tokens Proci
represent these resource dependencies. Each processor individually, but independently from
each other, needs to complete a frame before starting the next frame. Note that in Figure
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File Reader MP3 SynthesisEntropy Decoder

MP3 SynthesisF.R. E.D.

(a) block diagram of MP3 decoder
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Proc1 Proc1

Proc2

Proc3

(b) dataflow graph of MP3 decoder

(c) FSM specifying scenario sequences

Figure 1: An MP3 decoder

1(b) there are three tokens labelled Proc1, these in fact represent the same token modeling
the processor 1 dependency, but in different scenarios.

Finally, the finite state automaton (on infinite words) in Figure 1(c) is our specification of
the possible orders in which scenarios can occur. We have used counters (r and s) to provide
a more compact representation of the automaton, but it can easily be unfolded to a regular
FSM. Edges are labeled with guards on the counters and assignments to counters, but, most
importantly, with the scenario that is executed when the edge is taken. dec denotes execution
of the entropy decoder, rd of the file reader and ss, sl, ls, ll and mm represent decoding of
any of the five different types of audio frame. The file reader needs to be run once every ten
firings of the decoder and the decoder may non-deterministically produce a complete frame,
but needs to complete a frame at least once every five executions.

Interleaving of non-deterministic choices of the FSM (which, unfolded, has 65 states) with
the execution of this dataflow graph (792 firings in the largest scenario, ss, as well as pipelining
of multiple frames) can easily lead to state-space explosion. Moreover, in this example there
are two independent, unsynchronized, sources of non-deterministic behaviour. On the one
hand, the entropy decoder occasionally produces a frame to be synthesised, but how often
depends on the compression achieved for the particular piece of music. On the other hand,
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the decompressed frames occur in different types which are decoded differently. Making this
distinction leads to tighter estimates of the performance compared to synchronous dataflow
models without scenarios. The results of this report make it easier to model the individual
sources of scenarios independently and to model them more accurately. Forcing this behaviour
into a synchronous model may require abstractions that leads to less precise performance
estimates.

2 Related Work

Within the broad scope of performance analysis and schedulability analysis, we focus on a
particular class of systems with repetitive behaviour, processing on streams of data leading
to strong dependencies between the individual tasks. The (max,+) semi-ring and its linear
algebra [1] are very suitable to express the behaviour and semantics of such models and it
forms the basis of many popular performance analysis models, such as Network Calculus [5],
Real-Time Calculus [29], timed Petri-nets [8, 24], and the family of timed dataflow models of
which SADF is a member.

Dataflow models of computation come in a wide variety of different versions that range
from very static through more dynamic and (partially analysable) models, to very dynamic,
but also very hard to analyse models. The static models include for instance (homogeneous,
cyclo-static) synchronous dataflow [4, 22, 26] and Computation Graphs [20]. The following
models incorporate some dynamism, but still provide a good level of analysability. Hete-
rochronous Dataflow (HDF) [16] introduces dynamism by combining a finite state automaton
with synchronous dataflow graphs in the individual states. The model is restricted to execut-
ing complete iterations per state transition of the automaton and the model does not have
a timed version for performance analysis. Parameterised Synchronous Dataflow (PSDF) [2]
considers a static structure of a dataflow graph, where one or more of the port rates are given
by parameters rather than constants. It is possible to find parameterized schedules for such
graphs and find appropriate buffer sizes, but the possibilities for expressing dynamism are
limited. Apart from a similar parameterised model, Wiggers et al. also introduce a var iable
rate dataflow model (VRDF) [33], where communication rates of actors may vary arbitrarily
and are not necessarily constant over a complete iteration. Analysis methods for this model
are restricted to (conservative) buffer sizing under throughput constraints. More dynamic
variations on dataflow models have been defined, but they introduce serious difficulties in the
analysis. Their buffer sizing and throughput analysis problems are undecidable. Dynamic
dataflow (DDF) and Boolean Dataflow (BDF) [6] are dataflow models where the firing rules
can be data dependent. Kahn Process Networks [18, 19] are also a form of dynamic dataflow
model, but not based on actors with firing rules. Its dynamism and data-dependent behaviour
make the relevant analysis problems undecidable.

Network Calculus was introduced for the analysis of network processing on streams of
network traffic. It abstracts concrete streams into worst-case bounds on amounts of traffic
observed in any interval of a particular duration. Real-Time Calculus is a specialization of
the Network Calculus approach to schedulability analysis of real-time embedded systems.
In particular towards modeling of arbitration of shared resources and resource composition.
The abstraction into the time-interval domain makes it harder to model dependencies, in
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particular circular dependencies, although extensions have been made to make handling such
dependencies feasible or more accurate [30].

Petri-nets [25], with its many variants is also a model of computation that can express
deterministic dataflow behaviour, as well as non-deterministic behaviour. Timed Marked
Graphs [8] are in fact a class of Petri-nets equivalent to timed synchronous dataflow graphs.
Determinism and consistency can be expressed as network invariants. We are not aware of
any Petri-net analysis techniques that combine large aggregations of deterministic dataflow
behaviour with only the essential non-deterministic choices.

An appropriate semantic domain for timed synchronous dataflow behaviour is (max,+)-
linear algebra [1]. We also exploit it in this report. Spectral analysis in this linear algebra
is intimately related to throughput and latency analysis. (max,+)-automata [13] combine
(max,+)-linear behaviour with non-deterministic choice. We use this combination to model
non-determinism introduced by scenarios. The Heaps of Pieces model [14,32] is a specialisation
of (max,+)-automata, used in literature to study the behaviour of discrete event systems and
in particular Safe Timed Petri/nets (see for instance [14]). It is important to observe the
difference between the (max,+)-automaton model and the Heaps of Pieces model, namely
that Pieces cannot accurately capture a larger collection of dataflow actor firings as a single
Piece, since Pieces have fixed relative starting times (the ‘lower contour’) and fixed completion
times (the ‘upper contour’). As such, a Piece is ‘rigid’, while an iteration is more ‘flexible’
as it consists of a collection of independent actor firings, i.e., an aggregated stack of Pieces;
the resulting upper contour may depend on the starting lower contour. By modelling only
individual firings, the model is too fine-grained to efficiently represent complex graphs.

We will show how our analysis problem is ultimately mapped on a Maximum Cycle Ratio
(MCR) problem on a directed multigraph, derived from a (max,+)-automaton. For the MCR
analysis we have implemented the algorithm of Young et al. [34]. A generalisation of cycle
mean or cycle ratio analysis is provided by spectral analysis of (max,+)-linear systems [9,11].
Spectral analysis gives not only the cycle mean, (eigenvalue), but also an eigenvector, which
provides information about the relative firing times of actors, or latency. A good overview
and comparison of cycle mean, cycle ratio and spectral analysis methods can be found in [10].

In this report we use synchronous dataflow graphs in the individual scenarios. However,
in contrast to most work dealing with synchronous dataflow graphs we do not consider only
complete iterations [15, 16], but allow partial repetition vectors. A special case of grouping
firings results from clustering of SDF actors [3, 12, 23]. The result can be a quasi-statically
scheduled system, in which the clustered actors can be modelled as scenarios of a weakly-
consistent SADF. Hence, the proposed analysis can also be applied to such systems. Another
work exploring this aspect is [31], which considers a modular implementation of SDF, where
firings of an SDF iteration are grouped together. These may be individually scheduled de-
pending on the presence of input data. The work in this report might be used to add a
performance dimension to this kind of code synthesis.
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3 Preliminaries

We give brief introductions to SDF, the extension of dataflow with scenarios, the timing-
semantics of SDF formulated in (max,+)-algebra, and (max,+)-automata as an analysis tool
to the minimal extent required for this report.

3.1 Synchronous Dataflow Graphs

Synchronous Dataflow Graphs are directed (multi-)graphs in which the nodes represent actors,
entities that model computations or other events that take time, such as a computation task on
a processor or resource arbitration delays. Actors perform their events or actions repeatedly.
A single action is called a firing of the actor. The directed edges, connecting actors, are called
channels and represent dependencies between actor firings. Dependencies in the model may
have different origins in reality. They may be data dependencies, but they may also represent
resource dependencies, for instance when an activity requires a resource that first needs to be
released by another activity. Concrete dependencies are incarnated by tokens (sometimes also
called delays) that are being communicated across the channels. In SDF, actors producing or
consuming tokens can do so with constant rates. Each firing may consume or produce multiple
tokens, but the number needs to remain constant across firings. Channels may initially already
contain some tokens, which are called initial tokens.

Because of the constant rates with which tokens are communicated, actor firings occur
in repetitive patterns called iterations. An iteration defines a (smallest, positive) number of
firings for each actor which is such that the net effect on the number of tokens on channels
remains unchanged. From this invariant, it is clear that this pattern or iteration can be
repeated infinitely to obtain a streaming execution of the dataflow graph.

3.2 (max,+) semantics of SDF

Semantics of SDF graphs comes in two flavours. Some focus on functional behaviour of actors
and graphs. Others focus on the performance of SDF graphs to predict their throughput or
latency. In this report, we investigate the second kind, timed SDF [26]. SDF graphs can
be translated into equivalent event graphs [1, 26], although this may involve a considerable
increase in the size of the graph. From this it does follow however that the timing behaviour
of SDF graphs follows similar patterns as event graphs. In particular, their behaviour is
deterministic and eventually becomes periodic. This behaviour can be captured efficiently
by means of (max,+)- algebra [1], a linear algebra based on the operations of maximum and
addition.

An interesting feature of timed SDF graphs is that although the semantics assumes fixed,
deterministic execution times and therefore has a deterministic behaviour, it can faithfully
capture systems in which the execution times are non-deterministic, yet bounded from above,
by deterministic execution times. Throughput results of the deterministic SDF graph provide
guaranteed lower bounds on the actual throughput of the system [1,26].

The timing is encoded by dater functions which assign to tokens alive in the graph at
a given state, a time stamp of their first occurrence. We illustrate this with an example in
Section 5.
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We now briefly introduce some notation related to (max,+)-algebra (see [1] for background
on (max,+)-algebra). (max,+)-algebra defines the operations of the maximum of numbers
and addition over the set IR−∞ = IR ∪ {−∞}, the real numbers extended with −∞. For
readability we use the standard notation for the max and addition operations instead of the
⊕ and ⊗ notation mostly used in (max,+) literature. Moreover, for scalars x and y, x · y
(with shorthand xy) denotes ordinary multiplication, not the (max,+) ⊗ operator. The max
and + operators are defined as usual with the additional convention that −∞ is the zero-
element of addition: −∞+ x = x+−∞ = −∞ and the unit element of max, max(−∞, x) =
max(x,−∞) = x. (max,+) is a linear algebra: x + max(y, z) = max(x + y, x + z). The
algebra is additionally extended to a linear algebra of matrices and vectors in the usual way.
For a matrix M and vector x, we use Mx to denote the (max,+) matrix multiplication.
||a|| denotes a vector norm, defined as: ||a|| = maxi ai, i.e., the maximum element. For a
vector a with ||a|| > −∞, we use anorm to denote a − ||a||, the normalised vector a, so
that ||anorm|| = 0. An inner product is defined as follows: aTb := maxi(ai + bi). If matrix
M = [mj ] (i.e., has column vectors mj), then Mx := maxj(mj + x) and MTx := [mT

j x].
It is easy to verify that also matrix multiplication is linear: M(max(x,y)) = max(Mx,My)
and M(c+ x) = c+ Mx.

3.3 Scenario-Aware Dataflow Graphs

Scenario Aware Dataflow graphs [28] are a variant of dataflow models of computation that tries
to occupy a sweet spot in the trade-off between analysability and expressiveness, in particular
the ability to express more dynamic behaviour. It can be seen as a timed extension of the
Heterochronous Dataflow model [16]. It also combines Synchronous Dataflow behaviour with
finite state-automata. However, it extends the HDF model with time and optionally stochastic
behaviour, by using Markov chains instead of FSMs. It further generalises the HDF model by
allowing the FSM transitions to occur not only at the borders of complete iterations of the SDF
behaviours, but also at intermediary stages. An important element of the timed model is that
even though the FSM transitions occur in-between pieces of deterministic dataflow behavior,
this does not mean that such pieces cannot overlap in time, i.e., cannot be pipelined. If that
were not allowed, no tight performance predictions could be made. In this report, we exploit
the fact that although they are pipelined, they are independent and their analysis can be
sequentialized.

An important strength of the (timed) synchronous dataflow model is its determinism. An
important goal of the SADF model is to mix a limited amount of non-deterministic behaviour
by transitions of scenarios expressed by the FSM, without sacrificing the benefits of the
deterministic behaviour within scenarios for efficient analysis.

The semantics of SADF can be captured by a combination of classical FSM semantics and
(max,+)-based semantics of the scenarios of determinate synchronous dataflow behaviour.
The precise semantics is worked out in more detail in Section 6. The combination of state
machines and (max,+)-matrix multiplication is called a (max,+)-automaton and is briefly
introduced in the next subsection.
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3.4 (max,+)-automata

A (max,+)-automaton [13], with some simplification of details not required for this report
and rephrased using terminology of this report, is a tuple A = (Σ,M,M), consisting of a
finite set Σ of scenarios, a mapping M, which assigns to every scenario σ ∈ Σ a (max,+)-
matrix M(σ) and a morphismM on finite sequences of scenarios, mapping such sequences to
a (max,+)-matrix such that

M(σ1 . . . σk) = M(σk) . . .M(σ1).

For a given sequence of scenarios, the automaton defines the completion time as follows:

A(σ1 . . . σk) = ||M(σ1 . . . σk)0|| = ||M(σk) . . .M(σ1)0||.

Then, M(σ̄)0 captures the production times of the tokens of the SADF after the sequence σ̄
of scenarios. We are typically interested in the time when the final token is produced. This is
captured by taking the (max,+)-norm (maximum entry) of the resulting vector. We are often
interested in the worst-case throughput for any possible sequence of scenarios. This means, in
the worst-case increase ofA(σ̄) for growing length of σ̄. Gaubert shows [13] how this maximum
growth rate, determining minimum throughput can be efficiently computed as the maximum
cycle mean of the equivalent timed event graph [1] of the matrix M = maxσ∈Σ M(σ) if the
matrices are all square and of the same size. It also shows how, given an infinite regular
sub language of Σ∗, the set of all finite scenario sequences, the maximum growth rate can be
determined using a classical product automaton construction. Its worst-case behaviour can
then by analysed using spectral analysis of a corresponding matrix, or if we are only interested
in throughput by maximum cycle mean analysis directly on the automaton graph.

For this report, we will need some slight generalisations of this concept. In particular,
instead of studying the average growth rate per step of the automaton, we will study the ratio
of the growth rate relative to another quantity expressed as the sum of a certain benefit or
reward per scenario. This amounts to application of the generalised spectral problem [9] to
(max,+)-automata. In this case, the worst-case throughput can be determined as an MCR of
the automaton where edges now have two labellings, delays and rewards. Moreover, we will
associate also non-square matrices M(σ) with scenarios. We assume that we always use a
specification of legal scenario sequences that is consistent with the matrix sizes, i.e., such that
the morphismM is well-defined. This can be achieved by creating duplicates of the states of
the automaton for matrices of different size, which is also needed for the construction of the
automaton product to restrict infinite scenario sequences to a regular sublanguage of Σω.

4 A semantic model of weakly consistent SADF

In strongly consistent SADF graphs, every transition of the FSM corresponds to a full iteration
of the SDF graph for the particular scenario. An iteration is the smallest collection of actor
firings that returns the graph to its original state. It is therefore a piece of behaviour that
can be repeated forever. Moreover, in this way it is clear that switches between scenarios
are possible in such states, because the initial states are identical for all scenarios. State in
this case refers to the tokens present in the graph, as the graph’s actors and channels may
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Figure 2: An example weakly-consistent SADF.

be different in different scenarios, but the initial tokens (having unique identities) are found
in all scenarios. More specifically ‘state’ of those tokens refers to time stamps indicating the
starting time of their availability to be further used (consumed), i.e., a dater function on the
collection of initial tokens.

Although for many applications of this type of scenario aware dataflow behaviour, scenar-
ios align well with pieces of behaviour that constitute iterations, there exist also situations in
which it is convenient to consider units at smaller granularity, as explained above. We gener-
alize the model to allow for the situation in which every edge of the FSM corresponds to an
arbitrary (but fixed) collection of firings, not necessarily a single iteration or a whole number
of iterations. This means that in contrast with the strongly consistent case, the starting state
and ending state of a scenario graph are not necessarily the same and the definition of the
possible sequences of scenarios needs to take into account that ending states of scenarios and
starting states of the subsequent scenarios match. Practically, this means that they must have
the same set of tokens. It is easy to see that all the firings along any cycle of the FSM must
return the tokens to their original positions and that as long as the ending state of previous
and starting states of the next scenario are consistent, then this constraint holds.

In order to establish a semantic framework for the behaviour of weakly consistent graphs
we consider a generalisation of the semantics of strongly consistent graphs [15]. In that case
every scenarios captures an iteration of an SDFG and this iteration can be fully and precisely
characterised, in line with the (max,+) semantics of SDF, by multiplication a square (max,+)-
matrix. The size of the matrix is equal to the number of initial tokens in the graph. For weakly
consistent graphs, this means that the number of the tokens before and after the execution
of the firings of the scenario may be different, but nonetheless, this can be fully and precisely
characterised by a (max,+)-matrix. In this case however, the matrix need not be square. In
the following section, we derive the semantic model for the running example graph.

5 Example

We establish the (max,+)-automaton model of the running example graph shown in Figure 2.
The initial state of the FSM is k and k has an edge to itself labelled with the scenario α,
which corresponds to a firing of actor P and a firing of actor Q in ‘mode’ a. Initial tokens,
shown as black dots at the edges, are labeled by numbers for reference. This combination of
firings has no net effect on the distribution of the (three) tokens (Qa produces no token to
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position 3, in this scenario token 4 is untouched). Hence, it is consistent with starting and
ending in the same FSM state k. Let’s think of the starting state as being defined by the two
tokens 1 and 2 in the figure, with their time stamps t1 and t2 respectively. This is captured
in a (max,+)-vector [t1 t2]T . P needs to fire before Qa and consumes both tokens. Hence,
its earliest starting time is max(t1, t2). The firing takes 2 time units and completes at time
max(t1, t2) + 2, which in (max,+) sum-of-product form is equal to max(t1 + 2, t2 + 2), or
in vector inner-product notation: [2 2] · [t1 t2]T . This is the time stamp of the new token
produced at position 1. Next, Qa fires and consumes the token just produced by P on the
edge from P to Q. Its firing takes also 2 units of time and completes at max(t1 + 4, t2 + 4), or
in vector-product notation: [4 4] · [t1 t2]T . This is the time at which the token at position 2
is reproduced. Combining the two symbolic states into a matrix-vector equation, we get the
following relation between the starting state vector and the end state vector.

[
t′1
t′2

]
=

[
2 2
4 4

] [
t1
t2

]

This matrix characterises the collective effect of the (two) firings in this scenario. Note however
that, considering the whole graph, there is a third token present at position 4, that is neither
consumed nor produced in this scenario. It is however part of the state and needs to be
accounted for in state and matrix. It is easy to see that this is done by adding the following
row and column. 


t′1
t′2
t′4


 =




2 2 −∞
4 4 −∞
−∞ −∞ 0





t1
t2
t4




The (max,+) neutral element, −∞, of the max operator appears in those places where there
is no dependency between certain tokens.

The transition α = PQa could be considered a complete iteration in the sense that it has
no net effect on the location of the tokens, although actor R is not involved in the firings.
This is not true for all edges however. Another edge, from state k to state l, is labeled with
scenario β consisting of the firings {P,Qb}. This is not a complete iteration as it produces
an additional token on position 3 on the edge from Q to R. Along the lines of the previous
scenario example and observing that the firing of Q takes 3 time units in mode b, we obtain
the following matrix vector equation.




t′1
t′2
t′3
t′4


 =




2 2 −∞
5 5 −∞
5 5 −∞
−∞ −∞ 0






t1
t2
t4




Note that the matrix is no longer square, because the end state has four tokens while the
starting state has three.

After this, a firingRc will take place in scenario γ, moving from state l tom. This consumes

tokens 3 and 4 and produces token 4, according to t′4 = [2 2]

[
t3
t4

]
. (t′4 = max(t3 +2, t4 +2)).

Token 3 disappears in this process and tokens 1 and 2 remain untouched. The full matrix
thus has size 3 by 4.
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From state m, an arbitrary number of scenarios ‘δ’ are possible, a single firing of Rd, each
of which involves only token 4, according to t′4 = t4 +3. The full matrix equation is as follows.



t′1
t′2
t′4


 =




0 −∞ −∞
−∞ 0 −∞
−∞ −∞ 3





t1
t2
t4




At some point1, a transition ε is taken, back to state k. It is labelled with an empty
set of firings and therefore leaves all tokens at rest. The matrix representation would be a
3 by 3 identity matrix. Note that every cycle in the graph constitutes a collection of firings
that has no net effect on the token distribution, i.e., is consistent. This makes the graph
weakly consistent. As another a-priori sanity check on the graph, it can be verified by a
straightforward reachability analysis whether or not a graph is deadlock free.

Equipped with the scenario matrices that characterise the effect on a system state of
individual scenarios, we can determine the evolution of the system state for any given scenario
sequence. Assume we have the following sequence ααβγδδεαβγ and the initial state t0 =
[0 0 0]T is such that all tokens are present at time t = 0. t1, the state after the first scenario
α is: t1 = M(α)t0 = [2 4 0]T . Continuing, the sequence of states evolves as follows.

t1 = M(α)t0 = [2 4 0]T

t2 = M(α)t1 = [6 8 0]T

t3 = M(β)t2 = [10 13 13 0]T

t4 = M(γ)t3 = [10 13 15]T

t5 = M(δ)t4 = [10 13 18]T

t6 = M(δ)t5 = [10 13 21]T

t7 = M(ε)t6 = [10 13 21]T

· · ·

Figure 3 illustrates this process. Horizontally, a time line is shown. Vertically, the initial
tokens ti are shown. (Note that t3 does not exist in all states.) Every scenario occurrence
corresponds to a transformation on the state vector, amounting to multiplication by the
corresponding matrix. The spaces between the state vectors are colored with a shade of grey
corresponding to the scenario. The arrows have been added to illustrate in what logical order
the scenarios occur and we would like to emphasise again that they can be taken separately,
in sequential order, despite the fact that they overlap in time. This can be compared to the
Gantt chart of the actual actor firings that are being modeled, shown below the graph. Here,
the actor firings are colored with the scenarios in which they occur.

An important observation for deriving a performance analysis method is that we can
trace the critical dependencies that determine the earliest guaranteed completion time of the
sequence to be 24, by token t4. By analysing the dependencies we can see that this timing

1Note that we could add acceptance conditions such as Büchi conditions to the automaton to enforce this.
For simplicity, we do not do this in this report, but addition is straightforward. Moreover, they typically have
no impact on the worst-case performance. In Section 7 we will extend the example to enforce such a transition.
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Figure 3: Execution of a sequence of scenarios

is determined by t2 in the previous scenario, and as it turns it in this case for each earlier
scenario up to the first where t2 depended critically on t1. The white line in the figure shows
this dependency trace. In general, critical dependencies can be traced back through a path
of individual tokens, independent of the state of other tokens in the vector.

6 Model and Semantics

We now formalize the model. We make precise how we specify the graph and what we mean
by its throughput. A weakly consistent SADF graph is defined by a tuple (Σ, G,ρ, i, f, π,A).
It has a finite set Σ of scenarios and every scenario σ ∈ Σ has an associated SDF graph
G(σ) and a partial repetition vector ρ(σ), which maps every actor of G(σ) to a non-negative
number specifying how often the actor fires in the scenario. The graph G(σ) has a collection
of i(σ) ∈ IN initial tokens, which are indexed 0 ≤ n < i(σ). In the practical specification
language, they are given names, but for the formalisation indices suffice. After execution of
the partial repetition vector, the graph G(σ) has a collection of f(σ) ∈ IN ‘final’ tokens, which
are indexed 0 ≤ n < f(σ). (f can be determined from i, G and ρ, but it is convenient to
make it explicit.) We use the (max,+) semantics of the SDF graphs [1] to associate with every
graph G(σ), a (max,+)-matrix M(G(σ)) ∈ (IR−∞)f(σ)×i(σ), or in short M(σ), that precisely
characterises the relationship between the time stamps of the initial and final tokens in the
graph in that scenario as illustrated in Section 5. The FSM A is a tuple (Q, q0, δ) with a set
Q of states, an initial state q0 and a labelled transition relation δ ⊆ Q×Σ×Q. The scenario
labels in the edges must be consistent in the sense that for any state q ∈ Q, any incoming
edge labelled with scenario σ1 and outgoing edge labelled with scenario σ2, f(σ1) = i(σ2),
i.e., the number of final and initial tokens of subsequent scenarios must match. (We implicitly
assume the tokens with the same index to be coupled, its time stamp at the end of scenario
σ1 is the initial time stamp for scenario σ2.) We denote this number of tokens for a state q:
n(q). A accepts the sequence σ̄ of scenarios if and only if there exists a sequence q̄ of states
such that q̄(0) = q0 and for every n ≥ 0, there exists an edge (q̄(n), σ̄(n), q̄(n+ 1)) ∈ δ.

With sequence σ̄, we associate the timing behaviour, a sequence of (max,+)-vectors, such
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that t0 = 0 and for all n ≥ 0, tn+1 = M(σ̄(n))tn. In the above definition, we can now clearly
recognise the structure of a (max,+)-automaton.

It is important to recall that, as is common in the timed dataflow performance analysis [26],
it may be assumed that the (per scenario) constant execution times given in the model are in
fact upper bounds for the real system behaviour and may in reality be non-deterministically
smaller. Execution times may vary in a realisation due to variations in workload caused by
the concrete data being processed, or by influences from its environment, for instance the
amount of interference from arbitration of shared resources and other tasks in the system.
Monotonicity of timing behaviour in dataflow graphs (and hence also in SADF graphs) which
essentially follows from monotonicity of the (max,+)-operators, ensures that performance
guarantees derived for the model are in fact also guaranteed for such implementations.

For synchronous dataflow analysis, it is common to quantify throughput by measuring the
number of iterations per time unit. In our case, it depends on the model how much actual,
‘real-world’ progress is made per scenario. We therefore assume that we explicitly quantify the
amount of progress per scenario. For instance, for the example graph, we may be primarily
interested in the number of firings of actor R. In this case the progress is 1 for scenarios γ and
δ and 0 for any other scenario. For the MP3 example we may count the number of completed
audio frames, by assigning progress of 1 (frame) to the scenarios ss, sl, ls, ll and mm, and
0 to the others. In general, we define a reward function π : Σ → IR≥0, which quantifies the
amount of progress per scenario σ as π(σ).

The throughput obtained from a scenario sequence σ̄ can hence be defined as follows.

τ(σ̄) = lim
k→∞

sup

∑k−1
n=0 π(σ̄(n))

||tk||

I.e., throughput is defined as the average amount of progress made per unit of time. (lim sup
is used instead of an ordinary limit, because the limit may not be defined for certain irregular
scenario sequences.) The primary analysis question we answer in this report is to determine
the worst-case throughput of an SADF graph:

τ = inf
σ̄∈L(A)

τ(σ̄).

We can define an explicit state space semantics of the model. The states of the state-space
consist of pairs (q, t) consisting of a state q ∈ Q of the FSM and a normalized vector t. The
initial state is (q0,0). The transitions of the state-space are constructed as follows. For a
state (q, t), consider every outgoing edge (q, σ, q′) of q in the FSM. Then the state-space has
a labelled transition (

(q, t), ||u|| − ||t||, π(σ), (q′,unorm)
)
,

where u = M(σ)t. The transitions are decorated with two labels. One signifies the amount
of time progress in the scenario and the other the reward, the amount of progress made. It
is not hard to show that if the graph is bounded (cannot accumulate an unbounded number
of tokens on any edge) and it has integer (rational) execution times, then the state-space is
finite.
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Figure 4: (max,+)-automaton of the example graph.

7 Analysis

In order to determine the infimum of the throughput values for all possible scenario sequences
on the graph, we need to find the worst-case scenario sequence. In any scenario sequence,
both time and total reward progress with the scenarios being executed. Progress of time is
measured as the (max,+) norm of the state vectors tk, i.e., the maximum element of the
vector. Since tk+1 = M(σ̄(k))tk, every element of tk+1 is determined by some element of
tk and offset by the corresponding dependency in the (max,+)-matrix. This element in tk
can in turn be traced back to a single element in tk−1 and so forth back to t0. In other
words, to study the relation between time progress and scenario sequences, we need not look
at complete vectors, but we can concentrate on individual elements (initial / final tokens) and
their individual dependencies as expressed by the entries in the matrices.

Figure 4 shows a structure which encodes these dependencies for the example of Figure 2.
The nodes in this graph represent the initial/final tokens (horizontally) in each of the states of
the FSM (vertically). For every edge of the FSM, we take the matrix M(σ), with σ the label
of the edge, and for every finite (non −∞) element in the matrix we draw an edge between
the corresponding initial/final tokens and label it with the value of that element and with the
reward π(σ) of σ. For clarity we have labeled it with the scenario σ itself in the figure.

The precise definition of the (max,+)-automaton corresponding to the SADF graph is as
follows.

Definition 1 For a given SADFG graph (Σ, G,ρ, i, f, π,A), the analysis (max,+)-automaton
is defined in the form of a graph (R, ε) with vertices R and edges ε, as follows.

• R = {(q, i) | q ∈ Q, 1 ≤ i ≤ n(q)}
• ε = {((q1, i),M(σ)i,j , π(σ), (q2, j)) | (q1, σ, q2) ∈ δ, 1 ≤ i ≤ n(q1), 1 ≤ j ≤ n(q2)}
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Figure 5: Refined example SADF.

The worst case throughput of the graph can be determined from a maximum cycle ratio
analysis of the corresponding (max,+)-automaton, i.e., find the simple cycle in the graph that
represents the worst-case ratio of total reward over time progress.

Theorem 1 Let G = (Σ, G,ρ, i, f, π,A) be an SADF graph and (R, ε) be the corresponding
(max,+)-automaton graph, then inf σ̄∈L(A) τ(σ̄) = MCR(R, ε) is the worst-case throughput of
G.

Proof (Idea) Analogous to the results of Section VI of Gaubert [13], in particular Proposition 2, but
generalised to the case of time progress divided by reward progress. �

Note that the example graph has cycles of zero reward (for instance the α self-loops) and
hence the worst-case throughput is zero. Indeed, actor Q may never produce any output to
R in which case, R will never fire. Let’s refine the graph to limit the number of firings of Q in
mode a to two, before it must fire in mode b. And let’s similarly bound the number of firings
of actor R in mode d to three.

This leads to the automaton shown in Figure 5, in which counters have been used to
enforce the above constraints. After unfolding the counters to a plain FSM, it has 8 states.
The corresponding (max,+)-automaton then becomes the graph depicted in Figure 6. Counter
x limits the number of subsequent α’s to two, counter y the δ’s to three.

We have analysed the graph of Figure 5 using the conversion and MCR analysis. The
worst-case throughput is 1

13 . The critical cycle also tells us the scenario sequence that leads
to this worst-case performance. In this case, it is determined to be the cycle of edges that is
shown in bold in Figure 6. It corresponds to a repetition of the scenarios ααβγε, which takes
13 units of time and involves only one firing of R.

8 Experimental Evaluation

We have implemented the worst-case throughput analysis method in the SDF3 tool set [27]
for analysis of dataflow models of computation as an extension to the available scenario-aware
dataflow analysis. Our tool first parses an XML graph description of the model and extracts
the individual scenario graphs. It then computes the (max,+)-matrices corresponding to
the scenarios by means of a symbolic execution of the corresponding dataflow graph. This
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means that token time-stamps are symbolically represented as a (max,+) linear combination
of the time-stamps of the initial tokens of the scenario as illustrated in Section 5. The sum-
of-product expressions can be written as a vector inner-product of a vector of offsets and
a vector with the initial time stamps. A matrix is extracted, where every row corresponds
to a symbolic time-stamp represented as a row vector, taking the offset vectors. Finally,
the (max,+)-automaton is constructed from the scenario FSM and the scenario matrices as
explained in Sections 5 and 7.

To get the performance analysis results, a maximum cycle ratio analysis is performed on
the (max,+)-automaton using the algorithm of Young et al. [34]. Alternatively one could use
Howard’s policy iteration [11,17].

Our tool uses an XML based syntax specification language. We gave initial and final tokens
specific names in the individual scenario specifications, so they can be correlated between
scenarios without having to rely on index or ordering. This way we can also allow for the
specification of initial tokens in a scenario graph that are not carried over from one scenario
to the next. Upon entering such a scenario, they are initialised with a time-stamp of −∞.
We also added syntax to express the number of firings of each actor in a particular scenario,
since they no longer execute according to complete iterations.

We have used the tool to analyse the MP3 decoder model of Figure 1. The specification
consists of the seven dataflow graphs for the individual scenarios. The individual dataflow
graphs only need to specify the actors involved in the scenario. The decoding (dec) scenario for
instance, consists of a single actor, while the frame decoding graphs are fairly large (up to 25
actors for the mm scenario). The specified FSM has (after unfolding of the counters) 65 states.
The (max,+)-matrices extracted from the scenario dataflow graphs are 3 by 3 matrices, where
the rows/columns represent one of the three processors on which the decoder is mapped. The
determinate behaviour of the large scenario dataflow graphs, with many firings, can thus be
very compactly represented. The (max,+)-automaton that is constructed from the FSM and
the matrices has 195 nodes (one for every combination of the three initial tokens and one of the
65 FSM states) and it has 2745 edges. The MCR analysis of this graph tells us the maximal
throughput which is guaranteed to be attainable. The computation time on a standard PC is
around 45ms. As a result we also get a critical scenario sequence from a critical cycle of the
MCR analysis. For our example this is the sequence ss · (dec)5 · ss · (dec)4 · rd · dec, in which
we see that the worst case situation is that the decoder needs its maximum number of firings
to produce an audio frame, combined with the (apparently) hardest of the frame synthesis
scenarios, ss.

9 Conclusion

In this report we introduced an exact analysis method for a class of dynamic dataflow
graphs, called weakly consistent scenario-aware dataflow in which the behaviour may non-
deterministically vary according to scenarios of behaviour, yet within these scenarios be-
haviour is deterministic and follows the synchronous dataflow paradigm which provides us
with powerful analysis techniques. We have defined an alternative semantics for the SADF
model and we have shown how this semantics enables us to avoid mixing the non-deterministic
behaviours and coherent dataflow behaviour despite their pipelined nature and overlap in
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time. We have achieved this by finding an appropriate mapping of this type of graph to (a
generalisation of) (max,+)-automata and exploiting existing spectral analysis techniques in
(max,+)-algebra for performance analysis of our graphs. We have implemented the techniques
in a tool for performance analysis of dataflow models and we see that it can effectively analyse
a model of an MP3 decoder. Future work includes incorporating hierarchical state machines
to model the possibly hierarchical detectors in the original SADF definition. Another inter-
esting direction is to include stochastic information into the definition of scenario sequences
by Markov chains and to analyse the system not only for worst-case, but also for long-run
average or expected performance. We also want to explicitly apply the method for analysis
of clusterings for quasi-static schedules. We also need to do more experimental evaluation for
which we need to do more case-studies and develop the ability to generate random graphs, to
investigate scalability.
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Figure 6: Extended (max,+)-automaton of the example graph.
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