

Modeling Static-Order Schedules in
Synchronous Dataflow Graphs

Morteza Damavandpeyma, Sander Stuijk, Twan Basten, Marc Geilen and
Henk Corporaal

This report is an extended version of the following publication. It adds the proofs omitted from

the publication. If you want to cite this report, please refer to the paper instead.

M. Damavandpeyma, S. Stuijk, T. Basten, M.C.W. Geilen and H. Corporaal, “Modeling Static-

Order Schedules in Synchronous Dataflow Graphs”. In Design, Automation and Test in Europe,

DATE 12, Proceedings. Dresden, Germany, 12-16 March, 2012. EDAA, 2012.

ES Reports
ISSN 1574-9517

ESR-2012-01
12 March 2012

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2012 Technische Universiteit Eindhoven, Electronic Systems.

All rights reserved.

http://www.es.ele.tue.nl/esreports

esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering

Electronic Systems

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

Modeling Static-Order Schedules in
Synchronous Dataflow Graphs

Morteza Damavandpeyma1, Sander Stuijk1, Twan Basten1,2, Marc Geilen1 and Henk Corporaal1
1Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

2Embedded Systems Institute, Eindhoven, The Netherlands
{m.damavandpeyma, s.stuijk, a.a.basten, m.c.w.geilen, h.corporaal}@tue.nl

Abstract—Synchronous dataflow graphs (SDFGs) are used
extensively to model streaming applications. An SDFG can be
extended with scheduling decisions, allowing SDFG analysis to
obtain properties like throughput or buffer sizes for the scheduled
graphs. Analysis times depend strongly on the size of the SDFG.
SDFGs can be statically scheduled using static-order schedules.
The only generally applicable technique to model a static-
order schedule in an SDFG is to convert it to a homogeneous
SDFG (HSDFG). This conversion may lead to an exponential
increase in the size of the graph and to sub-optimal analysis
results (e.g., for buffer sizes in multi-processors). We present
a technique to model periodic static-order schedules directly
in an SDFG. Experiments show that our technique produces
more compact graphs compared to the technique that relies on a
conversion to an HSDFG. This results in reduced analysis times
for performance properties and tighter resource requirements.

I. INTRODUCTION

Synchronous dataflow graphs (SDFGs) are widely used
to model digital signal processing and multimedia applica-
tions [1]–[4]. Model-based design-flows (e.g., [1], [5]–[8])
model binding and scheduling decisions into the SDFG. This
enables analysis of performance properties (e.g, through-
put [9]) or resource requirements (e.g., buffer sizes [10]) under
resource constraints. Fig. 1 shows an example of an SDFG
with four actors and three channels. An essential property of
SDFGs is that every time an actor fires (executes) it consumes
the same amount of tokens from its input edges and produces
the same amount of tokens on its output edges. These amounts
are called the rates (indicated next to the channel ends when
the rates are larger than 1). The fixed port rates make it
possible to statically schedule SDFGs.

Many SDFG analysis algorithms, e.g., throughput calcu-
lation or buffer sizing, are straightforward when a single
processor platform is used. For instance, the buffer sizes
can be determined by executing the SDFG according to a
given schedule. However, in a multi-processor environment,
SDFG analysis algorithms are not trivial because of the inter-
processor communication amongst other reasons. For a multi-
processor, it is possible to construct per processor to which ac-
tors of the SDFG are bound, a finite schedule that sequentially
orders the actor firings and which is repeated indefinitely. Such
a schedule is called a periodic static-order schedule (PSOS).
PSOSs specify the order of actor firing which separates them

This work was supported in part by the Dutch Technology Foundation
STW, project NEST 10346.

a0 a1c0

6
a2

c1

a3c2

33

Fig. 1. An example SDFG

from fully static schedules, which determine absolute start
times of actors. A model-based design-flow usually uses
PSOSs for an application modeled with an SDFG. In this
way timing (throughput) and memory usage (buffers) can be
analyzed.

There is only one technique [11] known to model PSOSs in
an SDFG. This technique requires a conversion of an SDFG to
a so-called homogeneous SDFG (HSDFG) in which all rates
are equal to one [2]. Fig. 2 (without the blue edges) shows the
equivalent HSDFG of our example SDFG of Fig. 1. The PSOS
modeling technique of [11] sequentializes the actor firings by
inserting a channel between each pair of consecutive actors in
a processor schedule. At the end of each schedule, it adds a
channel with one initial token from the last to the first actor
in the schedule. All of these ensure an indefinite execution of
the graph according to the schedules. The technique from [11]
adds in total 15 channels to the HSDFG of our example graph
(the blue edges in Fig. 2) to model PSOSs s0 = 〈a0(a2)2〉∗
and s1 = 〈(a1)5(a3)3a1(a3)3〉∗.

The SDFG to HSDFG conversion can lead to an exponential
increase in the size of the graph. For example, converting the
SDFG of an H.263 decoder [10] to the equivalent HSDFG
increases the graph size from 4 actors to 200 actors. The run-
time of SDFG analysis algorithms depends amongst others on
the size of the graph. As a result, the run-time of many SDFG
analysis algorithms may increase drastically when modeling
PSOSs in the graph using the technique from [11]. For
example, the buffer sizing algorithm from [10] takes less than
1 ms on the SDFG of an H.263 decoder. Modeling a schedule
into this SDFG using the technique from [11], the run-time
of the same algorithm increases to 1330 ms. SDFG analysis
algorithms are usually repeated more than once in an iterative
design-flow. For example, the design-flow from [6] performs
8 throughput calculations to determine the right solution for
an H.263 decoder. Hence, it is vital to keep the size of the
schedule-extended graph as small as possible to provide a fast
and practical design trajectory. There is a second drawback
to the technique from [11]. The original graph structure is

a2_1

a1_1 a1_2 a1_3 a1_4 a1_5 a1_6

a2_2

a3_1 a3_2 a3_4 a3_5 a3_6a3_3a0_1

Fig. 2. PSOSs s0 and s1 modeled in the SDFG of Fig. 1 using the technique from [11].

lost due to the conversion to an HSDFG. A single channel in
an SDFG corresponds to a set of channels in the HSDFG.
As a result, common buffer sizing techniques cannot find
the minimal buffer size for the original SDFG. The H.263
decoder buffer sizes are for example overestimated by 43%
when applying the technique of [10] to the HSDFG. Note
that a conversion to an HSDFG may be required in a code
generation step. However, if this conversion can be delayed
until all analyses are carried out on the SDFG, then this can
save a significant amount of resources (e.g., buffer space) and
analysis time.

A novel technique is needed to model any PSOS in an
SDFG. This technique should limit the increase in the number
of actors such that analysis times do not increase too much
when analyzing the SDFG with its schedules. The technique
should also preserve the original graph structure as this enables
accurate analysis of graph properties such as buffer sizes. This
paper presents a technique that satisfies both requirements.
The technique can be used in any model-based design-flow
that models PSOSs into the SDFG (e.g., [1], [5]–[8]). The
proposed technique can also directly be used to model PSOSs
in scenario-aware dataflow graphs [12].

The remainder of the paper is structured as follows. The
next section discusses related work. Sec. III introduces SDFGs.
Sec. IV formalizes SDFG schedules. Sec. V presents our
technique to model PSOSs in an SDFG. Sec. VI contains the
correctness proof of the presented technique. We evaluate our
technique by applying it to several realistic applications in
Sec. VII. Sec. VIII concludes.

II. RELATED WORK

The technique from [11] is the only available technique
to model PSOSs in an SDFG. As already explained, this
technique may result in a long run-time for analysis algorithms
and/or inaccurate results from these algorithms. Our technique
alleviates both shortcomings of the technique from [11]. The
work in [13] models the effect of a budget scheduler or
preemptive TDMA on the temporal behavior of the SDFG,
either by computing an accurate worst-case response time, or
more precisely by introducing additional actors into a latency-
rate model. In contrast, for non-preemptive schedules, such
as PSOSs, we focus on the ordering of actor firings; their
execution time remains the same. We enforce an SDFG to
follow the PSOSs selected for each processor. This allows
SDFG analysis to obtain properties like throughput or buffer
sizes for the scheduled SDFG. This is also true for the models
of [13]. However, our results are tighter since we do not

overestimate response times. Since we only use the basic
components of an SDFG (e.g., actors and channels) to model
schedules in an SDFG, our schedule-extended SDFG can be
directly used in any model-based design-flow (e.g., [1], [5]–
[8]). Ref [14] uses some new (custom) components, e.g.,
if−then−else, to model schedules in an SDFG. The common
model-based design-flows do not support these components
and it is not possible to model these components by using
the basic components of an SDFG. Our technique eliminates
the need for any new (custom) component. As a result, any
analysis technique for SDFGs is directly applicable on the
schedule-extended SDFG.

III. SYNCHRONOUS DATAFLOW GRAPHS

Let N denote the positive natural numbers, N0 the natural
numbers including 0, and N∞0 the natural numbers including 0
and infinity (∞). Formally we define an SDFG as follows. We
assume a set Ports of ports, and with each port p ∈ Ports
we associate a finite rate Rate(p) ∈ N.

Definition 1. (ACTOR) An actor ai is a tuple (In,Out)
consisting of a set In ⊆ Ports of input ports (denoted by
In(ai)) and a set Out ⊆ Ports of output ports (denoted by
Out(ai)) with In

⋂
Out = ∅.

Definition 2. (SDFG) An SDFG is a tuple (A,C) consisting
of a finite set A of actors and a finite set C ⊆ Ports2 of
channels. The channel source is an output port of some actor,
the destination is an input port of some actor. All ports of
all actors are connected to precisely one channel, and all
channels are connected to ports of some actor. For every actor
ai = (In,Out) ∈ A, we denote the set of all channels that are
connected to the ports in In (Out) by InC(ai) (OutC(ai)).

Fig. 1 shows an example of an SDFG with four actors
(A = {a0, a1, a2, a3}) and three channels (C = {c0, c1, c2}).
These actors communicate with tokens sent from one actor
to another over the channels. Channels may contain tokens,
depicted with a solid dot (and an attached number in case
of multiple tokens). An essential property of SDFGs is that
every time an actor fires (executes) it consumes the same
amount of tokens from its input edges and produces the same
amount of tokens on its output edges. These amounts are
called the rates (indicated next to the channel ends when the
rates are larger than 1). An actor can only fire if sufficient
tokens are available on the edges from which it consumes.
Tokens thus capture dependencies between actor firings. Such
dependencies may originate from data dependencies, but also

from for example dependencies on shared resources. When
an actor ai starts its firing, it removes Rate(q) tokens from
all c(p, q) ∈ InC(ai) and when it ends, it produces Rate(p)
tokens on every c(p, q) ∈ OutC(ai). The rates determine how
often actors have to fire with respect to each other such that
the distribution of tokens over all channels is not changed.
This property is captured in the repetition vector of an SDFG.

Definition 3. (REPETITION VECTOR) A repetition vector of
an SDFG (A,C) is a function γ : A→ N0 such that for every
channel c(p, q) ∈ C from ai ∈ A to aj ∈ A, Rate(p) ·γ(ai) =
Rate(q) · γ(aj). A repetition vector γ is called non-trivial if
and only if for all ai ∈ A, γ(ai) > 0. An SDFG is called
consistent if and only if it has a non-trivial repetition vector.
For a consistent graph, there is a unique smallest non-trivial
repetition vector, which is designated as the repetition vector
of the SDFG.

The repetition vector of the SDFG shown in Fig. 1 is equal
to (a0, a1, a2, a3)→ (1, 6, 2, 6). This shows that the SDFG is
consistent as its repetition vector is non-trivial. Consistency
and absence of deadlock are two important properties for
SDFGs which can be verified efficiently [15], [16]. Any SDFG
which is not consistent requires unbounded memory to execute
or it eventually deadlocks. When an SDFG deadlocks, no actor
is able to fire, which is due to an insufficient number of tokens
in a cycle of the graph. Any SDFG which is inconsistent or
deadlocks is not useful in practice. Therefore, we limit ourself
to consistent and deadlock-free SDFGs.

There exists a special class of SDFGs in which all port rates
are equal to 1. These graphs are called homogeneous SDFGs
(HSDFGs) [16]. Any consistent SDFG can be converted to
an HSDFG [2], [16] that is equivalent from the timing per-
spective. This conversion may however lead to an exponential
increase in the number of actors and it has an impact on the
speed and possibly also the accuracy of the result of analysis
techniques.

IV. SDFG STATIC-ORDER SCHEDULING

A firing of an actor leads to the consumption of tokens
from its input channels and the production of tokens on its
output channels. In order to capture the behavior of an SDFG,
we need to keep track of the distribution of tokens over
the channels. The following concept is defined to measure
quantities related to channels (e.g., the number of tokens
present in channels).

Definition 4. (SDFG STATE) A state of an SDFG (A, C) is
a function ω : C −→ N0 that returns the number of tokens
stored in each channel. Each SDFG has an initial state ω0

denoting the number of tokens that are initially stored in the
channels.

An actor can only be fired if there are sufficient tokens in
all of its input channels. An actor that satisfies this condition
in a particular state is said to be enabled in this state.

Definition 5. (ENABLED ACTOR) An actor ai ∈ A is called

enabled in a state ωj of SDFG (A,C) if and only if ωj(c) ≥
Rate(q) for each channel c(p, q) ∈ InC(ai).

Definition 6. (ACTOR FIRING) The firing of an actor ai ∈ A
in an SDFG (A,C) which is in state ωj results in the transition
from state ωj to state ωj+1 and is denoted by ωj

ai−→ ωj+1.
This transition results in the consumption of Rate(q) tokens
from each channel c(p, q) ∈ InC(ai) and the production of
Rate(p′) tokens in each channel c(p′, q′) ∈ OutC(ai), i.e.,
ωj+1(c) = ωj(c)−Rate(q) +Rate(p′).

Consider again our example graph shown in Fig. 1. Its initial
state ω0 is equal to (c0, c1, c2)→ (0, 0, 0). In this state, actor
a0 is enabled. Firing actor a0 would result in a transition from
state ω0 to a state (6, 0, 0). We use this concept of states and
transitions to formalize the execution of an SDFG.

Definition 7. (EXECUTION) An execution σ of an SDFG
(A,C) is an infinite alternating sequence of states and transi-
tions ω0

ai−→ ω1
aj−→ · · · starting from some designated initial

state ω0.

In a multi-processor system multiple actors may be bound to
the same processor. These actors may be enabled at the same
time. In such a situation, a schedule is needed to determine
the order in which these enabled actors are fired on the
processor. The fixed port rates make it possible to statically
schedule SDFGs with a finite schedule per processor that
orders the actor firings for that processor and which is repeated
indefinitely. Such a schedule is called a periodic static-order
schedule (PSOS). Note that in a multi-processor system, a
separate static-order schedule should be constructed for each
processor. Each schedule should only include actors bound to
this specific processor.

Definition 8. (PERIODIC STATIC-ORDER SCHEDULE
(PSOS)) A periodic static-order schedule is a finite ordered
list of (a sub-set of) actors in an SDFG (A,C). A periodic
static-order schedule is denoted by si = 〈α1α2 . . . αn〉∗
where each αj |1≤j≤n represents an actor from A and n ∈ N
is the length of the schedule si, represented by n = |si|. The
set Ai contains all actors that appear at least once in si
(Ai ⊆ A).

Definition 9. (SDFG ITERATION) Assume SDFG (A,C) has
repetition vector γ. An SDFG iteration is a set of actor firings
such that for each ai ∈ A, the set contains γ(ai) firings of ai.

Definition 10. (PSOS ITERATION) Given a PSOS si =
〈α1α2 . . . αn〉∗ that schedules a subset of actors Ai. A PSOS
iteration is a sequence of actor firings respecting si starting
from the actor α1 and ending with the actor αn with a length
equal to the length of the schedule si and including only actor
firings from actors in Ai. We use CNT (aj , si) to denote the
count, i.e., number of appearances, of actor aj in one iteration
of the PSOS si.

A looped schedule, si = 〈(α1)β1(α2)β2 · · · (αm)βm〉∗, is
defined as a successive execution of α1 repeated β1 times
followed by α2 repeated β2 times and so on, where each

αj |j∈N is either an actor firing or a (nested) looped schedule
and βj ∈ N|j∈N.

A looped schedule (LS) is a way to represent schedules
in a short format. A schedule in LS format can always be
converted to a PSOS that adheres to Def. 8. For compactness,
we represent in this paper PSOSs in LS format.

Assume that the SDFG in Fig. 1 is mapped to a plat-
form with two processors. Actors a0 and a2 are mapped on
the first processor (P0) with s0 = 〈a0(a2)2〉∗ and actors
a1 and a3 are mapped on the second processor (P1) with
s1 = 〈(a1)5(a3)3a1(a3)3〉∗.

When a consistent and deadlock-free SDFG is executed
according to one or more PSOSs, the channels of the SDFG
need bounded memories (according to Theorem 1 from [17]).
The resulting execution consists of a finite sequence of states
and transitions, called the transient phase (σtr), followed
by a sequence of states and transitions which is repeated
indefinitely and is called the periodic phase (σpr) [9]. The
number of actor appearances in the PSOS is a fraction or
multiple of its repetition vector entry. Formally, each actor ai
in the PSOS should appear r · γ(ai) times in the PSOS (with
r = u

v where u, v ∈ N) and the value r is identical for all
actors in the PSOS [9]. This follows from the SDFG property
that firing each actor as often as indicated in the repetition
vector results in a token distribution that is equal to the initial
token distribution. In the paper, the term normalized PSOS is
used to refer to a PSOS with r equal to 1.

Definition 11. (NORMALIZED PSOS) A PSOS si is called
normalized if and only if each actor aj ∈ Ai appears γ(aj)
times in one iteration of the PSOS si.

We limit ourselves in the remainder to PSOSs in which r
is a unit fraction (i.e., r = u

w with u = 1 and w ∈ N),
although our technique can also be directly applied to model
other PSOSs (i.e., in which u ∈ N).

The order of actor firings in an execution ω0
α1−→ ω1

α2−→ · · ·
is an ordered list {α1, α2, · · · } (αj |j∈N represents an actor
from A). The notation orderList(σ,Ai) represents the ordered
list extracted from execution σ while actors which do not
belong to Ai are omitted from the ordered list. When an
SDFG is executed according to a PSOS, we say that the
corresponding execution of the SDFG satisfies that PSOS. We
use the following definition to formalize this term.

Definition 12. (SATISFACTION) The execution σ of an SDFG
satisfies the PSOS si for actors in Ai ⊆ A if and only if
for the ordered list orderList(σ,Ai) results in the same actor
ordering as specified in the PSOS si.

V. MODELING PERIODIC STATIC-ORDER SCHEDULES

In this section, we introduce a technique to model PSOSs
in an SDFG. Algorithm 1 encapsulates our technique, called
decision state modeling (DSM). Fig. 3 depicts the correspond-
ing SDFG of Fig. 1 which models the PSOSs s0 and s1
using DSM. The remainder of this section discusses different
parts of the algorithm in detail. There are several reasons why

c1

6

c0 c2

3 3

1-ω6

6

6 6

6

62
6

3

5
a

c0-pre
c0-p

ro c1-pro c
1-pre

c1-a
 ω
3 9

c1-a ω
3 61 6

c
1-a ω1 9

c1-a ω

6

a1a0 a2 a3

a1-enda0-end

1-ω9
a

cSE-0

cSE-1 cSE-2

cSE-3

Auto-concurrency

Decision states

Inter-iteration execution

Fig. 3. PSOSs s0 and s1 modeled in the SDFG of Fig. 1 using DSM.

an SDFG cannot model PSOSs naturally. The following sub-
sections discuss them and illustrate how we address them.

The description of some basic functions used in Algorithm
1 is as follows. The function AA(G, anew) is responsible
to include the actor anew in the SDFG G. The function
AC(G, cnew, asrc, adst, srcRate, dstRate, initTok) adds
the channel cnew from the source actor asrc to the destination
actor adst; the production (consumption) rate of asrc (adst)
on this channel is equal to srcRate (dstRate); this channel
is initialized with initTok tokens. The function BEF(ak,ωj ,si)
(AFT(ak,ωj ,si)) returns the number of times that ak appears
before (after) state ωj in one iteration of the PSOS si.

A. Auto-concurrency

An actor ai ∈ A in an SDFG state ωj can possibly be
enabled multiple times simultaneously in the state ωj . This
property is called auto-concurrency. The firings related to actor
ai should occur sequentially according to the PSOS to which
actor ai belongs. This sequential execution can be enforced
by adding a self-edge with one initial token to actor ai (Line
1 in Algorithm 1). In Fig. 3, channels cSE−0− cSE−3 (shown
in red) are used to prevent any auto-concurrency in the SDFG
of Fig. 1.

B. Inter-iteration execution

Enabled actors in a PSOS belonging to the next PSOS
iteration prevent the execution of the SDFG from following
the given PSOS; lines 4-8 in Algorithm 1 are used to control
this undesirable actor enabling. This part of the algorithm adds
(per PSOS) one actor and two channels to create a dependency
between the last and first actor appearing in the PSOS. The
added components limit, within one PSOS iteration, the firing
of the first actor in the PSOS (i.e., aF) to the count of actor
aF (i.e., CNT (aF , si)) in one iteration of the PSOS si. The
function CNT (aF , si) in DSM returns the count of the actor
aF in one iteration of the PSOS si. The next iteration of
the PSOS si can only commence if the last actor in PSOS
si (i.e., aL) fires CNT (aL, si) times in one iteration of the
PSOS si. In other words, the next iteration of a PSOS can
only commence after the completion of the current iteration
of this PSOS. In Fig. 3, actor a0−end and channels c0−pre
and c0−pro are added to prevent any inter-iteration execution
in PSOS s0. Actor a1−end and channels c1−pre and c1−pro are
added to prevent any inter-iteration execution in schedule s1.
These elements are shown in our example in blue in Fig. 3.

Algorithm 1: Decision State Modeling (DSM)
input : SDFG G(A,C), PSOSs {s0, · · · , sn}
output: G extended with schedules {s0, · · · , sn}
add a self edge with 1 initial token for each a ∈ A1
{s′0, µ0, · · · s′n, µn} ← normalize(G, {s0, · · · , sn})2
for i← 0 to n do3
/* To control inter-iteration execution */
aL := last actor in si4
aF := first actor in si5
AA(G, ai−end)6
AC(G, ci−pre, aL, ai−end, 1,CNT(aL, si), 0)7
AC(G, ci−pro, ai−end, aF ,CNT(aF , si), 1,CNT(aF , si))8

/* To control decision states */
Ω← getDecisionStates(G, s′i, {s′0, · · · , s′n} \ s′i)9
Ω← reduceDecisionStates(Ω)10
Ω← foldDecisionStates(Ω, µi)11
foreach ωj ∈ Ω do12
AA(G, ai−ωj)13
foreach ak ∈ ∆j do14

if ak is the actor of choice then15
AC(G, ci−akωj , ak, ai−ωj , 1,CNT(ak, si),AFT(ak, ωj , si))16

else17
AC(G, ci−akωj , ai−ωj , ak,CNT(ak, si), 1,BEF(ak, ωj , si))18

C. Decision states

1) Concept: The state space when executing our example
SDFG using the PSOSs s0 and s1 is visualized in Fig. 4. In this
figure, the actors mapped on processor P0 (P1) are surrounded
by a square (circle). Auto-concurrency and inter-iteration
execution are excluded using the constructs introduced in
Sec. V-A and Sec. V-B respectively. The periodic behavior
of the PSOSs is obvious from the state space. There are some
states in which more than one actor is enabled (ω5 − ω9) on
one processor. In such a situation, the execution related to
those actors can deviate from the specified PSOS. We use the
following definition to formalize such a situation.

Definition 13. (DECISION STATE) Consider the PSOS si
which schedules actors Ai ⊆ A and an execution σ of an
SDFG (A,C) which satisfies PSOS si. A state ωj ∈ σ is
a decision state if and only if multiple actors from Ai are
enabled in ωj .

The finite set Ω occurring in DSM contains these decision
states for the PSOS being considered. The following termi-
nology is used to describe those enabled actors in a decision
state.

Definition 14. (OPPONENT ACTOR SET) Let ωj ∈ Ω be a
decision state within PSOS si. The opponent actor set ∆j of
the decision state ωj is a finite set which contains all actors
that are enabled in decision state ωj and that belong to Ai.

The finite set ∆j represents the opponent actors in the
decision state ωj ∈ Ω. One of the enabled actors in a decision
state ωj , in line with the given PSOS si, should be selected
to get fired. The following definition is used to describe such
an actor.

Definition 15. (ACTOR OF CHOICE) Consider the PSOS si
which schedules actors Ai ⊆ A and the opponent actor set
∆j of the decision state ωj in an execution σ of the SDFG
G(A,C) which satisfies PSOS si. An actor ac ∈ ∆j is called
the actor of choice of the decision state ωj if and only if the
firing of actor ac in state ωj is a necessity for the execution
σ in order to satisfy the PSOS si.

One member of the set ∆j is the actor of choice in decision
state ωj ; we denote that actor of choice with ac ∈ ∆j .

Lines 9-18 in DSM show how we deal with uncertainty
due to decision states. In the algorithm n + 1 (n ∈ N0) is
the number of processors (or input PSOSs). DSM models the
given PSOSs one-by-one iteratively. The ordering of PSOSs in
DSM does not have any impact on the final outcome. In each
iteration of the for-loop in line 3, we enforce the execution
of the actors in the current schedule of interest (i.e., schedule
si) to follow schedule si. The next sub-section explains how
decision states of the schedule of interest are extracted. For
each ωj ∈ Ω extracted from si, DSM adds an actor (ai−ωj

in line 13) and one channel between the new actor ai−ωj
and

each opponent actor in the set ∆j (lines 14-18 in Algorithm 1).
In our example, these elements are shown in green in Fig. 3.
In practice, the elements added in each decision state (e.g., ωj)
postpone the execution of the actors in ∆j \ {ac} to the state
after decision state ωj . Hence, ac (i.e., the actor of choice) is
the only actor which can be fired in the state ωj .

2) Decision state identification: Algorithm 2 shows our
proposed technique to detect all decision states. In this al-
gorithm, sc is the PSOS for which we want to determine the
decision states. Assume sc is a PSOS for the actors mapped
on processor Pc. Schedules so1 · · · son are PSOSs for the
other actors of the SDFG mapped on the other processors
(with Po1 · · ·Pon as the other processors). In Algorithm 2,
the input schedules are normalized PSOSs. The function
normalize (in line 2 of Algorithm 1) normalizes the input
PSOSs. The function returns the normalized PSOSs along
with their normalization factors. The normalized PSOS s′x
can be achieved by repeating µx times the input PSOS sx
(i.e., s′x = (sx)µx). µx is the normalization factor of sx and
can be calculated by dividing the repetition vector entry of an
arbitrary actor in sx by the count of that actor in the PSOS
sx (in our example, µ0 and µ1 are equal to 1).

An actor in the schedule of interest sc could be affected
by the execution of an actor in the other schedules as well
as another actor in the schedule sc. Processors can run at
different clock rates; these differences and inter-processor
dependencies cause variation in the amount of tokens on the
inter-processor channels originating from the actors mapped
on the other processors to the actors mapped on the processor
of interest (i.e., Pc). The amount of tokens on the input
channels of an actor determines whether an actor is enabled
(ready to execute) or not. Our technique can determine any
possible actor enabling when executing sc by considering the
maximum amount of tokens on all inter-processor channels.
Each iteration of the schedule of interest sc requires that the

a1

a0
ω0 ω1

a1
ω2

a1
ω3

a1
ω4

a2
ω5

a1
ω6

a3

a1 ω7

a3

a3
ω8

a1

a3
ω9

a1

a3
ω10

a1

ω11ω12

a2
a0

ω13

a3ω14

a3a3
P1

P0

Fig. 4. The state space of the SDFG of Fig. 1 when PSOSs s0 = 〈a0(a2)2〉∗ and s1 = 〈(a1)5(a3)3a1(a3)3〉∗ are used.

actors mapped on the other processors are fired up-to at most
their repetition vector entry values. Hence, only executing one
iteration of the other schedules so1 · · · son is enough to provide
sufficient tokens on inter-processor channels entering to the
actors mapped on processor Pc. Subsequent iterations of the
other schedules so1 · · · son are possible; this may enable an
actor in the schedule sc to be enabled more than its designated
amount in one iteration of the schedule sc. The inter-iteration
prevention constructs introduced in Sec. V-B are used to
control this undesired actor enabling. So, we only extract
decision states within one iteration of the normalized schedule.
Also, DSM does not impose any limitation between PSOSs;
PSOSs can independently be iterated if the dependencies in the
SDFG allow that. We allow the actors on the other processors
to be executed (according to their schedules) as much as
they can. The execution of the actors on the other processors
will stop at one point either due to their dependency on the
actors on the processor Pc or because one iteration of their
schedule is completed. The state of the SDFG needs to be
preserved to follow the subsequent execution of the actors.
This maximal execution of the actors on the other processors
is represented by the function maxExec in Algorithm 2. After
this maximal execution, the amount of tokens on the inter-
processor channels entering into the actors on the processor
Pc determines any possible enabled actor. The current state
(represented by ωj) will be added to the decision state set
(Ω) if more than one actor on the processor Pc is enabled
at this state (line 5 in Algorithm 2). All enabled actors will
be recorded as opponent actors of the state ωj (line 6 in
Algorithm 2). The execution of the actors on the processor
Pc is continued by executing the enabled actor in line with
sc in order to determine all possible decision states (line 7 in
Algorithm 2). The function fire(G,ωj , sc[i]) fires the actor
at the ith position in the PSOS sc. The maximal execution
followed by decision state identification will be iterated to
execute one iteration of sc. In the end, the set Ω contains all
possible decision states when executing PSOS sc. In the SDFG
of Fig. 1, five consecutive decision states (Ω = {ω5 · · ·ω9})
exist for PSOS s1 and no decision state exists for PSOS s0
(see Fig. 4).

3) Redundant decision states: It is possible to have several
consecutive decision states which are postponing the firing of
an actor to several states later. For example, three consecutive
decision states (ω7 − ω9) exist in Fig. 4 that all postpone the
same firing of actor a1; the added components in decision state
ω7 postpone the sixth firing of a1 to the state ω8; the added
components in decision state ω8 postpone the sixth firing of

a1 to the state ω9; and so on. The latest decision state in the
sequence of decision states ω7 − ω9 is enough to postpone
the firing of actor a1 to state ω10. Hence, the decision states
ω7−ω8 are redundant and can be removed from the decision
state set Ω. The function reduceDecisionStates is responsible
for removing redundant decision states. Note that it would be
possible to perform this reduction during the decision state
identification step. This reduction can remove a significant
amount of extra components in the final SDFG. Decision state
ω5 is also redundant according to our optimization. So, only
two decision states ω6 and ω9 are necessary to model s1 in
the SDFG of Fig. 1.

Algorithm 2: Get Decision States
input : SDFG G, PSOS sc, PSOSs {so1, · · · , son}
output: Decision state set Ω

ωj ← the initial state of G1
for i← 1 to |sc| do2
ωj ← maxExec(G, ωj , {so1, · · · , son})3
if sizeof(enabledActors(G, ωj , sc)) >1 then4

Ω← Ω ∪ {ωj}5
∆j ← enabledActors(G, ωj , sc)6

ωj ← fire(G, ωj , sc[i])7

4) Decision state folding: In Algorithm 1, the input PSOSs
are normalized to find all decision states. The normalization
of PSOSs is required to explore all (sufficient) states of an
SDFG. Consider PSOSs s2 = 〈a0〉∗ and s3 = 〈a2 a1〉∗ for
our second example SDFG in Fig. 5. To obtain normalized
PSOSs, µ2 and µ3 must be equal to 3 and 4 respectively. This
leads to the following normalized PSOSs: s′2 = 〈(a0)3〉∗ and
s′3 = 〈(a2 a1)4〉∗. Decision state identification for PSOS s′3 re-
sults in 5 decision states.

(a2
−

)(a1
a2

)
︸ ︷︷ ︸
1st 2nd

(a2
a1

)(a1
a2

)
︸ ︷︷ ︸
3rd 4th

(a2
a1

)(a1
a2

)
︸ ︷︷ ︸
5th 6th

(a2
−

)(a1
−

)
︸ ︷︷ ︸
7th 8th

shows the corresponding execution of s′3. In construct
(
ax
ay

)
,

ax is the enabled actor in line with the PSOS and ay is the
other enabled actor if any at all. In this execution, the 1st, 3rd,
5th and 7th states are similar in behavior. In other words, the
actor a2 should be fired in all of those states.

Modeling a repetitive behavior for a PSOS si, also models
this behavior for its normalized PSOS (i.e., s′i = (si)

µi). By
considering this fact, we can merge decision states appearing
in all µi repetitions of the PSOS si. We call this optimization
decision state folding (line 11 in Algorithm 1). Folding groups
the similar states. In our example, the 1st, 3rd, 5th and 7th

states are grouped and represented with one state. Similar
state grouping can be performed for the 2nd, 4th, 6th and 8th

a0 a1c0

4
a2c1

c2 3

3

4

2 8

2

Fig. 5. An example SDFG

states. So, the above execution shrinks to
(
a2
a1

)(
a1
a2

)
. If there

is a decision state in any of the similar states in the original
execution, a decision state will be placed in the substitution
state of those states. In practice, a decision state in a state
of the new folded execution will be considered as a decision
state for each of the equivalent states in the original execution.
This cannot violate the execution according to the input PSOS
because DSM only ensures the execution of the actor of
choice in a decision state. This optimization could reduce the
number of decision states up to µi times in a normalized PSOS
s′i. The decision state in the last state is ignored thanks to
our inter-iteration execution prevention (which is explained
in Sec. V-B). In our second example, decision state folding
reduces the number of decision states from 5 to 1 for s3.

5) Enforcing a schedule in decision states: In our first
example SDFG, only two actors are enabled in decision state
ω6 (i.e., ∆6 = {a1, a3}) (see Fig. 4). Actor a1 is the actor of
choice in decision state ω6 and actor a3 is the only opponent
actor whose execution should be postponed to the state after
state ω6. DSM adds actor a1−ω6 and channels c1−a1ω6 and
c1−a3ω6 to the graph to control the actor firings in decision
state ω6. DSM also adds actor a1−ω9

and channels c1−a1ω9

and c1−a3ω9
to the graph for the other decision state ω9.

The actor a1−ω9
is added to enforce the firing of a3 in

decision state ω9 and to postpone the execution of a1 to
the subsequent state. The actor a1−ω9 is only responsible for
decision state ω9 and it fires only once in an iteration. This
means that its value in the repetition vector of the new graph
(i.e., Fig. 3) is one. The production and consumption rates
of the ports of the actor a1−ω9

should be set to a value that
preserves the consistency of the SDFG; for this purpose, the
port rates of actor a1−ω9 on its channels (i.e., c1−a1ω9 and
c1−a3ω9) are set to 6. The added dependency channels from
the newly added actor in decision state ωj (e.g., a1−ω9

in
decision state ω9) to the opponent actors which are not the
actor of choice (e.g., a1 in decision state ω9) only provide
enough tokens for their execution in states ω0 − ωj−1 (e.g., 5
tokens for a1 in states ω0−ω8); these actors cannot be enabled
due to the lack of tokens in the newly added channels in the
corresponding decision state (e.g., there will be no token in
channel c1−a1ω9

in decision state ω9). Hence only the actor
of choice amongst the opponent actors of a decision state will
be enabled in that state (e.g., only a3 can fire in decision state
ω9). The firing of the postponed actors in a decision state (e.g.,
decision state ωj) will not depend on the newly added actor
in the decision state (i.e., ai−ωj

) after firing of the actor of
choice in ωj . For example, there will be 6 tokens in channel
c1−a3ω9 after the firing of actor a3 (i.e., the actor of choice) in
decision state ω9; hence, the actor a1−ω9 can immediately fire
and its execution will provide sufficient tokens for later firings

CNT(ap,si)1
ap aq

(a) aq is producer

CNT(ap,si)1
ap aq

(b) aq is consumer

Fig. 6. Extra actor aq added by DSM in different situations.

of actor a1. So, the postponed actor in decision state ω9 will
not be dependent on actor a1−ω9

for its later execution in the
current iteration of the PSOS s1.

The firing of actor a3 after decision state ω9 produces 3
tokens in channel c1−a3ω9 and the firing of actor a1 after
decision state ω9 consumes 1 token from channel c1−a3ω9

; as
a result, the amount of tokens in the new channels are reset to
the initial values at the end of one iteration of the schedule s1.
Hence, the periodic behavior is also achievable for the added
components. The components added in decision state ω6 show
similar behavior as the components added in decision state ω9.

VI. CORRECTNESS OF DSM

This section discusses the correctness of DSM in modeling
a single PSOS for a subset of the actors of the SDFG. If we can
model a single PSOS in the SDFG, then we can also model
multiple PSOSs by simply applying the algorithm multiple
times.

DSM adds some extra actors and channels to model the
PSOS si in SDFG G(A,C). The sets Asi and Csi represent
those extra actors and channels respectively. The notation
G′(A′, C ′) represents the SDFG which models the PSOS
si in the SDFG G using DSM where A′ = A ∪ Asi
and C ′ = C ∪ Csi . The following proposition shows the
consistency of the schedule-extended SDFG G′.

Proposition 1. The SDFG G′(A′, C ′) which models PSOS si
in the consistent SDFG G(A,C) is consistent.

Proof. The SDFG G(A,C) is consistent. In other words, a
non-trivial repetition vector γ exists for SDFG G. DSM adds
some extra actors Asi and channels Csi to the SDFG G in
order to model PSOS si. We need to show that a non-trivial
repetition vector γ′ exists for SDFG G′. The repetition vector
equality related to each self-loop c(ap, ap) ∈ Csi , ap ∈ Ai
added by DSM (in line 1 of Algorithm 1) to remove auto-
concurrency is always valid because the source and destination
actor of the self-loop channel are identical with production and
consumption rate equal to one. The rates of the other channels
added by DSM (for decision states or inter-iteration execution)
share the following properties: (1) the newly added channel
c ∈ Csi , which is added by DSM (in all lines 7, 8, 16 or 18
of Algorithm 1), is between an actor ap ∈ A(= A′ \Asi) and
an actor aq ∈ Asi ; (2) the rate of the new channel on the side
of the actor aq is equal to the count of the actor ap in one
iteration of PSOS si (i.e., CNT (ap, si)); (3) the rate of the
new channel on the side of the actor ap is equal to one. From
these properties we conclude that an actor aq ∈ Asi , which is
added by DSM (in both line 6 and 13 of Algorithm 1), fires
only once in each iteration of the PSOS si; if the actor aq is

the producer (see Fig. 6(a)) of the newly added channel (i.e.,
(aq, ap) ∈ Csi), the only firing of actor aq in one iteration of
the PSOS si provides CNT (ap, si) tokens for all firings of
actor ap in one iteration of the PSOS si and if the actor aq is
the consumer (see Fig. 6(b)) of the newly added channel (i.e.,
(ap, aq) ∈ Csi), all firings of actor ap in one iteration of the
PSOS si provide CNT (ap, si) tokens for only one firing of
actor aq .

Let set Ai be the set of the actors in the PSOS si. Consider
that each actor ap ∈ Ai appears r · γ(ap) times in the PSOS
si (r = u

v where u, v ∈ N) where the value r is identical for
all actors in the PSOS si. The appearance count of the actor
ap ∈ Ai in the PSOS si is represented by CNT (ap, si) and
it is assumed to be equal to u

v · γ(ap) where u, v ∈ N. We
can write the above statement as follow: CNT (ap, si) · v =
γ(ap) ·u. From this equation we can conclude that u iterations
of the SDFG G cause v iterations of the PSOS si, leading to
v firings of each of the actors added by DSM (i.e., actors
from the set Asi). So, in u iterations of the SDFG G (or
v iterations of the PSOS si) the following equation holds for
each channel (ap, aq) ∈ Csi or (aq, ap) ∈ Csi (where ap ∈ Ai
and aq ∈ Asi):

CNT (ap, si)︸ ︷︷ ︸
Rate(aq)

· v︸︷︷︸
γ′(aq)

= 1︸︷︷︸
Rate(ap)

· γ(ap) · u︸ ︷︷ ︸
γ′(ap)

(1)

Eqn. 1 shows the existence of a non-trivial repetition vector
γ′ for the schedule-extended SDFG G′(A′, C ′). γ′(aq) (where
actor aq ∈ Asi) is equal to v and γ′(ap) (where actor ap ∈ A)
is equal to γ(ap) · u.

As stated before, inter-iteration execution could cause an
uncertainty in the SDFG execution according to the desig-
nated schedule. Proposition 2 states that PSOS inter-iteration
execution is eliminated from the schedule-extended SDFG G′.
As a result, no SDFG inter-iteration execution can happen in
the schedule-extended SDFG G′ because an SDFG iteration
may contain one or more PSOS iterations.

Proposition 2. PSOS inter-iteration execution is impossible
for any actor appearing in PSOS si = 〈α1α2 . . . αn〉∗ in
the SDFG G′(A′, C ′), which models PSOS si in the SDFG
G(A,C) using DSM.

Proof. Let set Ai be the set of the actors in the PSOS si. In one
iteration of a PSOS si, an actor ap ∈ Ai could be enabled more
often than its designated amount (i.e., CNT (ap, si) times).
DSM prevents this by creating a dependency from the last
actor appearing in PSOS si (i.e., actor aL = αn) to the first
actor appearing in PSOS si (i.e., actor aF = α1) (see lines
4-8 in DSM). This dependency is created in the graph by
inserting a new actor ai−end and two channels ci−pre and
ci−pro. The source (destination) actor of the channel ci−pre
is aL (ai−end) with rate 1 (CNT (aL, si)). So one firing of
actor ai−end needs CNT (aL, si) tokens available in channel
ci−pre; for this purpose actor aL should fire CNT (aL, si)
times. The destination (source) actor of the channel ci−pro is
aF (ai−end) with rate 1 (CNT (aF , si)). So the firing of actor

aF related to one iteration of PSOS si needs CNT (aF , si)
tokens available in channel ci−pro; for this purpose actor
ai−end should fire once. The CNT (aF , si) initial tokens in
channel ci−pro provides sufficient tokens for CNT (aF , si)
times a firing of actor aF related to one iteration of PSOS
si. The subsequent firing of actor aF depends on the firing of
the actor ai−end and the firing of the actor ai−end demands
CNT (aL, si) times firing of actor aL. Hence, the firing of
actor aF belonging to the subsequent iteration of si can
be performed only after actor aL finishes all of its firings
belonging to the current iteration of si. In other words, the
firing of actor aF belonging to the subsequent iteration of si
can only be performed after completion of the current iteration
of si. The next iteration of the PSOS si can only start after
completion of the current iteration of the PSOS si because
actor aF is the first actor which should be fired in an iteration
of the PSOS si and other actors in si cannot get enabled before
the first firing of the actor aF . This second fact is guaranteed
by adding decision state constructs (i.e., lines 12-18 in DSM)
for any possible decision state and Proposition 6 below.

Even after eliminating inter-iteration execution from the
SDFG, multiple actors from a schedule may be enabled in an
SDFG iteration. In this paper such a state is called a decision
state. The following proposition explains that analyzing only
one SDFG iteration is enough in order to identify all possible
decision states.

Proposition 3. Executing an SDFG G(A,C) for one iteration
is sufficient to determine all possible decision states within a
PSOS si.

Proof. Let set Ai be the set of the actors in the PSOS si
and Ao = A \ Ai the remaining actors in A. Consider inter-
processor channels Cipc = {(ap, aq) ∈ C|ap ∈ Ao∧aq ∈ Ai}.
The execution of an actor ap ∈ Ao where (ap, aq) ∈ Cipc
up-to its entry in the repetition vector of the SDFG pro-
duces γ(ap) · Rate(ap) tokens in the corresponding channel
(ap, aq) ∈ Cipc. Actor aq ∈ Ai consumes those produced
tokens within one iteration of the normalized PSOS si (be-
cause γ(ap) · Rate(ap) = γ(aq) · Rate(aq)). Hence, actors
in Ai can receive the required tokens from all inter-processor
channels Cipc for one iteration of the normalized PSOS si.
This means that all possible decision states related to PSOS
si are detectable.

Actors in Ao could possibly fire more than the amount
mentioned above (i.e., corresponding value in vector γ) if the
channel dependencies in the SDFG allow additional firings of
these actors. This could cause more than enough tokens (for
one iteration of the normalized PSOS si) in channels Cipc.
This could enable an actor in Ai more than its designated
amount in one iteration of the normalized PSOS si. To avoid
this undesirable actor enabling, the inter-iteration execution
prevention constructs are used (see Proposition 2). As a result,
extra tokens produced by further firing of the actors Ao cannot
enable any actor in Ai more than its designated value in one
iteration of the normalized PSOS si. So, executing actors in

the SDFG up-to their repetition vector entry (i.e., one SDFG
iteration) is enough to determine all possible decision states
within the PSOS si.

The identified decision states may be redundant. Proposition
4 discuses the proposed decision state reduction in the DSM.

Proposition 4. Let σ be an execution for an SDFG (A,C) and
a PSOS si which schedules actors Ai ⊆ A. In the execution σ,
consider y consecutive decision states ωx+1, ωx+2, · · · , ωx+y .
Assume that ao ∈ Ai is an opponent actor in each of these
decision states but not the actor of choice in any of them.
It is sufficient to only consider the last decision state ωx+y
to postpone the firing of the opponent actor ao in those
consecutive decision states to the state ωx+y+1 ∈ σ.

Proof. The purpose of the components added by DSM (i.e.,
lines 13-18 in Algorithm 1) in a decision state ωj ∈ Ω
is to prevent any opponent actor ao which is not the actor
of choice in decision state ωj from getting enabled in that
state and as such to postpone that firing to the state ωj+1.
It is assumed that the opponent actor ao is enabled in the
consecutive decision states ωx+1, ωx+2, · · · , ωx+y . Suppose
that the opponent actor ao was fired e times before the first
decision state (i.e., ωx+1) where 0 ≤ e < γ(ao). The actor ao
cannot be enabled in decision sates ωx+1, ωx+2, · · · , ωx+y−1
when actor ao was fired e times before the decision state
ωx+1 because the components added by DSM in the last
decision state ωx+y prevent the opponent actor ao from getting
enabled for the (e + 1)th time in decision state ωx+y . As a
result, the opponent actor ao can also not be enabled in states
ωx+1, ωx+2, · · · , ωx+y−1 after adding DSM components for
decision state ωx+y . So, the components added by DSM in the
last decision state of consecutive decision states are enough to
prevent the firing of an opponent actor which is not the actor
of choice in those consecutive decision states.

Decision state folding overlaps the consecutive repetitions
of the designated PSOS in an SDFG iteration to reduce the
number of decision states. The following proposition states
that decision states folding does not dismiss any decision state.

Proposition 5. Consider PSOS si = 〈α1α2 . . . αn〉∗ for the
subset of actors Ai from SDFG (A,C); assume si is repeated
µi times to form the corresponding normalized PSOS (s′i =
〈(si)µi〉∗) to identify decision states related to PSOS si. After
decision state folding all decision states are preserved.

Proof. Normalization can be done by repeating PSOS si
µi times (µi is the normalization factor of si). Decision
state identification is applied on the normalized PSOS s′i =
〈(si)µi〉∗ = 〈α1α2 . . . αn︸ ︷︷ ︸

1st

α1α2 . . . αn︸ ︷︷ ︸
2nd

· · ·α1α2 . . . αn︸ ︷︷ ︸
µi

th

〉∗. De-

cision point constructs are added based on the given PSOS si.
The folding optimization groups the identified decision states
of the normalized PSOS s′i in the following manner: the actor
αj from PSOS si is marked if a decision state is identified
at least in one of the corresponding states of the µi firings of

the actor αj in the normalized PSOS s′i. The corresponding
state related to firing of the marked actor αj in PSOS si is
considered as decision state.

The corresponding state related to firing of the actor αj in
PSOS si which is considered as a decision state imposes a
decision state to all µi corresponding states of actor αj in
PSOS s′i. So, no decision state will be lost after decision state
folding and the only effect is introducing unnecessary decision
state controlling. We need to show that this extra controlling
does not effect the execution of the SDFG according to the
schedule. The construct added in a decision state is used to
guarantee execution of the actor of choice of that decision
state. This does not violate the actor firing order according to
the PSOS in that state. It only forces the only enabled actor
in that state to be fired.

DSM adds some components per decision state to enforce
the firing of the enabled actor in a decision state which is in
line with the given PSOS (i.e., actor of choice). Proposition
6 explains how those components can guarantee the firing of
the actor of choice in the decision state.

Proposition 6. The PSOS si is a schedule for actors Ai ⊆ A
from SDFG (A,C). Let ωj ∈ Ω be a decision state within PSOS
si and ∆j ⊆ Ai the set of the opponent actors in decision state
ωj . The actor of choice in decision state ωj (denoted by actor
ac) is the only actor which can fire in decision state ωj among
all actors in ∆j after applying DSM and the periodic behavior
of the SDFG is also preserved.

Proof. We need to show that the opponent actors ∆j\{ac} can
not be enabled in the decision state ωj after applying DSM.
Accordingly, the actor of choice ac in the decision state ωj is
the only actor which can fire in decision state ωj among all
actors in ∆j .

In the DSM technique, actor ai−ωj
is added for each

decision state ωj ∈ Ω within the PSOS si. An opponent actor
ak ∈ ∆j \ {ac} in the decision state ωj is dependent on the
new actor ai−ωj

because of the added channel ci−akωj
; this

channel is initialized with BEF (ak, ωj , si) tokens. The new
actor ai−ωj is also dependent on the actor of choice ac of
the decision state ωj because of the added channel ci−acωj

;
this channel is initialized with AFT (ac, ωj , si) tokens. For
each opponent actor ak ∈ ∆j , a channel is added between the
actor ai−ωj and the opponent actor ak. The rate of the added
channel on the side of the actor ak (actor ai−ωj) is equal to
one (CNT (ak, si)).

An opponent actor ak ∈ ∆j \ {ac} fires BEF (ak, ωj , si)
times before decision state ωj and every time the opponent
actor ak consumes one token from channel ci−akωj

. So, the
BEF (ak, ωj , si) firings of actor ak before state ωj consume
all tokens which were available in channel ci−akωj . Hence,
the opponent actor ak ∈ ∆j \ {ac} cannot fire in state ωj .
Firings of the opponent actor ak ∈ ∆j \ {ac} from decision
state ωj onward will be dependent on the firing of the actor
ai−ωj to provide the required tokens in channel ci−akωj . As
mentioned before, the actor ai−ωj depends on the actor of

choice ac. So, firings of the opponent actor ak ∈ ∆j \ {ac}
from decision state ωj onward cannot happen before firing
of the actor of choice ac of the decision state ωj in that
state. Hence, the actor of choice ac is the only actor among
the other opponent actors in state ωj which can fire. The
actor of choice ac is fired BEF (ac, ωj , si) times by state
ωj and this results in BEF (ac, ωj , si) tokens being produced
in channel ci−acωj

; as channel ci−acωj
is initialized with

AFT (ac, ωj , si) tokens, the number of tokens in this channel
is BEF (ac, ωj , si) + AFT (ac, ωj , si) = CNT (ac, si) after
firing actor ac in decision state ωj . So, there will be sufficient
tokens (for one firing of the actor ai−ωj

) on the only channel
leading to actor ai−ωj

after firing of the actor of choice ac
in decision state ωj . Then, firing of actor ai−ωj

consumes
all CNT (ac, si) tokens that are present in channel ci−acωj

and it produces CNT (ak, si) tokens in channel ci−akωj

(ak ∈ ∆j \{ac}); therefore, the opponent actors ∆j \{ac} are
not any more dependent on the actor ai−ωj

in the remainder
of the current iteration of the PSOS si.

The firings of the opponent actor ak ∈ ∆j \ {ac} after
decision state ωj consumes AFT (ak, ωj , si) tokens from
channel ci−akωj

; as a result, at the end of the PSOS iter-
ation, the token amount on this channel returns to its initial
value which is BEF (ak, ωj , si) (because BEF (ak, ωj , si) =
CNT (ak, si)−AFT (ak, ωj , si)). The actor of choice ac fires
AFT (ac, ωj , si) times after decision state ωj and the number
of tokens in channel ci−acωj

returns to AFT (ac, ωj , si).
These initial token resettings at the end of the PSOS iteration
ensure the periodic behavior for the added components in each
decision state. Thus, in a decision state only the actor of choice
(which is in line with the given schedule) amongst all opponent
actors of the decision state can fire and this eliminates any
uncertainty because of the decision state.

The following theorems state the correctness of DSM in
modeling a single PSOS for a subset of the actors of the SDFG.

Theorem 1. Consider PSOS si as a schedule for actors
Ai ⊆ A from SDFG G (A,C). For any execution σ′ of
G′(A′, C ′) it holds that σ satisfies si where it is assumed
that σ is the execution of G(A,C) with orderList(σ,A) =
orderList(σ′, A).
Proof. Proposition 6 states that in a decision state of PSOS
si, an enabled actor of the decision state which is in line
with PSOS si is the only actor able to fire in that state
among all enabled actors in Ai. So, the order of si is the
only possible order of actor firing for those actors of the
SDFG G′ in the set Ai. Proposition 2 implies that the next
PSOS iteration cannot interfere. Hence, for any execution
σ′ of SDFG G′(A′, C ′), orderList(σ′, Ai) has the form
of (si)

κ where κ ∈ N (i.e., infinite repetition of si). It is
assumed that orderList(σ,A) = orderList(σ′, A); as
Ai ⊆ A, we can conclude that orderList(σ,Ai) =
orderList(σ′, Ai). Hence, orderList(σ,Ai) also has
the form of (si)

κ and this form satisfies si; in other words, σ
satisfies si.

Theorem 2. Consider PSOS si as a schedule for actors
Ai ⊆ A from SDFG G(A,C). For any execution σ of G(A,C)
that satisfies si it holds that there is exactly one σ′ that is
an execution of G′(A′, C ′) such that orderList(σ,A) =
orderList(σ′, A).

Proof. DSM adds actors Asi and channels Csi to model the
PSOS si in the SDFG G(A,C).

It is assumed that the firing order of actors belonging to
the set A in execution σ′ has the same actor firing order as
in execution σ and execution σ satisfies the PSOS si. We
need to show that there is precisely one execution with the
property of execution σ′ and that is a valid execution for
SDFG G′. In a precise way, the actor firing order related to
the set A in execution σ (i.e., orderList(σ,A) = {α1, α2, · · · })
is a possible actor firing order for the original actors (i.e.,
actors not added by DSM) of the SDFG G′ when σ′ is an
execution of the SDFG G′. Actor αx from orderList(σ,A)
belongs either to Ai or to Ao = A \ Ai (x ∈ N). The state
transition ωx

αx−−→ ωx+1 in execution σ is related to the firing of
actor αx. The state transition ω′y

αy−−→ ω′y+1 in execution σ′ is
related to the firing of actor αy . The difference between states
from execution σ and σ′ is only in the extra channels added
by DSM (i.e., Csi). Any channel from Csi is connected to an
actor from Ai; in other words, it is not connected to any actor
from Ao. Incoming channels of an actor determine whether
that actor can fire or not. Consider state ω′y from execution
σ′ has the same content of state ωx from execution σ for all
channels in C. So, when an actor αx belongs to Ao, it means
that actor αx which can fire in state ωx of execution σ can
fire in state ω′y of execution σ′ (i.e., αy is αx) because the
content of the state related to channels Csi has no influence
on actor enabling in that particular state for any actor from
Ao. But, when an actor αx belongs to Ai, the content of the
state related to channels C ′ could manipulate the actor firing
order. As we assume firings of actor αx in execution σ satisfy
the PSOS si, actor αx can fire in the corresponding state (i.e.,
ω′y) of execution σ′ (i.e., αy is αx) because components added
by DSM force the firing of the actor which is in line with
the given PSOS si among all actors in Ai (see Proposition
6) and it is assumed that αx is in line with PSOS si. So, the
firing order of actors from A′\Asi in execution σ′ follows the
same firing order as it is indicated in execution σ. Each actor
a ∈ Asi also has a single possible firing order in each PSOS
iteration; if a is added to control the actor firing in a decision
state, it fires before the actor of choice in the decision state (see
Proposition 6) and if it is added for the sake of inter-iteration
prevention purpose, it fires at the end of the PSOS iteration
(see Proposition 2). Hence, there exists only one possible firing
order in execution σ′ for each actor a ∈ Asi . So, all actors
from A′ have exactly one firing order in execution σ′ where
orderList(σ,A) = orderList(σ′, A).

The size of the schedule-extended graph (e.g., SDFG G′)
is dependent on the number of decision states found in the
given schedule (e.g., PSOS si). In this section, decision state

0

20

40

60

80

100
R

ed
uc

tio
n

pe
rc

en
ta

ge

h.263decoder
h.263encoder

mp3decoder
modem

sampleratesatellite
mp3playback

bipartite

channelEqualizer
Average

Actors DPM(Lfp) # Actors DPM(Lrp) # Channels DPM(Lfp) # Channels DPM(Lrp)

Fig. 7. Reduction in the size of the schedule-extended graphs when using
DSM in contrast to the HSDFG-based technique (Higher is better). Schedules
are generated by list forward priorities (Lfp) and list reverse priorities (Lrp).

identification for a sub-set of actors of the SDFG G (i.e.,
Ai ⊆ A) which belong to the schedule of interest (i.e., si) is
explained regardless of existing other schedules for the rest
of the actors in the SDFG (i.e., actors in Ao = A \ Ai).
In our implementation, we consider other possible schedules
designated for the rest of the actors (i.e., actors in Ao) to
reduce the number of the decision states and as a result the size
of the schedule-extended graph. As we explained in Sec. V-C2,
actors which do not belong to schedule si should fire according
to their schedule (if there is any) to perform their maximal
execution. Any actor ao ∈ Ao, which belongs to another
PSOS sj (j 6= i), is fired in function maxExec of the DSM
algorithm when (1) it is enabled and (2) its firing satisfies sj .
Without the second condition, firing of ao could enable an
actor from PSOS si and lead to unnecessary decision states.
So, considering other schedules in the function maxExec of
DSM algorithm removes such redundant decision states.

VII. EXPERIMENTAL RESULTS

We used a set of DSP and multimedia applications to assess
our DSM technique. The following SDFGs are extracted from
realistic applications: modem [1], sample-rate converter [1],
satellite receiver [18], mp3playback [19], channel equalizer
[20], H.263 decoder [10], H.263 encoder [21], and MP3
decoder [10]. We also consider the bipartite SDFG [18] which
is a commonly used artificial SDFG.

A PSOS determines the actor firing order and as such it
influences the enabled actors in a state; as a result, the number
of decision states can be different for different PSOSs. The
size of the schedule-extended graph using DSM depends on
the number of decision states in the given schedules. So,
the compactness of the schedule-extended graph depends on
the input schedule which should be modeled. We use the
common list scheduler [22] to determine the PSOSs for the
applications. We use two different variations of list scheduling
to verify DSM in different situations. The first list schedule
uses forward priorities (Lfp) and the second one uses reverse
priorities (Lrp). Actors closer to the inputs of the graph have
higher priority in the Lfp schedules compared to actors closer
to the outputs of the graph and vice-versa in Lrp schedules.

Fig. 7 shows the reduction percentage in the size of the
schedule-extended graph when using DSM in contrast to the

199 200 297

HSDFGDSM

T
h

ro
u

g
h

p
u

t

Buffer size (tokens)

1.59E-06

2.90E-06

(a) H.263 decoder

594 1936

HSDFGDSM

T
h

ro
u

g
h

p
u

t

Buffer size (tokens)

2.35E-07

(b) MP3 decoder

Fig. 8. Pareto space of schedule-extended graphs modeled by DSM and
HSDFG-based techniques (the scales of the two graphs are different).

HSDFG-based technique. Using schedules generated by Lfp,
the number of decision states is less than when Lrp is used,
except in the channel equalizer and mp3playback applications.
By using Lfp scheduling, actors closer to inputs have higher
priority compared to actors closer to outputs. This leads to
consecutive execution of an actor followed by consecutive
execution of another actor with lower priority and so on.
Thanks to our optimization in DSM, considering only one
decision state before a context switch will be sufficient (e.g.,
decision state ω9 in Fig. 4) and the number of decision states
can be reduced significantly. Usually actors closer to outputs
are dependent on actors closer to inputs in an SDFG; this
dependency can prevent an actor from being executed consec-
utively in a graph scheduled by Lrp. As a result of that, the
number of context switches in a graph scheduled by Lrp will
typically be larger compared to Lfp. Hence, the effectiveness
of the decision state optimization in DSM reduces and extra
elements are required to model the schedules in the graph.
The exceptions in the channel equalizer and mp3playback
are due to the existence of a cycle in the SDFG; the cycle
can increase the number of context switches in the schedule
and as a result, Lfp could result in the same or a higher
amount of decision states in DSM compared to Lrp. Important,
however, is that in our experiments, DSM always outperforms
the HSDFG-based technique regardless of the input schedule.
The number of actors (channels) using DSM is 66% (71%)
lower compared to the HSDFG-based technique on average,
99% (99%) lower in the best-case and 28% (20%) lower
in the worst-case observed in our experiments. Besides the
compactness of the schedule-extended graph, DSM preserves
the original structure of an SDFG which is not guaranteed for
the state of the art technique.

To further analyze the effectiveness of DSM, we applied
a buffer sizing algorithm from [10] on the schedule-extended
SDFGs of the H.263 decoder and MP3 decoder applications.
The H.263 decoder is mapped on a platform with two proces-
sors. The actor vld and iq are mapped on the first processor
with a PSOS 〈vld(iq)99〉∗ and the actor idct and mc are
mapped on the second processor with a PSOS 〈(idct)99mc〉∗.
The analysis time for buffer sizing on the schedule-extended

H.263 decoder is less than 1 ms when using DSM to model
the schedules. The same analysis lasts for 1330 ms when
using the technique from [11] to model the same schedules
in the same graph. Fig. 8(a) shows the complete design space
(Pareto space) of throughput and buffer size when modeling
the schedule with DSM and the HSDFG-based technique
[11]. A single channel in an SDFG corresponds to a set of
channels in the equivalent HSDFG. As a result, the buffer
sizing technique cannot find the minimal buffer size when
applying it on the equivalent HSDFG. Our experiments show
these inaccuracies. Applying buffer sizing on the graph which
models the schedules using the technique from [11] results
in 43% overestimation in required buffer space compared to
applying the same buffer sizing technique on the graph which
models the same schedules when using our technique. Fig. 8(b)
shows results for the MP3 decoder. We used the mapping
and scheduling from [12] which maps the MP3 decoder on
a platform with 3 processors. The analysis time on the graph
which models the schedule using our technique is 594 ms
while 141610 ms is required to perform the same analysis on
the graph using the technique from [11]. Using the technique
from [11] results in 2.26 times overestimation in buffer size
compared to using our technique.

Modeling a PSOS in an SDFG using DSM requires exe-
cuting one complete SDFG iteration. The number of states
in one iteration could be exponential in the number of actors
in the graph. However, for all real-world SDFGs used in our
experiments, the execution time of the DSM is below 1 ms.

VIII. CONCLUSION

We presented a technique, DSM, to model periodic static-
order schedules directly in an SDFG. The resulting graphs
are much smaller (often much less than half the size) than
graphs resulting from the state of the art technique that first
converts an SDFG to an HSDFG. This results in a speed-
up of performance analysis. Computing the trade-off between
buffering and throughput for multi-processor implementations,
for example, becomes several orders of magnitude faster.
Moreover properties like buffer sizes can be analyzed more
accurately. For future work, we would like to investigate
to further optimize the models for some specific scheduling
classes, e.g., single appearance schedules.

REFERENCES

[1] S. S. Bhattacharyya et al., “Synthesis of embedded software from syn-
chronous dataflow specifications,” Journal of VLSI Signal Processing,
vol. 21, pp. 151–166, 1999.

[2] S. Sriram and S. Bhattacharyya, Embedded Multiprocessors: Scheduling
and Synchronization, 2nd ed. CRC Press, 2009.

[3] P. Poplavko et al., “Task-level timing models for guaranteed performance
in multiprocessor networks-on-chip,” CASES. ACM, 2003, pp. 63–72.

[4] M.-Y. Ko et al., “Compact procedural implementation in DSP software
synthesis through recursive graph decomposition,” SCOPES. ACM,
2004, pp. 47–61.

[5] A. Bonfietti et al., “Throughput constraint for synchronous data flow
graphs,” CPAIOR. Springer-Verlag, 2009, pp. 26–40.

[6] S. Stuijk et al., “Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs,” DAC. ACM, 2007.

[7] W. Liu et al., “Efficient SAT-based mapping and scheduling of homoge-
neous synchronous dataflow graphs for throughput optimization,” RTSS.
IEEE, 2008, pp. 492–504.

[8] Y. Yang et al., “Automated bottleneck-driven design-space exploration
of media processing systems,” DATE. ACM, 2010, pp. 1041–1046.

[9] A. Ghamarian et al., “Throughput analysis of synchronous data flow
graphs,” ACSD. IEEE, 2006, pp. 25–36.

[10] S. Stuijk et al., “Throughput-buffering trade-off exploration for cyclo-
static and synchronous dataflow graphs,” IEEE Trans. on Computers,
vol. 57, no. 10, pp. 1331–1345, 2008.

[11] N. Bambha et al., “Intermediate representations for design automation
of multiprocessor DSP systems,” Design Automation for Embedded
Systems, vol. 7, no. 4, pp. 307–323, 2002.

[12] M. Geilen and S. Stuijk, “Worst-case performance analysis of syn-
chronous dataflow scenarios,” CODES+ISSS. ACM, 2010, pp. 125–
134.

[13] M. H. Wiggers et al., “Monotonicity and run-time scheduling,” EM-
SOFT. ACM, 2009, pp. 177–186.

[14] H. H. Wu et al., “A model-based schedule representation for heteroge-
neous mapping of dataflow graphs,” HCW. IEEE, 2011, pp. 66–77.

[15] S. Bhattacharyya et al., Software Synthesis from Dataflow Graphs.
Kluwer Academic Publishers, 1996.

[16] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceeding of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[17] M. Geilen et al., “Minimising buffer requirements of synchronous
dataflow graphs with model checking,” DAC ’05. ACM, 2005, pp.
819–824.

[18] S. Ritz et al., “Scheduling for optimum data memory compaction in
block diagram oriented software synthesis,” ICASSP. IEEE, 1995.

[19] M. H. Wiggers et al., “Efficient computation of buffer capacities for
cyclo-static dataflow graphs,” DAC. ACM, 2007, pp. 658–663.

[20] A. Moonen et al., “Practical and accurate throughput analysis with the
cyclo static dataflow model,” MASCOTS. IEEE, 2007, pp. 238–245.

[21] H. Oh and S. Ha, “Fractional rate dataflow model for efficient code
synthesis,” Journal of VLSI Signal Processing, vol. 37, pp. 41–51, 2004.

[22] G. D. Micheli, Synthesis and Optimization of Digital Circuits, 1st ed.
McGraw-Hill, 1994.

