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Abstract—Synchronous dataflow graphs (SDFGs) are widely
used to model streaming applications such as signal processing
and multimedia applications. These are often implemented on
resource-constrained embedded platforms ranging from PDAs
and cell phones to automobile equipment and printing systems.
Trade-off analysis between resource usage and performance is
critical in the life cycle of those products, from tailoring platforms
to target applications at design time to resource management
at runtime. We present a trade-off analysis method for SDFGs
based on model-checking techniques and leveraging knowledge
from the dataflow domain. We develop results to prune the state
space of an SDFG for multi-objective model checking without
loosing optimality. To achieve scalability to large state spaces,
we combine these pruning techniques with pragmatic heuristics.
We evaluate our techniques with two sets of experiments. One
set shows we can now do throughput-storage trade-off analysis
for shared memory architectures, showing reductions in memory
usage of 10-50% compared to existing distributed memory based
analysis. A second set of experiments shows how our techniques
support design-space exploration for the digital datapath of a
professional printer system. Analysis times range from less than
a second to at most several minutes.

I. INTRODUCTION

Synchronous Dataflow Graphs (SDFGs, [18]) have been
widely used to model and analyze streaming applications
on embedded systems. These systems frequently have highly
constrained resources (memory, bandwidth etc). Embedded
applications cannot afford the resource requirements of their
desktop counterparts. Embedded system designers need to
keep the performance of these systems as high as possible
while keeping the resource usage of these systems as low
as possible. As these objectives compete with each other,
there may be multiple Pareto-optimal points in the resource-
performance metric space. So it is important to provide a
method which can do trade-off analysis and help designers to
tailor platforms for targeted applications and to choose runtime
resource management policies. Our paper tackles this problem
for the streaming application domain and provides trade-offs
by analyzing SDFGs with model-checking techniques.

A simple example SDFG is depicted in Fig. 1 (taken
from [26]). The nodes are called actors which represent the
computations that are performed. The computation of an actor
is atomic. Its name and execution time are denoted in the
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Fig. 1. Example SDFG
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corresponding node of the graph. Actors transfer informa-
tion to each other on FIFO channels via data items, called
tokens (visualized as black dots). An essential property of
synchronous dataflow graphs is that every time an actor starts
a firing (starts execution), it consumes the same amount of
tokens from its input ports, and that every time an actor ends a
firing (ends execution), it produces the same amount of tokens
from its output ports. These amounts are called the rates of the
ports. Self-edges are used to limit the auto-currency of actors,
i.e., the maximal number of simultaneous firings of the same
actor. In the example, the auto-concurrency of actors is limited
to one, via self-edges with one token.

SDFG behavior is strongly influenced by applied scheduling
policies and by resource constraints. They can be seen as
putting constraints on the execution of the SDFG, and impact
its performance. This is illustrated in Fig. 2. It shows the
analysis results of the example SDFG with techniques taken
from [11], [26]. [11] (triangles) explores arbitrary schedules
and minimizes buffer size. However, it optimizes only one
objective: memory. [26] (circles) analyzes the trade-offs be-
tween throughput and buffer size, but only exploring self-timed
schedules with a distributed buffer resource model. Fig. 2 also
shows the trade-offs obtained with our method (squares). We
explore a larger part of the design space by allowing more
freedom in scheduling and sharing of resources (assuming
that sharing is possible in the platform) and we can therefore
achieve better results.
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Fig. 3. Venn Diagram of Three Design Domains

The Venn diagram in Fig. 3 shows the concepts motivated
by the above example. Each circle represents one design
aspect which limits the valid schedules. The resource-aware
SDFG domain represents the requirement that the behavior
conforms to the functional specification of the graph in terms
of dependencies and resource usage. The resource model do-
main represents constraints imposed by the (limited) available
resources on the platform. The scheduling and arbitration
policies model represents scheduling and arbitration strategies
employed in the application and the platform. The sets are
sets of executions of the resource-aware SDFG. The three
circles define separate constraints on the set of executions.
The constrained execution of the SDFG consists of executions
in the intersection only. By carefully selecting the range in
each domain to be explored, we can limit the design space to
a tractable size, i.e., the intersection in Fig. 3.

In this paper, we use depth first search (DFS) of the non-
deterministic state-space to analyze the trade-offs of appli-
cations which are modeled by resource-aware SDFGs, in a
similar way to explicit-state model-checking techniques. Based
on the concept illustrated in Fig. 3, resource information and
scheduling rules are provided to limit the state space to be
explored. By providing more flexibility in the resource models
and scheduling policy design domains, we achieve better re-
sults compared to existing methods, even if the state space can
only be explored partially. Heuristics and search constraints
are provided to help users to accelerate the exploration of the
state space. The resulting tool is the most flexible and widely
applicable analysis tool for SDFGs available to date.

The remaining parts of the paper are structured as follows.
Section 2 discusses related work. Section 3 introduces the
SDFG model and its extension which takes resources and
scheduling policies into consideration and develops the re-
quired theoretical results. Section 4 discusses the exploration
techniques developed for this extended model. Implementation
details and experimental evaluation can be found in Sections
5 and 6. Section 7 concludes.

II. RELATED WORK

There are many research papers on finding an optimized
SDFG schedule subject to one or more criteria [4], [5], [20],
[21], [29], [16], [11], [22], [14]. [4] proposes Single Appear-
ance Schedules (SAS), which are specific to single processor
platforms and aim to minimize code size. [5] minimizes
buffer size for SAS without buffer sharing. [20], [21], [16]
allow sharing memory between channels to reduce the total
memory usage. However, SAS are not necessarily optimal

when other objectives than code size are to be optimized.
For multi-processor platforms, where the schedule length does
not necessarily lead to extra code size, non-SAS schedules
can be better than SAS. [29] relaxes the single appearance
constraint on schedules to further reduce the buffer size.
[22] targets the minimization of context-switch cost. [14]
minimizes total buffer size in throughput-optimal schedules.
[30] extends the SDFG model to a variable-rate dataflow
(VRDF) model to analyze buffer sizing for data-dependent
inter-task communications. In [11], an exact method for ex-
ploring arbitrary schedules and generating minimum memory
requirements for an SDFG is given which is based on model-
checking [7] techniques. Our work is also based on model-
checking techniques but differs from all the mentioned work,
because it performs multi-objective trade-off analysis.

The performance analysis work on SDFGs mainly focuses
on throughput and latency. Throughput has been studied
extensively in [9], [8], [12]. [9], [8] use Maximum Cycle Mean
(MCM) analysis to compute throughput. This can only be
used for Homogeneous SDFGs (HSDFGs). Conversion from
an SDFG to an HSDFG is possible, but frequently leads to
a sharp increase of the graph size making algorithms of [9],
[8] fail. [12] avoids the costly conversion by analyzing the
state space of SDFGs. It works well in practice for many
graphs. Latency has only been studied recently [25], [13],
[19] for SDFGs. [25] gives a heuristic that solves the latency-
constrained resynchronization problem of an SDFG on multi-
processors. [13] provides a heuristic to optimize latency under
a throughput constraint. [19] provides bounds on maximum
latency for jobs with different types of inputs. The techniques
presented in the current paper allow us to investigate trade-offs
between performance metrics and resource usage in general.
We focus on throughput and extend [12] by relaxing the self-
time scheduling constraint and by allowing buffer sharing.

Previous work on trade-off analysis of SDFGs is mostly
limited to single processor platforms [6], [31]. [6] explores
the trade-off between code size and data memory. [31] gives
a CD2DAT example to show the trade-off between code,
data memory and execution time for SAS, based on an
evolutionary algorithm. Only recently, trade-offs for SDFGs
on multiprocessor platforms are investigated [26]. [26] gives
an exact method to explore the trade-off between total buffer
size and throughput for multiprocessor platforms based on
techniques taken from [11], [12]. [28] extends it to include
cyclo-static dataflow graphs and provides a fast approximation
algorithm to tackle graphs with many similar Pareto points.
Our work generalizes [26] with respect to SDFG analysis by
extending to multiple objectives and by relaxing assumptions
on scheduling and resource models.

[17] provides a design-space exploration (DSE) framework
for multiprocessor systems-on-chip based on SDFG specifi-
cations. The framework focusses on a single objective, the
makespan of an SDFG, and the SDFGs are limited to HSDFGs
without cyclic dependencies.

Model checking [3], [7] is widely used in system verifica-
tion such as hardware verification and protocol verification.
Recently it is also used for scheduling and scheduling related
problems [2], [1], [11], [15]. However, multi-objective model
checking is only studied recently and is limited to qualita-



tive property verification [10] for stochastic models. Those
techniques cannot be applied to trade-off analysis between
resources and performance for SDFGs. [24] incorporates a
SAT solver, a model checking technique, with an evolutionary
algorithm for DSE of a task-graph model and uses list schedul-
ing to find a feasible schedule. Our paper generalizes the trade-
offs analysis of SDFGs as a multi-objective model-checking
problem and tries to prune the state space by leveraging
knowledge from both dataflow models and multi-objective
optimization.

III. RESOURCE-AWARE SDF MODEL

Formally, an SDFG is defined as follows. We assume a set
Ports of ports, and with each port p ∈ Ports we associate
a finite rate Rate(p) ∈ N\{0} (where we assume that 0 ∈
N). An actor a is a tuple (In,Out) consisting of a set In ⊆
Ports of input ports (denoted by In(a)), a set Out ⊆ Ports
(Out(a)) with In ∩Out = ∅

An SDFG is a tuple (A,C, τ) with a finite set A of actors, a
finite set C ⊆ Ports2 of channels and a mapping τ : A 7→ N.
The source of every channel is an output port of some actor;
the destination is an input port of some actor. All ports of
all actors are connected to precisely one channel, and all
channels are connected to ports of some actor. For every actor
a = (I, O) ∈ A, we denote the set of all channels that
are connected to ports in I (O) by InC (a) (OutC (a)). The
mapping τ : A 7→ N assigns to each actor a ∈ A the time it
takes to execute the actor once, i.e., its execution time.

When an actor a starts its firing, it consumes Rate(q)
tokens from all (p, q) ∈ InC(a). After time has progressed
by τ(a), the actor finishes its firing and produces Rate(p)
tokens on every (p, q) ∈ OutC(a). For distribution of tokens
on channels, we define the following concept.

A channel quantity on the set C of channels (representing
for instance the number of tokens) is a mapping δ : C 7→ N. If
δ1 is a channel quantity on C1 and δ2 is a channel quantity on
C2 with C1 ⊆ C2, we write δ1 ¹ δ2 if and only if for every
c ∈ C1, δ1(c) ≤ δ2(c). δ1 + δ2 and δ1 − δ2 are defined by
pointwise addition of δ1 and δ2 and substraction of δ2 from
δ1; δ1 − δ2 is only defined if δ2 ¹ δ1.

The amount of tokens read at the start of a firing of
some actor a now can be described by a channel quantity
Rd(a) = {((q, p),Rate(p)) | (q, p) ∈ InC (a)}, produced
tokens by channel quantity Wr(a) = {((p, q),Rate(p)) |
(p, q) ∈ OutC (a)}.

SDFGs with rates which lead to deadlocks or an unbounded
amount of tokens on some of its channels are called inconsis-
tent. Consistency [18] is known as a necessary condition to
allow a deadlock-free execution of SDFG within a bounded
channel quantity on all channels.

Definition 1: (REPETITION VECTOR, CONSISTENCY) A
repetition vector γ of an SDFG (A,C, τ) is a function
γ : A 7→ N such that for each channel (p, q) ∈ C from
actor a ∈ A to b ∈ A, Rate(p) · γ(a) = Rate(q) · γ(b) (called
a balance equation). A repetition vector is called non-trivial
if and only if γ(a) > 0 for all a ∈ A. An SDFG is called
consistent if and only if it has a non-trivial repetition vector. A
consistent, connected SDFG has a unique smallest non-trivial
repetition vector, which is designated as the repetition vector
of the SDFG.

claim resource

execution time

release resource

start firing end firing
Fig. 4. Firing of an Actor

Since consistency is easy to check, we only consider con-
sistent SDFGs. Further, we assume connectedness of SDFGs.

A resource-aware SDFG extends an SDFG by annotating
actors with resource requirements. In order to describe the
amount of resources, we define a concept similar to the
channel quantity.

Definition 2: (RESOURCE QUANTITY) A resource quantity
on a set R of resources is a mapping η : R 7→ N. If η1 and
η2 are resource quantities, the relation η1 ¹ η2 and operators
η1 + η2 and η1 − η2 are defined similar to channel quantities.

The amount of resources claimed by some actor a can
now be described by a resource quantity Clm(a); released
resources by resource quantity Rel(a). We conservatively
assume that resources are claimed and released at firing start
and end, respectively (see Fig. 4).

Definition 3: (RESOURCE-AWARE SDFG) A resource-
aware SDFG is a tuple (A,C, τ, R, RC ,Clm,Rel) consist-
ing of an SDFG (A,C, τ), a finite set R of resources, a
resource quantity RC denoting resource limitations, a mapping
Clm : A 7→ (R 7→ N) and a mapping Rel : A 7→ (R 7→ N).
The mappings Clm and Rel associate a resource quantity to
each a ∈ A, which denotes the resources it claims and releases
at the start and end of its firing, respectively.

As with inconsistent rates for tokens on channels, it is
possible that inappropriate resource claims and releases of a
resource-aware SDFG lead to deadlock or unbounded resource
accumulation. Therefore, resource consistency is a necessary
condition for a meaningful analysis.

Definition 4: (RESOURCE CONSISTENCY) A resource-
aware SDFG is resource consistent if and only if it is consis-
tent and its repetition vector γ satisfies the following resource
balance equation:

∑
a∈A Clm(a)·γ(a) =

∑
a∈A Rel(a)·γ(a).

Resource consistency is also straightforward to check. In the
remainder of this paper, we therefore only consider resource-
consistent SDFGs.

A state of a resource-aware SDFG (A, C, τ , R, RC , Clm ,
Rel ) is a triple (δ, η, υ). Channel quantity δ associates with
each channel the amount of tokens present in that channel in
that state. Resource quantity η associates with each resource
r ∈ R the amount used of that resource in that state. To keep
track of time progress, actor status υ : A 7→ NN associates
with each actor a ∈ A a multiset of numbers representing the
remaining times of different active firings of a. We assume
that the initial state of a resource-aware SDFG is given by
some initial token distribution δ0, initial resource usage η0

(not necessarily zero) and no actor firing, which means the
initial state equals (δ0, η0, {(a, {}) | a ∈ A}) (with {} the
empty multiset).

The use of a multiset of numbers to keep track of actor
progress allows multiple simultaneous firings of the same
actor (auto-concurrency). By adding self-loops to actors with
a number of initial tokens equivalent to the desired maximal



auto-concurrency degree, the auto-concurrency can be limited.
The dynamic behavior of a resource-aware SDFG is de-

scribed by transitions. There are three types of different
transitions: start of actor firings, end of actor firings, and time
progress through clock ticks.

Definition 5: (TRANSITION) A transition of a resource-
aware SDFG (A, C, τ , R, RC , Clm , Rel ) from state
(δ1, η1, υ1) to state (δ2, η2, υ2) is denoted by (δ1, η1, υ1)

β−→
(δ2, η2, υ2) where label β ∈ {A × {start , end}} ∪ {clk}
denotes the type of transition.
• Label β = (a, start) corresponds to the firing start of

actor a ∈ A. This transition results in δ2 = δ1 − Rd(a),
η2 = η1 + Clm(a) and υ2 = υ1[a 7→ υ1(a) ] {τ(a)}]
(where ] denotes multiset union). It may occur if
Rd(a) ¹ δ1 and Clm(a)+η1 ¹ RC and no end transition
is enabled.

• Label β = (a, end) corresponds to the firing end of actor
a ∈ A. This transition results in δ2 = δ1 + Wr(a), η2 =
η1 − Rel(a) and υ2 = υ1[a 7→ υ1(a) \ {0}] (where \
denotes multiset difference). It is enabled if 0 ∈ υ1(a).

• Label β = clk denotes a clock transition, which is
enabled if no end transition is enabled. This transition
results in δ2 = δ1, η1 = η2 and υ2 = {(a, υ1(a) ª 1) |
a ∈ A} (where υ1(a) ª 1 denotes a multiset of natural
numbers containing the elements of υ1(a), which are all
positive, reduced by one).

In contrast with traditional SDFGs, due to resource con-
straints, not all start transitions with sufficient input tokens
may actually be able to start simultaneously. There may
exist multiple combinations of start transitions of actors with
sufficient input tokens that can start at the same time and keep
resource usage within resource constraints for the resulting
states. Note that end transitions are not constrained by re-
sources and are always executed eagerly.

An execution of a resource-aware SDFG is a finite or infinite
alternating sequence of states and transitions: σ = s0

β0−→
s1

β1−→ · · · (not necessarily starting with the initial state of
the SDFG). When the labels are not relevant, we also write
σ = s0s1s2 . . .. We use |σ| to denote the length of execution
σ (the number of transitions); |σ| = ∞ if σ is infinite. We
use σn to denote the execution up to and including state sn

(when |σ| ≥ n), t(σ) to denote the number of clk transitions
in σ and σ(i) to denote state si.

We make the following observations. end transitions have
priority over other transitions. If a number of subsequent start
transitions is taken, then the order in which they are taken
has no impact on the resource usage or resulting state. When
no more start transitions are selected, a clk transition occurs,
possibly leading to new end transitions and so on. This means
we can view an execution as a repetition of the following
phases; (i) execute all enabled end transitions, (ii) execute
some set of start transitions in arbitrary order, (iii) execute a
single clk transition. Now it is easy to see that an execution
can be fully characterized by a sequence of (possibly empty)
multisets of actors that execute a start transition at all time
instants. We call such a multiset dk ∈ NA of starting actor
firings at time instant k a decision. For notational convenience,
we call the set NA of all multisets of actors, the set D of

decisions. An execution is equivalently characterized by the
sequence dk ∈ D, k ≥ 0.

Obviously, there are multiple, different executions, with
different decisions. We can define rules to guide the execution
to make decisions at those specific states and we call those
rules a scheduling policy, defined as follows.

A scheduling policy is a function π : D∗ 7→ 2D, which
decides which of the enabled decisions are allowed to be
selected. A policy is called deterministic if π(σ) contains a
unique decision for every finite execution σ.

Streaming applications are expected to continue executing
indefinitely. Therefore, for our analyses, we are interested in
infinite executions and their properties.

IV. EXPLORATION

In traditional state-space analysis of SDFGs, only through-
put is considered as a performance metric. In this work, we
want to consider multiple objectives of different types, such
as peak resource usage for each of the resources of the graph,
together with throughput of the graph. We limit ourselves
to resource-aware SDFGs with a finite state space. This is
typically the case, for example when the graph is strongly
connected, or when every actor actually uses some resources,
or when every channel in the graph has a finite buffer capacity.
An important consequence is that every infinite execution
necessarily revisits at least one state infinitely often.

While exploring the state space of a resource-aware SDFG
for the trade-offs between metrics of interest, we want to prune
suboptimal executions as much as possible. We consider two
important classes of metrics. First, MAX quantities record
the maximum values attained in any of the states along an
execution, for instance peak memory usage.

Definition 6: (MAX QUANTITY) Given an execution σ of
a resource-aware SDFG, σ = s0s1s2 . . .. Each state si is
assumed to have a corresponding quantity of interest q(si).
We define q(σ) = max{q(si) | 0 ≤ i < |σ|} to denote
the quantity q for execution σ. An important property of this
type of quantity is monotonicity, i.e., when m ≤ n, then
q(σm) ≤ q(σn). Without loss of generality, we assume that
we are interested in executions with minimal values for MAX
quantities.

Note that, because the state space is finite, the maximum
over an infinite execution is well-defined.

Peak resource usage can be defined as a set of MAX
quantities. Given an execution of a resource-aware SDFG
σ = s1s2s3 . . ., with si = (δi, ηi, υi), the resource usage
Ru(σ) = sup{η0, η1, η2, · · · } is the least upper bound of the
resource quantities in all states in the execution. Each of the
individual resources in Ru(σ) corresponds to a MAX quantity.
Our theoretical development in this section does not make any
assumptions about the specific MAX quantities considered, but
the experimental evaluation of Section VI considers resource
usage.

Due to the monotonicity of MAX quantities, it is easy to
prove the following proposition.

Proposition 1: Given two finite (partial) executions σ1 and
σ2 that start from the same state and end in the same state. If
q(σ1) ≤ q(σ2) for a MAX quantity q, then for any execution
σb = σ2 · σ3 (where · denotes concatenation), execution σa =
σ1 · σ3 has q(σa) ≤ q(σb).



Proof: Since q(σ1 · σ3) = max(q(σ1), q(σ3)) ≤
max(q(σ2), q(σ3)) = q(σ2 ·σ3), it follows that q(σa) ≤ q(σb).

s

σ1
σ2

σ3

qmax(σ1) qmax(σ2)

qmax(σ1 σ3) qmax(σ2 σ3)

(a) MAX Quantity

s

σ1
σ2

σ3

sum(σ1) sum(σ2),

sum(σ1 σ3) / t(σ1 σ3) 

sum(σ2 σ3) / t(σ2 σ3) 

t(σ1) t(σ2)

(b) AVG Quantity
Fig. 5. Pruning the execution space.

Fig. 5(a) illustrates Prop. 1. The proposition can be used
to discontinue the exploration of (partial) execution σ2 when
arriving in state s.

Another important class of metrics are long-run time-
averages, such as average resource usage or average through-
put. We call them AVG quantities.

Definition 7: (AVG QUANTITY) Given an execution σ of
a resource-aware SDFG, σ = s0s1s2 . . .. If q is an AVG

quantity, then q(σ) = limN→|σ|
∑N

i=0 q(si)

t(σN )
if this limit exists

and it is undefined otherwise. We assume we are interested in
executions with maximal values for AVG quantities.

Note that, in general, for certain very irregular executions,
the limit may not exist. It is easy to show however that for
optimal schedules (with maximum AVG) the limit does exist.

For simplicity, we have defined MAX and AVG quantities
as functions of the sequence of states only, but quantities
can also be based on information in the transitions. However,
formalizing this would only complicate notation.

The throughput Tha(σ) of an arbitrary actor a of an SDFG
in an execution σ can now be defined as an AVG property,
namely the long-run average number of start transitions of
a in σ. Like in traditional SDFG throughput analysis, the
throughputs of all actors are related through their firing ratios
expressed by the repetition vector. As is common, we define
a normalized notion of throughput for the graph as a whole.
The throughput of an execution σ of a resource-aware SDFG
with repetition vector γ is defined as Th(σ) = Tha(σ)

γ(a) . As for
MAX quantities, our analysis is not limited to throughput, but
the experimental evaluation considers throughput.

AVG quantities do not have the monotonicity property of
MAX properties. Which one of the various executions ending
in the same state is better depends on the future execution
sequence. In order to decide locally at any given state whether
an execution is guaranteed to be better, we have to use more
strict conditions.

Proposition 2: Given two finite (partial) executions σ1 and
σ2 that start in the same state and end in the same state. If∑|σ1|

i=0 q(σ1(i)) ≥
∑|σ2|

i=0 q(σ2(i)) and t(σ1) ≤ t(σ2) for an

AVG quantity q, then for any execution σb = σ2 ·σ3, execution
σa = σ1 · σ3 has q(σa) ≥ q(σb).

Proof: Let S1 =
∑|σ1|

i=0 q(σ1(i)) and S2 =∑|σ2|
i=0 q(σ2(i)). Then, q(σa) = limN→|σ3|

S1+
∑N

i=0 q(σ3(i))

t(σ1)+t(σN
3 )

≥
limN→|σ3|

S2+
∑N

i=0 q(σ3(i))

t(σ2)+t(σN
3 )

= q(σb).
Prop. 2 is illustrated in Fig. 5(b). Also in this example, the

exploration of execution fragment σ2 can be terminated when
arriving in state s. When considering MAX and AVG quantities
simultaneously, the conditions in Prop. 1 and 2 need to be
satisfied for all the respective quantities in order to discontinue
the exploration of σ2.

The ultimate goal of the exploration we are developing is
to find Pareto-optimal executions, that capture the optimal
trade-offs between the metrics of interest. In the end, we are
particularly interested in infinite executions starting from the
initial state of the SDFG. It is convenient however to define
Pareto optimality for arbitrary executions (and for arbitrary
metric spaces).

Definition 8: (PARETO-OPTIMAL EXECUTION) An execu-
tion σ1 dominates another execution σ2 if and only if σ1 is not
worse than σ2 in any of the metrics of interest. An execution
σ is Pareto optimal if and only if it is not dominated by any
other execution. A Pareto-optimal execution with its metric
values is called a Pareto point.

The following result follows immediately.
Corollary 1: Given a resource-aware SDFG with a metric

space of arbitrarily many MAX and AVG quantities and two
finite (partial) executions σ1 and σ2 that satisfy the conditions
of Prop. 1 and 2 for all these quantities. Then σ1 dominates
σ2.

Corollary 1 can be used to prune the search space when
searching for Pareto points. However, the number of possibly
Pareto-optimal executions is still extremely large. When the
metric space has at most one AVG quantity, besides arbitrarily
many MAX quantities, we can further prune the search space.
It turns out that we can limit the search to so-called simple
executions.

Definition 9: (SIMPLE EXECUTION) A simple execution is
an infinite execution starting from the initial state of the
SDFG that is composed of two parts: a finite length prefix
execution σpre, not containing any duplicate states, and an
infinite periodic repetition of execution σc that is a cycle that
starts and ends in the final state of σpre and has no duplicate
states either.

An important property of a simple execution σ = σpre ·
σω

c (with σω
c denoting an infinite repetition of σc) is that the

value of AVG quantities such as throughput is fully determined
by the periodic part σc. For example, Thr(σ) = Thr(σc).
The values for MAX quantities are determined by the finite
execution σpre ·σc; for example, Ru(σ) = Ru(σpre ·σc). These
observations are used in the proof of the following crucial
proposition.

Proposition 3: Given an arbitrary infinite execution σ of a
resource-aware SDFG, σ = s0s1s2 . . ., and a metric space
consisting of one AVG quantity q and an arbitrary number of
MAX quantities p1, p2, · · · , pm. Then, there exists a simple
execution σs that dominates σ in this metric space.

Proof: (Sketch.) The states in σ can be divided into two



sets: ST and SR, such that states in ST are only visited
finitely often while the states in SR are visited infinitely
often. As the number of states in ST is finite, after a finite
length of execution σpre, new state transitions only happen
in SR. The infinite path through states of SR essentially
consists of (possibly nested) repeated visits of simple cycles
in the state space. As the number of the states in SR is
finite, the number of different simple cycles is also finite.
Assume we find MN simple cycles for σN = s0s1s2 . . . sN

after N transitions. From the property of AVG, we have
q(σ) = limN→∞

MN,1·q(σc1 )+MN,2·q(σc2 )+···+MN,k·q(σck
)

MN,1+MN,2+···+MN,k

where
∑k

i=1 MN,i = MN and MN,i the number of complete
visits of simple cycle σci after N states. So q(σ) ≤ qmax,
where qmax = max(q(σpre), q(σc1), · · · , q(σck

)). Let σs =
σpre1 · σω

cmax
be an execution such that σpre1 is a prefix

of σ, which eventually visits simple cycle cmax infinitely
often, where cmax is the cycle with maximum property value
qmax. Then q(σcmax

) = qmax and q(σs) = qmax ≥ q(σ).
Furthermore, pi(σs) = max(pi(σpre1), pi(σcmax

)) ≤ pi(σ),
where pi(σ) = max(pi(σpre), pi(σc1), · · · , pi(σcn

)). So, σs

dominates σ.
Note that with multiple AVG quantities, trade-offs between

these quantities can be achieved if two different schedules with
different values for AVG quantities can be alternatively applied
in arbitrary ratios. This is why the proof of Prop. 3 does not
hold for this situation, and what complicates the analysis if
multiple AVG quantities have to be considered.

From the above proposition, we know that we only have to
consider simple executions, because for arbitrary executions,
we can always find a simple execution that dominates it. So
we can use a DFS based algorithm to find all simple cycles
and use conditions from Prop. 1 and 2 to prune the search
space during exploration. These observations form the basis
of Algorithm 1.

If we encounter a state which is already on the DFS stack,
we have closed a simple cycle and we can analyse the cycle
for its AVG quantity, store the result (if not dominated), and
back-track. Moreover, if we encounter a state which is not
on the DFS stack, but which we have visited before, then we
check Pareto dominance of any of the previous visits of the
state over the current visit (via Cor. 1). If it is dominated, we
back-track; otherwise we have to revisit the state. It is easy
to see that the approach terminates because there is only a
finite number of states and states on the DFS stack cannot be
revisited.

Theorem 1: Algorithm 1 finds all Pareto points given a
metric space consisting of some number of MAX quantities
and at most one AVG quantity.

Proof: (sketch) From Prop. 3, it follows that it is sufficient
to explore only simple executions. This supports that the
algorithm back-tracks as soon as a state is found that is already
on the DFS stack. The second condition that the algorithm uses
to back-track is when a state is found that has been explored
before with properties that dominate the ones of the current
path (based on Cor. 1). We show that this is sound.

Let c be a simple cycle, part of a Pareto-optimal simple
execution. Consider all optimal simple executions ending in
the cycle c with an optimal prefix in the following sense: σ
is an optimal prefix to the cycle c if it is a simple path to c

Algorithm 1 DFS algorithm
Input: A Resource-aware SDFG G with initial state s0

Input: Resource constraints RC and Scheduling policies Π
Output: A set P of Pareto points

1: procedure EXPLORE(G, s0)
2: StateStack Q =< s0 >
3: StateSpace S = {s0}
4: while LENGTH(Q)> 0 do
5: scurr = Q.top()
6: snext =NEXTSTATE(scurr);
7: if snext /∈ Q then
8: if snext /∈ S then . new state
9: Q.push(snext)

10: S.insert(snext)
11: else . revisited state
12: if MAYBEPARETOOPT(Q, snext) then
13: Q.push(snext)
14: end if
15: end if
16: else . cycle found
17: p =COMPUTEQUALITYMETRICS(Q)
18: merge p into Pareto set P
19: end if
20: end while
21: return P
22: end procedure

23: procedure NEXTSTATE(s)
24: F=TOKENSENABLEDFIRINGS(s)
25: R=RESOURCECONSTRAINT(s,RC) . avail. resources
26: D=UNEXPLOREDDECISIONBRANCHES(s,F, R, Π)
27: if D 6= ∅ then
28: d=SELECTONEDECISION(D)
29: snext=TAKEDECISION(s,d)
30: else
31: Q.pop()
32: if Q = ∅ then
33: finish exploration
34: else
35: s = Q.top() . back-track
36: snext =NEXTSTATE(s)
37: end if
38: end if
39: return snext

40: end procedure

and for every prefix σ′ of σ, σ′ is an optimal path to its final
state. Consider the first such optimal execution explored by
the algorithm. Because the prefix is optimal, no back-tracking
occurs during the exploration until a state s of c is reached.
Then the exploration of c is followed until it is complete
(returning to s) or a state s′ 6= s on c is found that has already
been visited with dominating properties. Suppose the latter is
true. Any state visited but not on the stack has already been
fully explored. Since it is dominating and also a state of c,
it was explored after the first state s on c was found. Hence,
there exists a path from s to s′ which is better than the part of
c explored. This would mean that the cycle c is not optimal, a



TABLE I
OPTIONS FOR EXPLORATION

Design Domain Option

Scheduling

stack size
iteration number
branch selection rule
branching width
partial order among actors
channel quantities bounds

Resources resources bounds

Search Algorithm
back-track step
cycle count
time limit

contradiction. Thus such a case cannot occur, cycle c is fully
explored, and the optimal simple execution is found.

V. IMPLEMENTATION

In this section, we discuss the decisions we made for the
implementation of our method. It is based on Alg. 1, but
it implements several features to facilitate the exploration of
large state spaces. The price to be paid of using these features
is (potential) loss of optimality, but the result is a widely
applicable, versatile tool.

We implemented our method in the SDF3 toolset [27]. Like
in many model-checking tools, we use a hash table as the
data structure to store the visited states for quick checking.
However, to allow exploration of large state spaces efficiently,
we cannot only depend on a good data structure. We have to
limit the size of the explored state space to keep our tool fast
while ensuring that the exploration can find enough interesting
design points.

Fig. 3 introduces the concept that the exploration of the
state space of an SDFG can be controlled by adjusting the
resource and scheduling design domains. By providing options
to configure the two design domains, we can guide the
exploration to search different parts of the state space and try
to find the design points with different quality metrics. The
exploration options we implemented as configurable options
in our heuristic search are listed in Table I. These options are
divided into 3 groups: Scheduling options, Resource options,
and Search-algorithm options.

In the scheduling domain, the length of schedules is often
an important design constraint for embedded systems. Stack
size limits the depth of the DFS algorithm and indirectly
puts constraints on the length of schedules. For SDFG G =
(A,C, τ) with repetition vector γ, an iteration is a set of actor
firings such that for each actor a ∈ A, the set contains γ(a)
firings of a. By limiting the number of iterations to n, the
schedule length is not longer than n

∑
a∈A γ(a). The branch

selection rule and branching width options are used together to
limit the number of schedules explored. The branch selection
rule attempts to choose the most interesting schedules and
the branching width limits the number of branches explored.
For example, we implemented a fairness rule to guide the
exploration to ensure fairness in the firings of actors. The
rule guides the algorithm to select branches based on a cost
which is computed from the repetition vector γ of the SDFG.
The cost of a decision d is C(d) =

∑
a∈A daca, with da

the number of firing starts of actor a in decision d and
ca = fa/γ(a) the cost of one firing of actor a, where fa is the
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Fig. 6. Grid Exploration

accumulated firing count of actor a since the start of execution.
The larger the cost of one actor, the more firings of one actor
have been executed and the smaller the chance that the actor is
selected for the next firing start. In this way, we ensure fairness
in actor firings. The fairness rule can avoid that the algorithm
selects actors greedily based on the order in the data structure
when exploring the state space partially. Experiments show
that the results with the fairness rule turned on are better than
the results without it. Another scheduling constraint that can be
defined is a (possibly partial) priority ordering among actors.
When actors compete for the same resource, they will be
assigned according to their priority. The search algorithm will
only explore options that satisfy this priority order. Bounds
on channel quantities can provide another constraint on the
explored executions. The bounds limit the maximum number
of tokens that can be stored in each channel. As the token
distribution over channels can be viewed as the memory of
the past execution, the bounds limit the depth of the memory
and thus influence the future execution.

In the resources design domain, we use resource bounds
to constrain the exploration. As said before, the resources of
embedded system are typically highly constrained. The limited
resources will influence the scheduling of an SDFG and
result in different performance numbers. By setting different
resource constraints, we can explore the state space only with
interesting resource constraints.

The search algorithm itself can also be configured. To ensure
that the search algorithm covers a large state space, we use
the back-track step to avoid that the search becomes trapped
into some local region. For example, if the back-track step
is set to 5, the search algorithm back-tracks at least 5 states
before it starts searching again. As the number of simple cycles
can be very large, we also use a maximum cycle count as
a termination condition to stop the search algorithm if the
number of cycles found reaches the limit. A time limit for
one exploration is another natural termination condition for
designers to control the time budget of the exploration. We
can explore the design space very quickly by combining the
various options. For this purpose, we developed a grid search
strategy, where the resource space of an SDFG is divided into
a grid. Each grid point is explored with a fixed time budget,
using the fairness rule to guide the exploration. Fig. 6 shows



an example for an SDFG with two types of resources R1 and
R2. And (0.6, 0.6) is one of the grid points in the normalized
resource space. This strategy has two advantages. First, it is
scalable, as the exploration of the whole design space can be
distributed to a multi-core system or PC clusters. Second, the
total exploration time Tt = (Tp+Tov)Np

Nproc
is controllable by the

designer, where Tp is the time budget for one grid point and
Tov is the overhead for setup and cleanup of exploration (such
as memory allocation and deallocation), Np is the number of
grid points and Nproc is the number of processors. For large
state spaces, the overhead can be omitted as Tp dominates.

VI. EXPERIMENTAL EVALUATION

To show the use and versatility of our tool, we perform two
different sets of experiments on an Intel CoreTM2 at 2.2 GHz
with 4GB of RAM. In the first experiment, we explore the
trade-off between the throughput and the required buffer space
for the channels of an SDFG when assuming that memory
can be shared among channels. This trade-off is important
for the efficient implementation of multimedia and signal
processing applications on embedded systems. Earlier work
[26], [28] has only explored the trade-offs when assuming
that memory cannot be shared among channels. As there are
no comparable tools for DSE of SDFGs, we choose to compare
our results with [26]. Our experiment shows that we can
efficiently explore this trade-off space and reduce memory use
when compared to using a distributed memory model. In the
second experiment, we apply our tool to a real-life industrial
case study where the design space of the digital datapath of a
professional printer is explored. We show that our tool allows
to efficiently explore the design space of such a datapath.

A. Throughput vs Memory Trade-offs

The benchmark set for this experiment contains a modem
[6], a satellite receiver [23] and a sample-rate converter [6]
from the DSP domain and an MP3 decoder [26] and an
H.263 decoder [26] both from the multimedia domain. We
also use an example from [26] and the frequently used bipartite
SDFG from [6]. For each of the SDFGs, we explore the trade-
off between throughput and buffer memory requirement. The
search parameters of our algorithm are set as follows. The
range of the iteration number is from 1 to 3. The range of the
branching width is from 2 to 3 and the fairness rule is used.
The backtrack step range is from 1 to 2. The memory scan
range is from the lower bound of [11] to the upper bound of
[26] and is uniformly divided into 10 steps for our grid search.
The time budget for each exploration is 1 second for the first
part of the experiment and 60 seconds for the second part.

To the best of our knowledge, our tool is the first that allows
to analyze the throughput-memory trade-off when memory can
be shared among channels. The Pareto points found by our
tool are more resource efficient compared to the Pareto points
found by [26] which does not allow sharing memory among
channels. To investigate the impact of sharing resources, we
compare our results to the Pareto points found by [26]. The
results of [26] are known to be optimal when memory cannot
be shared. Though we cannot compare the results with the
optimal results with shared memory, as they are not known,
we compare our results with the experimental results when
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exploring longer (60s) for each configuration. The comparison
of the results shows that the results can be improved for some
graphs by using a longer exploration time. However, the total
time spent on the exploration is also increasing very quickly.
In order to quantify the difference between various results,
we define the average memory reduction MRavg as a metric
to compare a Pareto set Snew (our result) with a reference
Pareto set Sref (the result found by the algorithm in [26]).
The memory reduction for each reference point r ∈ Sref is
the maximal memory reduction of its counterpart a ∈ Snew

which has throughput Th(a) not less than throughput Th(r).

MRavg =
1

|Sref |
∑

r∈Sref

max
a∈Snew

d(r, a) (1)

where

d(r, a) =

{
mem(r)−mem(a) Th(r) ≤ Th(a)
0 Th(r) > Th(a)

(2)

The results of the experiments are summarized in Table II.
It shows the number of actors and channels in each graph and
the minimal buffer space for the smallest positive throughput,
the maximal throughput that can be achieved. It also shows
the number of Pareto points, the execution time of the tool and
the statistical information about memory reductions achieved
by sharing of memory. The 60 seconds results are shown
in brackets if they are different from the 1 second results.
Fig. 7 shows the Pareto points of the Modem model found
by the two algorithms. Sharing memory reduces memory by
more than 50% for this particular case. The results of Table
II show that by sharing memory among actors, the required
memory can be reduced from 10% to 50% in most cases.
The fact that the minimally obtained resource reduction is
positive in all cases shows that we can always achieve the
same throughput as the throughput found by [26]. Although 60
seconds results are sometimes better than 1 second results, a 60
second budget results in much longer overall analysis times.
The substantial memory reductions and obtained throughput
results together with the analysis efficiency indicate that our
techniques perform well. Fig. 8 shows the Pareto points of
the H.263 decoder (QCIF frame size). The reason for the low
average reduction in memory per Pareto point, is the large
number of Pareto points found by the algorithm of [26] in the
upper right corner of the graph, which are dominated by the
one nearby Pareto point found by our tool by a small margin,



TABLE II
EXPERIMENTAL RESULTS OF BENCHMARKS

Example[25] Bipartite Sample Rate Modem Satellite MP3 H.263(QCIF)
actors/channels 3/2 4/4 6/5 16/19 22/26 13/12 4/3
Min.Throughput 1.25×10−1 3.09×10−3 1.00(1.02)×10−3 5.56×10−2 7.60×10−4 1.90×10−7 1.52×10−6

Min.BufferSize 4 26 23 16(13) 962 11 595
Max.Throughput 2.50×10−1 3.97×10−3 1.04×10−3 6.25×10−2 9.47×10−4 2.68×10−7 3.01×10−6

Min.BufferSize 7 32 31 19(17) 1220 14 1190
Pareto points 4 7 7(5) 3(4) 3 3 3

Exec. time(min) 0.45(0.45) 1.17(2.55) 5.52(147) 2.34(24.7) 5.56(147) 5.18(95.5) 2.22(18.6)
Max. Memory Reduction 22.2% 13.3% 30.3% 57.9%(65.8%) 37.7% 50.0% 50.1%
Min. Memory Reduction 10.0% 7.1% 8.8%(28.2%) 52.5%(57.5%) 21.0% 46.2% 0.5%
Avg. Memory Reduction 14.9% 10.7% 22.4%(29.2%) 55.6%(61.6%) 29.4% 48.1% 3.2%

Std. Deviation 0.05 0.02 0.10(0.01) 0.02(0.03) 0.08 0.02 0.08
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while the single, lower throughput point is improved quite a
lot. The average memory-reduction metric defined above does
not capture this situation very well. The execution time of our
method is reasonable, though it is longer than the execution
time of the reference algorithm.

B. Printer Case Study

In this case study, we analyze the datapath of a professional
printer, provided by Océ (www.oce.com). The processing units
of the datapath share memory and the memory bus. Twelve use
cases which are frequently seen in the daily use of a printer
are investigated. We model these use cases as resource-aware
dataflow graphs and analyze them with our tool.

The first set of experiments considers single-use-case anal-
ysis for one specific architecture configuration, so in this
particular case, we are not looking for trade-offs, but to
evaluate metrics in a particular design solution. The metrics we
are interested in are the peak and average usage of resources
in the datapath and the throughput of the datapath for those
use cases. As the scheduling policy for these use cases is
deterministic, there is only one simple execution for each use
case. It is important to note that, because of this, we are
not limited to only one AVG quantity, so we can consider
both throughput and average resource usage. From Section
4, we know that the throughput and resource usage can be
easily computed from the prefix and the periodic part of the
execution. Table III shows the execution time of our algorithm
and the number of states of the execution. For most of the
use cases, the execution time of the algorithm is less than
1 second. The two exceptions are use cases with large but
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slightly different actor execution times that cause a periodic
execution phase with a large number of states.

The second set of experiments concerns the design-space
exploration of printer architectures. We study the trade-off
among peak memory and bandwidth usage with performance
(throughput), obtained by different schedules. By using our
grid search method, we can get the profile of the design space
of a specific architecture, which can help a system designer
make decisions on questions like how much memory and how
much bandwidth are needed for some specific performance
requirement.

Fig. 9 shows the normalized 3-dimensional Pareto space in
the design space of a particular use case for some platform
configuration. Without giving the detailed analysis results,
we illustrate how our method can be used for design space
exploration. By considering options of adjusting the speed of
processing units or adding additional processing unit instances,
we explore three different platform configurations. From the
analysis we see that in the first configuration, the system
performance is limited by some image processing units. The
first configuration is used as a reference. The second con-
figuration increases speed of critical processing units by 30%.
The third configuration adds additional image processing units
to the platform. By increasing the speed of processing units
in the second configuration, the maximal performance is also
increased by 30%. However, the bottleneck does not change,
and the platform cannot reach its maximal performance (that
is determined by the scanner and printing components). In
the third configuration, we add additional resource instances



TABLE III
ANALYSIS OF PRINTER USE CASES

UseCase No. 1 2 3 4 5 6 7 8 9 10 11 12
actors/channels 5/6 12/15 9/9 3/3 3/3 8/8 9/9 11/13 14/19 14/19 5/6 8/8
exec. time(s) 0.876 0.846 54.994 0.365 0.297 0.254 0.257 0.304 6.587 0.306 0.385 0.244
state count 2204 1888 12651 854 422 10 11 383 3470 346 946 10

to remove the system bottleneck identified by the previous
two experiments and the maximal performance of the system
is achieved. Finally, as different priorities of processing units
might lead to different executions with different resource usage
and performance, we investigate the sensitivity for different
scheduling priorities in the system architecture. The explo-
ration results show that some Pareto points in the design space
can be achieved by giving the bottleneck units higher priorities.
When resources are sufficient, priorities do not influence the
performance.

The results of this case study show that our tool is suffi-
ciently flexible to support design-space exploration. It allows
to explore the trade-offs between several objectives, and to
investigate scheduling policies for shared resources.

VII. CONCLUSIONS

In this paper, we consider the trade-off analysis problem for
SDFGs as a multi-objective model-checking problem. Pareto
dominance and SDFG-specific information are used to prune
the search space. Some theoretical results are provided as foun-
dation for the exploration of the state space. We implemented
a highly scalable algorithm with many configuration options.
Two case studies show that our tool can explore the design
space very quickly while providing a good characterization of
the available trade-offs. Future directions include theoretical
studies to find more efficient ways to explore the state space,
for example by utilizing the structure of SDFGs, and to
prune the state space by model-checking techniques such as
symmetry reduction and partial-order reduction.
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