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Abstract—System design is a difficult process with many
design-choices for which the impact may be difficult to foresee.
Manufacturing system design is no exception to this. Increased
use of flexible manufacturing systems which are able to perform
different operations/use-cases further raises the design complex-
ity. One important criterion to consider is the overall makespan
and associated critical path for the different use-cases of the
system. Stochastic critical path analysis plays a fundamental role
in providing useful feedback for system designers to evaluate
alternative specifications, which traditional fixed-time analysis
cannot.

In this paper, we extend our formal model-based framework,
for the specification and design of manufacturing systems, with
stochastic analysis abilities by associating a criticality index to
each action performed by the system. This index can then be visu-
alized and used within the framework such that a system designer
can make better informed decisions. We propose a Monte-Carlo
method as an estimation algorithm and we explicitly define and
use confidence intervals to achieve an acceptable estimation error.
We further demonstrate the use of the extended framework and
stochastic analysis with an example manufacturing system.

Index Terms—manufacturing systems, criticality analysis, bot-
tleneck identification, formal specification

I. INTRODUCTION

Performance is a key aspect of manufacturing systems,
where most designs are driven towards higher productivity
(e.g. makespan). In this context, the identification of system
bottlenecks is fundamental, since no modification elsewhere on
the product flow will lead to an improvement in performance
[1]. Therefore, bottleneck analysis provides useful feedback
for system engineers to understand how to design or where to
improve their systems. In this paper we address the problem
of identifying bottlenecks which limit makespan in a manu-
facturing system, where actions and activities of the system
exhibit stochastic execution times.

Comparably, the field of planning, particularly project plan-
ning, has addressed similar issues. The problem of analysis
of a project plan to understand the expected completion time
(makespan) and the criticality of certain tasks (bottleneck
analysis) is the same as the one addressed in this paper.
Critical path based methods, such as the Critical Path Method
(CPM) [2] and the Program Evaluation and Review Technique
(PERT) [3], for deterministic and stochastic execution times
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Fig. 1. Overview of the specification framework [6] and extensions.

respectively, have been widely used in this field to address
this problem. Moreover, these analysis techniques have found
their way into many engineering fields, for example IC design
where critical path estimation is used to determine the clock
speed, or application scheduling, where critical path analysis
is used in scheduling algorithms and heuristics. However, later
contributions have shown that better feedback is obtained by
the study of the criticality of tasks [4], [5], instead of the
criticality of paths (such as the classical critical path methods).
These techniques have not yet been applied to manufacturing
systems.

In this paper we therefore look at the use of criticality of
tasks as an analysis technique for bottleneck identification in
Manufacturing Systems during design time. For this purpose,
we extend our specification framework for Manufacturing
Systems [6]. Fig. 1 depicts the overview of the proposed
framework [6] and the extensions realized in this paper
(denoted by the numbered blocks). Briefly, in this approach
the system is specified as a set of resources (e.g. a Drill),
containing peripherals (e.g. clamps, motors, heaters) which
provide a set of actions. Actions can be used to build activities
as Directed Acyclic Graphs (DAGs), where nodes are actions
and edges dependencies. We assume no communication delay
between tasks. Separately, a set of system requirements can
be defined in terms of allowed activity orderings. All these



elements are then used either to synthesize a performance
optimal safe controller for the system, or to study a particular
desired activity sequence.

To address bottleneck identification for stochastic execu-
tion timed activities, we add the following extensions to the
framework: 1) we define actions which have a stochastic
execution time; 2) we define stochastic notions of path and
action criticality, based on the work of [5], and introduce a
Monte-Carlo based long-run average [7] approach to determine
the bottlenecks in the system; and 3) we extend the Gantt chart
visualization of Activity Sequences to express the analysis
results in a way which is intuitive and useful for the system
designer.

The remainder of this paper is organized as follows. We
start by discussing the related work in Section II. The formal
framework is briefly introduced in Section III. In Section IV,
we introduce stochastic timed actions as an extension to the
framework, and in Section V we define criticality indices
as our metric. Section VI introduces a long-run method for
stochastic criticality analysis. Sections VII and VIII discuss the
results and their interpretation, and compare to classical critical
path analyses. Finally, Section IX discusses the industrial
application and Section X concludes the work.

II. RELATED WORK

The use of critical path based methods has made its way
into different fields such as embedded systems and IC design,
for deterministic execution times [8]–[10] as well as for
stochastic execution times [11], [12]. Here the focus is mostly
on task scheduling and not on the prediction of performance
bottlenecks as in our work.

The study of criticality of a path, or a task in a path, has
it origins in the Critical Path Method (CPM) [2] and in the
Project Review and Evaluation Technique (PERT) [3], [13].
Projects are modeled as activity networks, where nodes repre-
sent tasks, annotated with (deterministic (CPM) or stochastic
(PERT)) durations. Edges model dependencies between tasks
and a critical path determines the total completion time of
the project. In these approaches two measures were defined:
critical path and critical task.

Although both CPM and PERT focus on the criticality of
paths, is has been shown that is it more meaningful to rely on
the Criticality Index (CI) metric [4], [5], [14], [15]. Intuitively,
the goal of CPM or PERT is to give feedback on which tasks to
focus on minimize the project lead time. The CI metric allows
the ranking of the tasks within a project given the likelihood
that they are on a critical path. We follow the Criticality Index
approach in this paper.

Determination of the CI can be done either: 1) analytically
[14], [16], [17] or 2) by Monte-Carlo estimation approaches
[5], [15], [18]. For the general case, analytical solutions are
too computationally demanding and current solutions cannot
handle even medium-sized stochastic activity networks. A
review of these approaches is made in [19]. To obtain scalable
analysis, our approach will also rely on simulation.
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Fig. 2. Symbolic example of a system specification using our framework [6]:
a) depicts the resources, peripherals and actions provided, b) two examples of
activities constructed with the provided peripheral actions and c) an example
of an activity sequence (Activity 1; Activity 2).

Our contribution is the formalization of the stochastic
notions of path and action criticality as an extension to our
framework [6] together with an effective stochastic critically
analysis technique supporting design-time bottleneck identifi-
cation in Manufacturing Systems.

III. PREVIOUS WORK

In [6], we define our formal modeling framework for
compositional specification of both the functional and timing
aspects of manufacturing systems. In this paper we extend
this framework with the notion of stochastic timed actions. To
make the paper self-contained we briefly introduce the basics
of the framework.

A. System and Activities

The following sets define the basic elements in the frame-
work:
• set A of actions, with typical elements a ∈ A;
• set P of peripherals, with typical elements p ∈ P;
• set R of resources, with typical elements r ∈ R.
We assume a function R : P → R, such that R(p) is the

resource that contains p.
Using these elements we can construct DAGs of actions

executed by peripherals (or release and claims of resources).
Such a DAG represents a particular functional aspect of the
system, e.g. movement of a robot arm, handover of products
between resources, etc. We will call such a DAG an activity.

Definition 1. An activity is a DAG (N,→), consisting of a set
N of nodes and a set → ⊆ N ×N of dependencies. We write
a dependency a → b, to denote that (a, b) ∈ →. We assume



a mapping function M : N → A × P ∪ R × {rl, cl} which
associates a node to either a pair (a, p) (referring to an action
executed on a peripheral) or to a pair (r, v) with v ∈ {rl, cl}
(referring to a claim (cl) or release (rl) of resource r). Nodes
mapped to a pair (a, p) are called action nodes, and nodes
mapped to a claim or release of a resource are called claim
and release nodes respectively.

Fig. 2 depicts the model of a manufacturing system. In Fig.
2 a) three resources r1, r2 and r3 are depicted. The individual
peripherals of each resource are denoted in the figure by
p1, .., p5. Each peripheral provides a set of actions that can
be executed by that peripheral. These actions are denoted by
a, b, c, d, e, f and h.

Fig. 2 b) shows two possible activities constructed from
the example system of Fig. 2 a). The shaded circles denote
claim and release nodes. The open circles depict the actions
to be executed by their respective peripherals. Dependencies
are denoted by arrows.

Activities have to satisfy a number of static consistency
constraints. They are as follows:

1) All nodes mapped to the same peripheral are sequentially
ordered to avoid self-concurrency.

2) Each resource is claimed no more than once.
3) Each resource is released no more than once.
4) Every action node is preceded by a claim node on the

corresponding resource.
5) Every action node is succeeded by a release node on the

corresponding resource.
6) Every release node is preceded by a claim node on the

corresponding resource.
7) Every claim node is succeeded by a release node on the

corresponding resource.

B. Activity Sequences

Activities can be combined using the activity sequencing
operator.

Definition 2 (Sequencing Operator). Given two activities
Act1 = (N1,→1) and Act2 = (N2,→2) with N1 ∩N2 = ∅,
we define Act1 ·Act2 as activity Act1·2 = (N1·2,→1·2).

Let R1∩2 = R(Act1)∩R(Act2) denote the set of resources
used in both activities. Define the set of corresponding release
nodes in N1, and claim nodes in N2 as
rl1∩2 = {n1 | n1 ∈ N1 ∧ (∃r ∈ R1∩2 | M(n1) = (r, rl))},
and cl1∩2 = {n2 | n2 ∈ N2∧ (∃r ∈ R1∩2 |M(n2) = (r, cl))}
respectively.

Activity Act1·2 = (N1·2,→1·2) is now defined as follows:

N1·2 = (N1 ∪N2)\(cl1∩2 ∪ rl1∩2)

→1·2 = {(ni, nj) | ni →1 nj ∧ nj 6∈ rl1∩2} ∪
{(ni, nj) | ni →2 nj ∧ ni 6∈ cl1∩2} ∪
{(n1, n2) | (∃nrl ∈ rl1∩2 | n1 →1 nrl) ∧

(∃ncl ∈ cl1∩2 | ncl →2 n2)}.

An example of the application of the sequence operator in
practice is depicted in Fig. 2 c). It depicts the activity resulting
from the sequencing of activities A1 and A2 in Fig. 2 b).
Notice that the resulting activity is formed by coalescing and
subsequently removing corresponding release and claim nodes.

IV. STOCHASTIC TIMED ACTIVITIES

To study the dynamic behavior we need to describe the
timing behavior of all actions and their influence on the
execution of other actions (Extension 1 in Fig. 1).

In order to model the timing variations that a system
exhibits, we attribute to each action a random variable rep-
resenting the random execution time of that action. To this
end we assume T to denote the collection of all such random
variables. We assume that this set contains random variable 0
which takes value 0 with probability 1.

Definition 3 (Stochastic execution time of an action). We
assume a function E : A → T that maps each action to
its corresponding random execution time variable.

Definition 4 (Stochastic execution time of a node). Given
activity (N,→) and node n ∈ N , we define the execution
time of node n as:

E(n) =


E(a) if M(n) = (a, p)

for some a ∈ A, p ∈ P
0 otherwise.

In order to define the start and end time of each node in
an activity, we need to consider the dependencies of all nodes
first. To this end, we formally define the set of predecessors
of each node.

Definition 5 (Predecessor nodes). Given activity (N,→) and
node n ∈ N , we define the set of predecessor nodes:

Pred(n) = {nin ∈ N | nin → n}.

An activity also requires information considering the state
of the system at the start of its execution. We introduce this
as a resource time-stamp function γR : R → T . For each
r ∈ R, γR(r) represents the current stochastic availability
time of resource r at the starting time of the activity. We now
define the start and end time of the execution of each node in
an activity.

Definition 6 (Start and completion time of a node). Given
activity Act = (N,→) and resource time stamp function γR,
we define the random variables start time S(n) and finishing
time F (n) for each node n ∈ N :

S(n) =


γR(r) if M(n) = (r, cl)

for some r ∈ R, cl ∈ {rl, cl}
max

n′∈Pred(n)
F (n′) otherwise

F (n) = S(n) + E(n)



TABLE I
ACTION EXECUTION TIMES PER CASE

Execution Time

Action Best-Case Worst-Case Most Likely-Case

a 1 3 2
b 1.8 2.2 2
c 2.5 4 3.5
e 0.8 1.2 1
f 1.8 2.2 2

V. CRITICAL PATH AND CRITICAL NODE

Now that we have defined stochastic timing behavior of an
activity we can introduce the concepts of critical path and
critical node.

Definition 7 (Path and Makespan of a Path). Given an activity
Act = (N,→) we let ∆ denote the set of all paths of nodes
n = n1 · · ·nk such that ni → ni+1 for each i : (1 ≤ i < k)
and nk 6→. For each path n1 · · ·nk ∈ ∆, we define makespan
as:

mks(n) = F (nk) (1)

The makespan of a path represents the total time necessary
to complete the execution of all peripheral actions in that path.
A path for which the makespan is larger or equal to any other
path in ∆, and for which the start time of every node is the
same as the finishing time of its predecessor is called a critical
path.

Definition 8 (Critical Path). For each n = n1 · · ·nk ∈ ∆, we
define a random variable:

C(n) =


1 if mks(n) = maxn′∈∆mks(n

′)

and S(ni+1) = F (ni) for 1 ≤ i < k − 1

0 otherwise

Hence for each path n ∈ ∆, C(n) indicates whether n is a
critical path or not. Notice that C(n) is a Bernoulli-distributed
random variable.

A critical path imposes to an activity the total time necessary
(makespan) to complete all peripheral actions in that activity.
Note that there can be multiple paths which are critical. This
would however imply that all those critical paths have the same
makespan.

Definition 9 (Critical Node). For each n ∈ N , we define a
random variable:

C(n) =


1 if n = ni for some path n = n1...nk ∈ ∆,

with 1 ≤ i < k and C(n) = 1

0 otherwise

Therefore, for each node n ∈ N , C(n) indicates whether
n is in a critical path or not. Note that n can be in multiple
paths.

TABLE II
NODE CRITICALITY PER CASE

Criticality of Nodes

Action Best-Case Worst-Case Most Likely-Case

a 0 1 1
b 1 0 0
c 0 1 1
e 1 0 0
f 1 0 0
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Fig. 3. Different execution scenarios of activity sequence of Fig. 2 c) and
in red the critical path: a) for best-case execution times, and b) for most
likely-case execution times.

Fig. 3 a) depicts the Gantt chart of the best-case execution
of the activity sequence in Fig. 2 c). The actions in red depict
the critical path of this execution scenario and the execution
times are shown in Table I. In this case the critical path is b
e f and nodes b, e and f are critical nodes.

Depending on varying execution times, an activity exhibits
different possible critical paths. For example, consider the
alternative most likely-case execution of activity sequence of
Fig. 2 c), where peripheral actions a and c have, respectively,
an execution time of 2 and 3.5, as shown in Table I c). The
new resulting Gantt chart is depicted in Fig. 3 b). Now, the
critical path is a c and a and c are critical nodes. Table II
shows the criticality of a node, according to Definition 9, for
each node in the different execution cases.

VI. STOCHASTIC CRITICALITY ANALYSIS

To determine the bottlenecks of a system we propose a
stochastic analysis that estimates the criticality of the nodes of
an activity (Extension 2 in the Fig. 1). The metric used is the
Criticality Index (CI) [4], [5] of a node. The Criticality Index
is defined as the probability with which a node occurs in the
critical path.

Definition 10 (Criticality Index). Given an Act = (N,→),
the Criticality Index c(n) of a node n ∈ N is the probability
that the node will be in a critical path. This index is defined
as c(n) = E(C(n)).

In this section we discuss the approach to estimate the crit-
icality index of a node based on the calculation of confidence
intervals. For simplicity of notation, we fix n and will write
C to denote C(n) and c to denote c(n). Thus c = E(C).
Furthermore the variance of C is given by c(1− c).



TABLE III
COMPARISON OF PERT APPROACH AND STOCHASTIC CRITICALITY

ANALYSIS.

PERT SCA

Expected PERT Criticality Indices
Action Execution Time Node Criticality (CI)

a 2 1 0.52
b 2 0 0.48
c 3.4 1 0.72
e 1 0 0.28
f 2 0 0.28

A. Estimation of c

To estimate c we define the point-estimator Ĉ = 1
k

∑k
i=1 Ci,

where each Ci represents an independent copy of C. Then by
the strong law of large numbers Ĉ converges strongly to c.
Hence for sufficiently large k, 1

k

∑k
i=1 ci ≈ c, where each

ci represents a sample from Ci. We will write ĉ to denote
point-estimation 1

k

∑k
i=1 ci.

B. Confidence Intervals and determining k

We would like to determine k such that the absolute error
|c−ĉ| is sufficiently small. For this we use the central limit the-
orem stating that Ĉ = 1

k

∑k
i=1 Ci is approximately Normally

distributed with expected value kc and variance kc(1 − c).
Normalization yields kĈ−kc√

kc(1−c)
to be N(0, 1) distributed. This

also holds when c in the denominator is replaced by point-
estimator Ĉ. Rewriting yields that

√
k Ĉ−c√

Ĉ(1−Ĉ)
∼ N(0, 1)

for sufficiently large k.
Therefore P(−Z γ+1

2
≤
√
k kĈ−kc√

Ĉ(1−Ĉ)
≤ Z γ+1

2
) ≈ γ

for confidence level γ and quantile Z γ+1
2

. (Here quantile
Zp = Φ−1(p), where Φ is the cumulative distribution func-
tion of N(0,1)). From this it follows that P(c ∈ [Ĉ −
Z γ+1

2

√
Ĉ(1−Ĉ)√

k
, Ĉ + Z γ+1

2

√
Ĉ(1−Ĉ)√

k
]) ≈ γ.

Replacing Ĉ with point-estimation ĉ delivers confidence

interval [ĉ−Z γ+1
2

√
ĉ(1−ĉ)√

k
, ĉ+Z γ+1

2

√
ĉ(1−ĉ)√

k
] which contains

c with confidence γ.

In case c is contained in this interval |c−ĉ| ≤ Z γ+1
2

√
ĉ(1−ĉ)√

k
.

We use this inequation to stop the simulation once the absolute
error is smaller than a predetermined bound.

In practice, for a number k of runs, samples e1(n), ..., ek(n)
from copies E1(n), E2(n), ..., Ek(n) from E(n) are taken, for
every node n ∈ N . For each run m, such that 1 ≤ m ≤ k,
the critical path is computed, following the methodology in
[5], [20], using samples em(n) of each node. Then values
c1(n), ..., ck(n) are computed according to Definition 9, to-
gether with the error bound just described. The simulation
terminates once the absolute error of the estimation of c(n)
for every node is smaller than or equal to a specified bound.

VII. INTERPRETATION OF THE CRITICALITY INDEX

In this section we provide an interpretation for the Criticality
Index and discuss how it provides more information than

classical critical path analyses. For this purpose we use as
an example activity sequence of Fig. 2 c).

Let us assume that the action execution times of the ac-
tivity sequence are modeled by stochastic random variables.
Classical critical path analysis, such as the PERT approach
[3], consider distinct cases for action execution times, which
correspond to the maximal, minimal and mode values of the
distribution associated with the random variable. These are
depicted as worst (w), best (b) and likely (l) cases in Table I.
The PERT approach first computes the expected time for each
action, using equation (b+ 4× l + w)/6, and then computes
expected critical path with those values. The expected action
execution times and the resulting values of the criticality of
nodes, according to Definition 9, are depicted in Table III,
under column PERT. From these, we conclude that the critical
nodes are a and c, and therefore reducing the execution of
these actions would result in a lower makespan.

Consider the same example and assumptions used for the
PERT approach, but now applying the proposed stochastic
criticality analysis. As a result we obtain the Criticality Index
(CI) of every node, as in Definition 10. The resulting values
are depicted in Table III, under column SCA. The stochastic
analysis results indicate that, even though action c has the
highest criticality, actions a and b have an almost identical
probability of occurring in the critical path. Which therefore
implies that the initial conclusion from the PERT analysis is
not precise enough and improving action b should also be
considered. The advantage of the stochastic criticality analysis
is that it considers the shape, and therefore the variance of
the distribution associated with the random variables, and
the influence of the execution of actions on the execution of
dependent actions. This allows for a more complete overview
of the criticality of the activity sequence which cannot be
obtained by classical critical path approaches.

This is further illustrated in the next section with a manu-
facturing system case study.

VIII. CASE STUDY: TWILIGHT SYSTEM

The Twilight System [6] is an example created for the study
of controller synthesis and performance analysis of Manufac-
turing Systems. This manufacturing system is a simplification
of the product handling model that has been created at ASML1

the world-leading manufacturer of lithography systems, using
similar kinds of peripherals and resources.

In this section we elaborate on the functionality of the
Twilight System and on the identification of performance
bottlenecks to reduce makespan by using stochastic criticality
analysis. Since bottleneck improvement is always possible
(there will always be a bottleneck), we insist the (expensive)
Drill resource to be the performance limiting resource.

A. Example Manufacturing System

Our example system contains four resources. First, there
are two robots to transport balls; the load robot (LR) and the

1www.asml.com
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Fig. 4. Manufacturing system example (Twilight system) with two robots and
two production stages.

TABLE IV
SET OF ACTIVITIES FOR OUR CASE STUDY.

LR PickFromInput LR PutOnDrill UR PutOnCond
LR PutOnCond UR PickFromDrill UR PutOnOutput
LR PickFromCond UR PickFromCond Condition
LR PickFromDrill UR PutOnDrill Drill

unload robot (UR). Each robot has a homing position; LR on
the left corner, and UR on the right corner. The other two
resources are processing stations, the conditioner (COND) to
ensure a right ball temperature, and the drill (DRILL) to drill
a hole in a ball. Both robots have three peripherals; a clamp
(CL) to pick up and hold a ball, an R-motor (R) to move
along a rail, and a Z-motor (Z) to move the clamp up and
down. Both processing stations have a clamp peripheral. The
conditioner has a heater (H), to heat a ball. The drill has an
R-motor (R) to rotate the drill bit, and a Z-motor (Z) to move
the drill bit up and down.

Each ball processed by the system follows the same life
cycle. First, a ball is picked up at the input buffer by the load
robot. Then it is brought to the conditioner and processed.
Next, the item is transported by either one of the robots to the
drill, where it is drilled. Finally, the drilled ball is transported
to the output buffer by the unload robot.

B. Activities

In our system, there are two activities that process balls:
Condition and Drill. For transportation of the balls, there are
two types of activities: picking up a ball by a robot, and
releasing a ball by a robot on a product location. The complete
set of activities is shown in Table IV.

Each activity is modeled formally by specifying the actions
involved and the dependencies between these actions. As an
example, consider activity LR PickFromCond shown in Fig.
5, in which the load robot picks a ball from the conditioner.

Fig. 5. Activity LR PickFromCond.

TABLE V
SET OF DISTRIBUTIONS FOR OUR CASE STUDY.

Action min max mode λ

Clamp/Unclamp 0.2 0.4 0.25 8
LR Moves 5.0 6.2 6 8
UR Moves 4 6 5 8
Condition 4 16 11 5

Drill 4 26 10 5

TABLE VI
CRITICALITY OF NODES AS RESULT OF THE PERT ANALYSIS.

Actions B W L PERT

Conditioner.CD 0 0 0 0
Drill.ZR (1,2) 0 1 0 0
LR.XY (1,2) 1 0 1 1
LR.XY (3,4) 1 0 1 1
UR.XY (1,2) 0 0 0 0

C. Stochastic Time Modeling

To model the stochastic variability of the nodes in our
example system, we model their timing behavior using PERT
Distributions [21]. The PERT distribution (also called beta-
PERT) is a smooth version of the uniform distribution or
triangular distribution. It is characterized by: the minimal
value, the maximal value, the mode and a shape parameter
λ.

The distributions for the nodes are defined in Table V.
Regarding the variability in the system we assume the
following: actions performed by clamp peripherals and by
the Load and Unload robot exhibit low variance, and the
Condition and Drill actions exhibit high variance. Variation
in the execution time of the Conditioning action is due to
the difference in the initial temperature of the input balls.
Finally, the variation exhibited by the Drill action is due
to the assumption that depending on the desired depth
and type of drilling profile each ball may have different
drilling execution times. We further define the activity
sequence to be studied: LR PickFromInput; LR PutOnCond;
Condition; UR PickFromCond; UR PutOnDrill; Drill;
UR PickFromDrill; UR PutOnOutput.

D. Analysis and Results

We implemented the proposed stochastic critical path anal-
ysis (Section V) and classical critical path analysis within the
framework [6]. We specified the Twilight Systems with the
framework (Section III). Visualization of the results is done
by coupling with the TRACE viewer [10]. For this case study
we assume a confidence interval of 99% and an absolute error
|c− ĉ| < 0.001 for the estimation of the Criticality Indices.

In order to provide the feedback in a more intuitive way, we
use colored Gantt charts (Extension 3 in Fig. 1). Fig. 6 depicts
the Gantt chart of the results of the PERT analysis, assuming
worst case action execution times (left Gantt chart) and the
Gantt chart of the stochastic criticality analysis (right Gantt



Fig. 6. (Left) Result of classical criticality analysis, assuming worst-case action execution times; (Right) Result of stochastic criticality analysis.

TABLE VII
CRITICALITY INDICES AS RESULT OF THE CRITICALITY ANALYSIS.

Actions CI Abs. Error

Conditioner.CD 0.3221 0.0009
Drill.ZR (1,2) 0.3312 0.0009
LR.XY (1,2) 0.3467 0.0008
LR.XY (3,4) 0.6821 0.0008
UR.XY (1,2) 0.0000 0.0008

chart). In both Gantt charts, the shades of red of each node
(represented by a block in the Gantt chart) imply a different
criticality index for the action. The lighter the redness the
lower the criticality index, and vice-versa. For simplicity, we
discuss in detail the results within the bounded area (denoted
by the black lines). The values of the results of both analysis
for the actions within the bounded are provided in Tables VI
and VII.

Table VI shows the resulting node criticality values of
the classical PERT approach, for best (B), worst (W), most
likely (L) and expected (PERT) cases for the action execution
times. (Expected execution times are computed using equation
(B+ 4×L+W )/6). Table VII depicts the Criticality Indices
of peripheral actions of the case study, resulting from the
stochastic criticality analysis, and the associated absolute error
of the estimation.

Observing the two tables, it can be concluded that the
computed expected case of the PERT approach does not yield
a correct overview of the criticality of the actions, when
compared to the stochastic criticality analysis results. Observe
that according to the expected case results, the Conditioner has
a criticality of 0, and the only actions in the critical path are
the LR actions. Consequently, to reduce the overall makespan
one would improve the execution times of the LR actions.
However, the stochastic criticality analysis results contradict
this, since the Conditioner action has a CI of 0.3221, i.e. the
probability of the Conditioner action being on the critical path
is almost one third. Therefore, further improvements to the
makespan of the system can be achieved by improving the
execution of the Conditioner actions.

Furthermore, even if one would consider all the three
cases, best, worst, and most-likely, still the information is not

complete. Observe that in none of the three cases the actions of
Conditioner occur in the critical path according to the PERT
approach. Whilst the stochastic critical analysis indicates a
CI of 0.3221. Given this insight, a choice can be made to
improve the performance of the Conditioner resource and the
Load Robot such that the only remaining bottleneck is the
expected and desired, the Drill resource.

IX. INDUSTRIAL APPLICATION

At ASML, the extended framework and stochastic analysis
is used to study the performance of different designs of
industrial-size models of lithography systems. The framework
allows domain engineers to describe the system in terms of re-
sources, peripherals, actions, and activities and easily identify
bottlenecks as feedback for design decisions. Furthermore, for
a given design, it is possible to study the impact of varying
execution times of individual actions, or system use-cases, on
the overall system makespan.

X. CONCLUSION

This paper extends our formal modeling approach and
framework such that given a compositional specification of
both functionality and timing of a manufacturing system, a
reliable and realistic stochastic criticality analysis can be per-
formed. In this approach, a Monte-Carlo simulation technique
(including error estimation based on confidence intervals) is
used to estimated the criticality index of each peripheral action
of the system. This analysis provides better and more accurate
results than the typical fixed-timed critical path analysis used
for bottleneck design. Furthermore, the extended framework is
a good fit for the field of manufacturing system and therefore
the possibility of using stochastic criticality analysis within
the framework further empowers the formal-model based
specification and analysis of manufacturing systems.

There are a number of steps to extend the current anal-
ysis and framework. For example the addition of sensitivity
analysis, where we analyze how each peripheral action affects
the overall throughput of the system in terms of its variance
and mean deviations, as in [4]. Furthermore, a feedback
loop can be designed within the framework to allow for the
implementation of design corrections based on the results of
the analysis, in a co-aided design approach for the specification
of manufacturing systems.
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