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Machine-learning-based models have recently gained traction as
a  way  to  overcome  the  slow  downstream  implementation
process  of  FPGAs  by  building  models  that  provide  fast  and
accurate performance predictions. However, these models suffer
from two main limitations:  (1)  a  model  trained  for  a  specific
environment cannot predict for a new, unknown environment;
(2) training requires large amounts of data (features extracted
from  FPGA  synthesis  and  implementation  reports),  which  is
cost-inefficient  because  of  the  time-consuming  FPGA  design
cycle.  In  various systems (e.g.,  cloud  systems),  where  getting
access  to  platforms  is  typically  costly,  error-prone,  and
sometimes  infeasible,  collecting  enough  data  is  even  more
difficult. Our research aims to answer the following question: for
an FPGA-based system, can we leverage and transfer our ML-
based performance models trained on a low-end local system to
a  new,  unknown,  high-end  FPGA-based  system,  thereby
avoiding the aforementioned two main limitations of traditional
ML-based  approaches?  To  this  end,  we  propose  a  transfer-
learning-based approach for FPGA-based systems that adapts an
existing ML-based model  to a new,  unknown environment to
provide fast and accurate performance and resource utilization
predictions.
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