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ABSTRACT
Acoustic smart sensor networks can provide valuable actionable in-
telligence to authorities for managing safety in the urban environ-
ment. A spatial filter (beamformer) for localization and separation
of acoustic sources is a key component of such a network. However,
classical methods such as delay-and-sum beamforming fail, because
sources are located at varying distances from the sensor array. This
causes a regularization problem where either far-away sources are
wrongly attenuated, or noise is wrongly amplified.

We solve this by considering source strength and location as ran-
dom variables. The posterior distributions are approximated using
Gibbs sampling. Each marginal is computed by combining impor-
tance sampling and inverse transform sampling using Chebyshev
polynomial approximation. This leads to an iterative algorithm with
similarities to deconvolution beamforming.

Our method is robust against deviations in manifold model, can
deal with sources at different distances and power levels, and does
not require an a priori known number of sources.

Index Terms— Acoustic applications, Array signal processing,
Robustness, Bayes methods

1. INTRODUCTION

Smart sensor networks which provide actionable intelligence to au-
thorities are increasingly important for managing safety in the urban
environment [2]. Acoustic sensors are valuable in this application,
because they enable capture of events that are difficult to observe
with other modalities. Examples of such events are gunshots, break-
ing glass, car alarms, aggressive behaviour, and violation of noise
regulations.

This paper focuses on a key component of such a network: a
spatial filter that localizes and separates the sources in the envi-
ronment. Fig. 1a sketches the situation. The problem is formu-
lated in the phasor (narrowband) domain, where source m has signal
sm [Pa] ∈ C. The array manifold am(xm) [Pa/Pa] ∈ CN is the trans-
fer function from source to sensors. It depends on source locations
xm = (xm; ym; zm) [m] ∈R3. N is the number of sensors and M is the
(typically unknown) number of sources. n [Pa] ∈ CN is the noise.

Thus, given an observation from the sensors:

o = n+
M

∑
m=1

am(xm)sm [Pa] ∈ CN , (1)

the goal is to find signal and location estimators ŝm(o) and x̂m(o) that
maximize expected signal-to-noise ratio (SNR) while accounting for
sensor noise, interference, and manifold perturbations.
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(a) Situation sketch. See main text for definition of the variables.
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(b) Delay-and-sum beamformer. Color represents estimated source
power for each steering direction. Local maxima marked with ◦.
Source 1 is estimated as louder than the equal-power source 2.
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(c) Delay-and-sum beamformer (attenuation-compensated). The
sources are now estimated as equally loud (at ×), but their locations
are difficult to find because point estimates based on local maxima
(◦) are unreliable; the solution is ill-conditioned. This also results
in a significant ‘ghost source’ in the bottom-right corner which con-
sists of blown-up noise and leakage from the actual sources.
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(d) Our method. Dots mark samples from the posterior distribu-
tion [x1, s1|o]. Color (∝ log|s|) and radius (∝ |s|2) represent source
power. Point estimates x̂1,2 (◦) based on k-means clustering. Source
power is now correctly estimated (at ◦) and no ghost sources (with
power larger than the noise floor) are observed.

Fig. 1. Example case with two 3kHz, 0dB sources (×) and −30dB
noise floor. The sensor array, mounted 8m above the origin, has 64
sensors in a golden angle Fermat spiral with 14cm aperture [1].
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One property of classical methods such as delay-and-sum (DS)
beamforming [3] is that a source near the array is estimated as louder
than an identical source far from the array (Fig. 1b). This is be-
cause the manifold consists of both delay and attenuation which is
neglected in DS beamforming. This is an important shortcoming in
our application, where the absolute sound levels of the sources con-
vey information about the type of event. Unfortunately, attenuation
compensation inevitably comes together with amplification of noise
and leakage (i.e. side-lobes) of interfering sources. Hence insuffi-
ciently accounting for observation noise results in an ill-conditioned
solution, as illustrated in Fig. 1c, because the matrix Ja1 · · ·aMK is
(near-)singular [4].

Minimum variance beamforming [5] models observation uncer-
tainty by considering sm and n (Gaussian) random variables. Bayes’
rule is then used to infer beliefs about sm given o. The expected val-
ues of these beliefs give point estimators ŝm that provably maximize
SNR [6]. However, the result is still ill-conditioned with respect to
perturbations in am(xm) and hence also xm, i.e. performance will de-
grade significantly if locations of interfering sources near the array
are not precisely known. Thus, xm must also be considered a ran-
dom variable. Unfortunately, this causes intractable integrals during
belief inference that must be approximated.

In iterative beamforming [7], inference is approximated using Ex-
pectation Maximization (EM) [8], where iteratively expected values
of the source contributions, locations and powers are updated. The
method accounts for manifold attenuation, but only results in the
acoustic near-field are presented. Also, because EM is (partially) a
maximum likelihood method, it typically underestimates uncertainty
of the posterior distribution.

Instead, Besson and Bidon [9] use Gibbs sampling [10], where
iteratively samples from the source powers, locations and noise co-
variance are updated. By parametrizing location in terms of angle
of arrival and assigning probability distributions with specific form,
these samples can be efficiently drawn from standard distributions.
However, they do not take manifold attenuation into account.

In this work, Gibbs sampling (like [9]) is combined with a Carte-
sian parametrization of location (like [7]). However, we update
the sources sequentially instead of simultaneously which leads to
a probabilistic version of deconvolution beamforming [11]. Due to
our parametrization, the Gibbs samples must be drawn from non-
standard distributions. We do this by combining importance sam-
pling [12] and inverse transform sampling [13]. Furthermore, the
number of active sources is automatically determined using a shrink-
ing prior like relevance vector machine beamforming [14]. Finally,
unlike [9], we do not consider multiple snapshots because they are
not available when source locations are changing over time, and also
require additional assumptions about correlations between sources.

Our contribution is a beamformer which can estimate an a priori
unknown number of sources at different distances and power lev-
els, as illustrated in Fig. 1d. Furthermore, our beamformer is robust
against perturbations in the manifold.

Next, specification of the generative model (Sec. 2) and inference
(Sec. 3–4) are presented separately. Finally, results from simulations
are presented in Sec. 5 and we draw conclusions in Sec. 6.

2. MODEL SPECIFICATION

Our generative model is specified using the probability distribution:

Joint︷ ︸︸ ︷
[s1...M , x1...M , o] =

Likelihood︷ ︸︸ ︷
[o|s1...M , x1...M ]

M

∏
m=1

Prior︷ ︸︸ ︷
[sm]︸︷︷︸

Signal

[xm]︸︷︷︸
Location

, (2)

where [·] is notation for probability density function (PDF).

2.1. Signal prior

Because little information about the sources is available, an uninfor-
mative prior is chosen. The prior is split up into a gain and phase
component:

[sm] = [|sm|]︸ ︷︷ ︸
Gain

[∠sm]︸ ︷︷ ︸
Phase

. (3)

For the phase, a uniform distribution is chosen:

[∠sm] =

{
1

2π
|∠sm| ≤ π

0 otherwise
, (4)

while for the gain, the (improper) Jeffreys prior [15, Sec. 6.15] is
chosen:

[log|sm|] ∝ 1 ≡ [|sm|] ∝ 1/|sm|, (5)

i.e. sources of any dB(SPL) level are equally expected.
Through a change of variables this implies a distribution on |sm|

(in units of Pa) with a pole at zero amplitude and slowly decaying
tail. Such distributions manifest horseshoe-like shrinking behaviour
[16, 17], i.e. observations which are caused by few dominant sources
have much higher prior probability than sums of many small sources.
Thus it is conjectured that, given an observation, this implies super-
fluous sources in the model will be ‘turned off’ after inference.

2.2. Location prior

The location prior is split up into independent coordinates:

[xm] = [xm][ym][zm]. (6)

Uniform distributions are chosen for xm and ym. Because a single
array can hardly distinguish between sources at different ‘depth’, zm
is fixed to 0 using a Dirac delta distribution:

[zm] = δ (zm). (7)

This is satisfactory for our application, because sources (i.e. traffic
and pedestrians) are typically close to the ground.

Because the same prior is assigned for each source, reordering
the source indices m does not change the model, i.e. the model is
symmetrical in m. Hence, the posteriors will necessarily also be the
same for each m. Thus, before evaluating estimators ŝm and x̂m,
the ‘logical’ sources must be clustered into ‘physical’ sources. We
do this using k-means (e.g. [18, Ch. 9]). Alternatively, a steering
location can be implemented by limiting [x1] to a small target region.

2.3. Likelihood

We assume spatially white, complex normal sensor noise:

[n] =
(

πσ
2
)−N

exp
(
−‖n‖2/σ

2
)
, (8)

with known standard deviation σ and zero mean. Wind [19, 20]
and diffuse ambient sources [21, Sec. I.D] can also be modelled as
(spatially low-pass) complex normal noise, but are neglected here
to simplify presentation. Substituting n using Eq. 1 gives the likeli-
hood:

[o|s1...M , x1...M ] =
(

πσ
2
)−N

exp
(
−
∥∥o−

M

∑
m=1

am(xm)sm
∥∥2
/σ

2
)
.

(9)



Finally, the manifold vectors amn are based on Green’s function:

g(d) ∝ exp(ikd)/d [Pa], (10)

where d [m] is the Euclidean distance to an acoustic monopole and
k [rad/m] is the wavenumber [22, Sec. 6.5.1]. When expressing
source strength as sm = g(1), the manifold between source m and
sensor n, separated by distance dmn, becomes:

amn = exp(ikdmn)/dmn. (11)

The wavenumber is expressed in frequency f [Hz] and speed of
sound c0 [m/s] as:

k = 2π f/c0, (12)

where c0 depends on temperature (12◦C), relative humidity (50%)
and CO2 concentration (mole fraction of 314·10−6) according to the
atmospherical model from [23, 24].

3. INFERENCE FOR A SINGLE SOURCE

When M = 1, applying Bayes’ rule on Eq. 2 gives:

[s, x|o] ∝ [s, x, o] = [o|s, x][s][x], (13)

with subscript m = 1 omitted for notational convenience. The goal
is to sample from this posterior distribution.

3.1. Factorization of the posterior

We choose to factorize the posterior as:

[s, x|o] ∝ [∠s||s|, x, o][|s||x, o]︸ ︷︷ ︸
Signal

[x|o]︸︷︷︸
Location

, (14)

with (within the support of x and s):

[x|o] ∝ [o|x] ∝

∫
∞

0+
exp((2−ζ )ζ q(x, o))Ī0(2ζ q(x, o))/ζ dζ

≈ exp(q(x, o)), (15)
[|s||x, o] ∝

exp
((

2− |s|
p(x, o)

)
|s|q(x, o)

p(x, o)

)
Ī0

(
2|s|q(x, o)

p(x, o)

)
/|s|, (16)

[∠s||s|, x, o] ∝ exp
(

2|s|q(x, o)
p(x, o)

cos
(
∠s−∠

(
a(x)∗o

)))
, (17)

with (scaled) modified Bessel function of the first kind:

Ī0(z)
def
= exp(−|ℜz|)I0(z), (18)

as implemented in Matlab as besseli(0, z, 1), and:

p(x, o) def
=

∣∣a(x)∗o
∣∣∣∣a(x)∗a(x)
∣∣ , q(x, o) def

= p2(x, o)
‖a(x)‖2

σ2 . (19)

3.2. Location sampling

During initialization, L candidates x(l) are drawn. L1 = bγLc of
these are generated using rejection sampling by accepting x(l) only
if:

min
l′=1...(l−1)

∥∥a(x(l))−a
(
x
(
l′
))∥∥> ε. (20)

The purpose of this is to sample more densely in regions where the
manifold changes quickly. The corresponding PDF [x]pilot is inter-
polated from the histogram for (x, y). The remaining L2 = L−L1
candidates are drawn from a uniform distribution (i.e. the true prior)
to ensure the full support of x is covered. Then, the proposal PDF
for these candidates is:

[x]prop = γ[x]pilot+(1−γ)[x]. (21)

To sample x|o, a candidate is randomly drawn with weights based
on Eq. 15:

w(k) = [o|x(k)]/[x(k)]prop. (22)

The denominator compensates for mismatch between true prior [x]
and proposal [x]prop. This importance sampling [12] scheme allows
for smaller L and hence less computational cost. The most expensive
step is calculation of L N-dimensional vector in-products for each
observation o.

3.3. Signal sampling

Above sample for x |o is then plugged into [|s| |x, o] (Eq. 16). Be-
cause this PDF is a smooth function of one variable, it can be ef-
ficiently represented using Chebyshev polynomials up to machine
precision [25]. By integrating the polynomial to find the cumula-
tive distribution function (CDF), a sample for |s| |x, o is drawn using
inverse transform sampling (described in [13], implemented using
[26]). This process is repeated to sample ∠s | |s|, x, y using Eq. 17.

4. INFERENCE FOR MULTIPLE SOURCES

For M > 1, we opt for Gibbs sampling [10] which amounts to iter-
atively sampling a single source m while keeping all other sources
m′ 6= m fixed, that is, from:[

sm, xm|s1...M\m, x1...M\m, o
]
=
[
s, x|o′

]
, (23)

which is Eq. 14 with observation o replaced with residual:

o′ def
= o−

M
Σ

m′=1
m′ 6=m

sm′a(xm′). (24)

Note the similarity with deconvolution beamforming (e.g. [11, Eq.
24]). In the first iteration (initialization: sm′ := 0) the sources are
sampled in order of decreasing observed power, because Eq. 15 is
sampled globally (Sec. 3.2) and q(x, o) can be interpreted as ob-
served SNR. This property prevents our sampler from getting stuck
in local bassins of near-zero source powers and, as a consequence,
wrong source locations. We did observe this behaviour in alternative
sampling methods such as PyMC3’s No-U-Turn Sampler [27, 28].
Subsequent iterations explore alternative explanations of o and hence
account for observation uncertainty.

Due to its iterative nature, the Gibbs sampler rarely swaps
m-indices of two strong sources. To ensure symmetry in m of the
posteriors (Sec. 2.2), each posterior includes all samples regardless
of m. Then, m is used to initialize the (k-means) clusters to extract
the ‘physical’ sources.

5. RESULTS

Two experiments illustrate behaviour of our method. Each time,
500M samples were drawn with L = 3000, f = 500kHz, γ = 0.3,
ε = 0.1, and sensor array from Fig. 1. True source power was 0dB.
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(a) σ =−40dB, M = 1
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(b) σ =−40dB, M = 2
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(c) σ =−40dB, M = 4
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(d) σ =−30dB, M = 1
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(e) σ =−30dB, M = 2
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(f) σ =−30dB, M = 4
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(g) σ =−20dB, M = 1
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(h) σ =−20dB, M = 2
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(i) σ =−20dB, M = 4

Fig. 2. Beamforming results for varying M and σ . Source locations are denoted with × (true) and ◦ (estimated; omitted if clustering failed).

First, noise level (σ ) and number of model sources (M) were var-
ied, while keeping source power and location fixed (Fig. 2). When
M = 1, only the source with largest observed power is detected (Fig.
2a, d, g) due to the decreasing power property (Sec. 4). When M = 4,
two model sources are ‘turned off’ (Fig. 2c, f, i) due to the shrink-
ing signal prior (Sec. 2.1). Posterior location then becomes flat, with
slight preference near the array (due to a local bassin, Sec. 4). Thus,
the beamformer automatically infers the number of active sources.

In Fig. 2g-i, observed SNR is negative. However, by combining
sensor signals, information could still be recovered. Some blown-up
samples appear in Fig. 2i near x = 40m, but they are compensated
by a large quantity of (less visible) zero-power samples. Thus, the
beamformer can compensate for attenuation without creating ‘ghost
sources’, unlike delay-and-sum beamforming (Fig. 1c).

Second, robustness was investigated. An observation was gen-
erated using perturbed sensor locations with normally distributed
3D offsets, while sensor locations in the model were unchanged.
To eliminate influence of clustering errors from the experiment,
SNR was high and only one source was active. Although error in-
creases with distance from the array due to increasing attenuation
and decreasing angular resolution (i.e. Abbe diffraction limit [29,
sec. 12.2.5]), the beamformer is robust for sensor deviations of up to
about 1/5 wavelength (Fig. 3).

6. CONCLUSION

The experiments support our claims of a beamformer that is robust
against perturbations in the manifold, can deal with sources at dif-
ferent distances and power levels, and does not require the number
of active sources to be known a priori. The presented algorithm can
be interpreted as probabilistic deconvolution beamforming. In this
work we have compared our method with classical delay-and-sum
beamforming. Future work will include a comparison with more lit-
erature results cf. [30].

An inherent weakness of our model is the requirement for cluster-
ing to extract point estimators from the visual results. This tends to
fail in low SNR conditions or when sources are close together. One
direction for future research is exploiting multiple snapshots over
time, so that location prior symmetry can be eliminated by exploit-
ing temporal correlations.
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Fig. 3. Differences between true source location (•) and nearest k-
means estimate (#•) for 20 random trials with perturbed sensor loca-
tions. ς is the perturbation std. dev. in each dimension. ε̄ is average
error distance. Wavelength λ = 113mm. σ =−40dB, M = 2.
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