
Parametric Throughput Analysis of
Scenario-Aware Dataflow Graphs

Morteza Damavandpeyma1, Sander Stuijk1, Marc Geilen1, Twan Basten1,2 and Henk Corporaal1
1Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

2Embedded Systems Institute, Eindhoven, The Netherlands
{m.damavandpeyma, s.stuijk, a.a.basten, m.c.w.geilen, h.corporaal}@tue.nl

Abstract—Scenario-aware dataflow graphs (SADFs) efficiently
model dynamic applications. The throughput of an application is
an important metric to determine the performance of the system.
For example, the number of frames per second output by a video
decoder should always stay above a threshold that determines the
quality of the system. During design-space exploration (DSE) or
run-time management (RTM), numerous throughput calculations
have to be performed. Throughput calculations have to be
performed as fast as possible. For synchronous dataflow graphs
(SDFs), a technique exists that extracts throughput expressions
from a parameterized SDF in which the execution time of the
tasks (actors) is a function of some parameters. Evaluation of
these expressions can be done in a negligible amount of time and
provides the throughput for a specific set of parameter values.
This technique is not applicable to SADFs. In this paper, we
present a technique, based on Max-Plus automata, that finds
throughput expressions for a parameterized SADF. Experimental
evaluation shows that our technique can be applied to realistic
applications. These results also show that our technique is
better scalable and faster compared to the available parametric
throughput analysis technique for SDFs.

I. INTRODUCTION

Signal processing and multimedia applications can be mod-
eled with synchronous dataflow graphs (SDFs) [1]–[4]. An
SDF can be analyzed to determine performance properties
(e.g., throughput [5]) or resource requirements (e.g., buffer
sizes [6]) of the underlying application. However, SDFs cannot
efficiently capture the dynamic behavior of modern streaming
applications (e.g., audio or video codecs with advanced com-
pression schemes) because of their static nature. Using SDFs
to model such applications with high dynamism cannot assure
tight performance guarantees. Scenario-aware dataflow graphs
(SADFs) [7] are have been introduced to relax this limitation
of SDFs. An SADF of an application is composed of several
SDFs and a finite state machine (FSM). Each mode (scenario)
of the application in the SADF is modeled by an SDF; the
FSM captures the order of scenario occurrence. In [8], it
is shown that SDF throughput analysis (e.g., [5]) can result
in pessimistic performance bounds. The paper introduces a
novel technique to determine a tighter throughput bound for
applications modeled with an SADF. The approach extracts
a Max-Plus automaton graph (MPAG) from an SADF and
then uses a maximum cycle mean algorithm to determine the
critical timing cycle of the extracted MPAG.

The timing behavior of an application depends on its
binding, scheduling, buffer allocation, etc. Dynamic voltage
and frequency scaling (DVFS), which is a commonly used

This work was supported in part by the Dutch Technology Foundation
STW, project NEST 10346.

technique to reduce the energy consumption, has also a direct
influence on the timing behavior of an application. Common
design space exploration (DSE) frameworks [9]–[11] perform
several throughput calculations to determine the performance
of multiple solutions in the design space. Moreover, at run-
time, throughput calculation might be required when a run-
time parameter (e.g., frequency of a processor) is changed.
Both at design-time and at run-time, throughput analysis
must be performed as fast as possible. To address this chal-
lenge, [12] introduces a parametric throughput analysis tech-
nique for SDFs. The technique finds throughput expressions
for a parameterized SDF in which actors (tasks) can have
parameters as their execution time. These parameters have a
specified time interval. The combination of all parameters of
the SDF forms a multi-dimensional parameter space. A divide
and conquer technique is used to determine all throughput
regions in the parameter space. Each throughput region corre-
sponds to a critical timing cycle in the SDF. For each region
a throughput expression is discovered using a state-space
exploration technique. The discovered throughput expressions
can be used in any DSE framework or run-time manager to
quickly compute the throughput of an SDF when the concrete
values for all parameters are known. An evaluation of these
throughput expressions (instead of a complete throughput
analysis) can be done quickly while providing the same result.

However, the technique from [12] is not directly applicable
to SADFs. Applying SDF throughput analysis on applications
with a dynamic behavior may result in a loose bound on the
worst-case throughput. So, a new technique is required to de-
termine throughput expressions for dynamic applications. This
paper presents such a parametric SADF throughput analysis
technique. We use several real-world applications to evaluate
our technique. Our experiments show that our technique is
also better scalable than the one from [12]. The throughput
expressions found using our technique can be applied to solve
practical problems; we demonstrate how to use our technique
to determine the lowest multiprocessor frequency setting under
an application throughput constraint.

The remainder of the paper is structured as follows. Sec. II
introduces the preliminary concepts. Sec. III explains our
proposed technique to determine throughput expressions for
parametric SADFs. The proposed technique needs to convert
a parameterized SADF into its equivalent symbolic MPAG.
The complexity of a MPAG-based analysis technique depends
(amongst others) on the number of initial tokens of the
model. Some modeling techniques (e.g., buffer size modeling)
may add a large amount of initial tokens to the graph. This

a0
c0

a1 a2
c1

c2

c3
t1t0

Figure 1. An example SDF.

22 18
10

30
t0 t1

Figure 2. MPAG of the example SDF.

can increase the run-time of any technique that relies on
MPAGs. In Sec. IV, we introduce a technique to reduce the
number of initial tokens in a dataflow graph without changing
the behavior of the model. We evaluate our technique on
several realistic applications in Sec. V. An application of our
technique is presented in Sec. VI. Sec. VII contains the related
work. Sec. VIII concludes.

II. PRELIMINARIES

This section introduces the basic concepts and terminology.

A. Synchronous Dataflow Graphs (SDFs)
An SDF is a directed graph (A,C). A node a ∈ A, called

actor, represents a function (task) of the application. An edge
c ∈ C, called channel, captures (data) dependencies between
actors. Fig. 1 depicts an example SDF with 3 actors (A =
{a0, a1, a2}) and 4 channels (C = {c0, c1, c2, c3}). Actors
communicate with tokens sent from one actor to another over
the channels. Channels may contain initial tokens, depicted
with a solid dot (and an attached number in case of multiple
tokens). The example graph contains two initial tokens which
are labeled t0 and t1. An essential property of SDFs is that
every time an actor fires (executes) it consumes the same
amount of tokens from its input channels and produces the
same amount of tokens on its output channels. These amounts
are called the rates (indicated next to the channel ends when
the rates are larger than 1). The rates in an SDF determine
how often actors have to fire with respect to each other such
that the distribution of tokens over all channels is in balance.
This property is captured in the repetition vector [1] of an
SDF. Fixed consumption and production rates allow SDFs to
execute in a periodic form, which is called an iteration. In
one iteration each actor is fired as often as indicated in the
repetition vector of the SDF. After one iteration of the SDF,
the token distribution is guaranteed to return to the initial token
distribution. Consistency (i.e., the existence of a repetition
vector) and absence of deadlock are practically necessary
conditions for SDFs which can be verified efficiently [13],
[14]. Any SDF which is not consistent requires unbounded
memory to execute or deadlocks. Therefore, we limit ourselves
to consistent and deadlock free SDFs.

B. Max-Plus Algebra for SDFs
Let τa ∈ N0 be the execution time of an actor a ∈ A.

Consider the vector γk (k ∈ N), which is called the token time-
stamp vector. Each entry in γk corresponds to the production
time of an initial token in the kth iteration of the graph. γ0
represents the initial token timestamp vector of the SDF. All
entries in γ0 are assumed to be zero. Starting from a vector γk
and after completing the (k+1)th iteration of the graph, a new
vector γk+1 is found. These vectors γi can be computed using
Max-Plus algebra [15]. For each SDF, a characteristic Max-
Plus matrix G|n×n (n = |γ|) exists where an entry G[i, j] ∈ G
specifies the minimum time distance from the jth token in
the previous iteration to the ith token in the current iteration.

a0
c0

a1 a2
c1

c2

c3
t1t0

(a) Scenario graph.

A B

(b) FSM.

a0 a1 a2

scenario A 12 10 8
scenario B 2 18 4

(c) Actor execution times in scenario A and B.

Figure 3. SADF with two scenarios A and B.

Reference [16] explains how to build this matrix for an SDF.
Assume now that the actor execution times of the three actors
in our example SDF (see Fig. 1) are equal to τa0 = 12, τa1 =
10 and τa2 = 8 time units. The characteristic matrix of our
example is then equal to:

G =

(t0 t1
t0 22 10
t1 30 18

)

The matrix G shows for the example that the minimum time
distance from token t0 in the kth iteration to token t1 in the
(k + 1)th iteration is 30 time units via a0 − a1 − a2. When
the ith token is not dependent on the jth token, then G[i, j]
will be equal to −∞.

Using Max-Plus matrix multiplication, the characteristic
matrix can be used to determine the evolution of the token
timestamp vector:

γk+1 = G γk (1)

As an example, γ1 can be computed using Eqn. 1 as below:

γ1 =

(
22 10
30 18

)(
0
0

)
=

(
max{22 + 0, 10 + 0}
max{30 + 0, 18 + 0}

)
=

(
22
30

)

Using an iterative approach, any timestamp vector γk (k ∈
N) can be calculated. In [8], a technique is proposed to cal-
culate throughput by creating a MPAG from the characteristic
matrix. Fig. 2 shows the corresponding MPAG for the example
SDF. In a MPAG, a node is created for each initial token
in the SDF and if G[i, j] is not equal to −∞ an edge with
weight G[i, j] is added from the node of the jth token to the
node of the ith token. The critical cycle of the SDF, i.e., the
cycle limiting the throughput, can be found by performing
a maximum cycle mean (MCM) analysis on the MPAG. The
throughput is the inverse of the MCM. In our example SDF, the
edge related to G[0, 0] (shown with a bold arrow) determines
the throughput which is equal to 1/22 iterations/time-unit.

C. Scenario-Aware Dataflow Graphs (SADFs)
An SADF models a dynamic application with multiple

operating modes (scenarios). Each scenario of the SADF is
modeled through an SDF. The SADF model allows different
scenarios to use the same or a different SDF. A finite state
machine (FSM) is used to specify the order of scenario
occurrences. Each state in the FSM corresponds to a scenario
of the SADF and each edge in the FSM models a scenario
transition. Fig. 3 shows an example SADF with two scenarios
A and B. In this example, both scenarios use the same scenario
graph, but the execution times of the actors differ in both
scenarios (see Fig. 3(c)). When the FSM transitions to an FSM

state, the scenario graph (SDF) associated with the scenario in
this state is executed for one iteration. The initial tokens in the
scenario graph capture the dependencies between subsequent
iterations of the same scenario graph (as is also the case in an
SDF) or iterations of different scenario graphs. The timestamp
at which these tokens are produced by the kth iteration of
the SADF determines the time at which these tokens are
available for consumption by the (k + 1)th iteration. The
relation between the initial tokens in different scenario graphs
is established through their label.

As for an SDF, characteristic matrices can be determined
for each scenario. The corresponding matrices for scenarios A
and B are:

GA =

(
22 10
30 18

)
GB =

(
20 18
24 22

)

Each characteristic matrix can be translated to a MPAG (see
Sec. II-B). Reference [8] explains how to combine the MPAGs
of all scenarios of an SADF to a single MPAG. Fig. 4 shows
the MPAG for our example SADF. Briefly, a node is added
to the MPAG for each token in the scenario graph of an FSM
state (e.g., node A/t0 for token t0 in scenario A in Fig. 4).
If GM [y, x] is not equal to −∞ and there is a state transition
from a state in the FSM that executes scenario N to a state
that executes scenario M , an edge with weight GM [y, x] is
added from node N/tx to node M/ty in the MPAG. Using
MCM analysis on this MPAG, the critical timing cycle of the
SADF can be determined. In our example, this critical cycle is
denoted using the bold arrows (MCM = (30 + 18)/2 = 24).
This cycle determines the throughput of the SADF, which
for our example is equal to 1/24 iterations/time-unit. This
cycle corresponds to the cycle composed of actor a1 in
scenario B and actors a0, a1 and a2 in scenario A. The
throughput analysis technique from [8], which was outlined
in this sub-section assumes fixed actor execution times. In the
next section, we extend this technique to enable throughput
analysis for SADFs in which the execution times of actors
are functions of some parameters. Using these parameterized
SADFs, our technique can compute a set of expressions that
express the throughput of the graph in terms of the parameters.

III. PARAMETRIC THROUGHPUT ANALYSIS OF SADFS

A. Motivation

SADFs efficiently capture the dynamism of applications by
using different actor execution times in different scenarios.
In any system, actor execution times depend on the platform
on which the actors are running. E.g., the frequency of the
processors on which the actors are running can alter their
execution times. When all actors have a fixed actor execution
time, throughput analysis can be performed using the tech-
niques from [5] (in case of SDF) or [8] (in case of SADF).
However, when executing a design-time mapping flow, the
actor execution times are only fixed near the end of the flow.

Existing mapping flows re-evaluate the throughput of an
SADF whenever a mapping decision changes the actor execu-
tion times. The impact of this design decision can typically
only be assessed after a throughput analysis is performed.
Since many design alternatives must be evaluated, it is cru-
cial to have a fast throughput analysis technique. Moreover,

22 1810
30

22 20
18
24

10 24 30 18
20

22
22

18
A/t0

B/t1 B/t0

A/t1

Figure 4. Max-Plus automaton graph of the example SADF.

existing state-of-the-art throughput analysis techniques provide
limited information to steer the design decisions (i.e., the
critical cycle can be extracted, but it is often not possible to
determine how design decisions influence this cycle or any
of the other cycles in the graph). To address these issues,
[12] introduces a throughput analysis technique for SDFs with
parameterized actor execution times. The result of this analysis
technique is a set of expressions that can be quickly evaluated
once the concrete parameter values are known and that provide
the throughput of the SDF for these specific parameter values.
In addition, these expressions provide insight in how the
parameter values impact the graph’s performance. A second
advantage of the parameterized throughput analysis technique
can be seen when we consider run-time management (RTM).
RTM needs to assess whether a new application can be
admitted to the system. Typically, it must perform one or more
throughput computations. Classical throughput computation
usually requires substantial time. For RTM, it is important
to take a decision in a short amount of time. The throughput
expressions found using the technique from [12] can be used
for this purpose as these can be evaluated quickly.

The parametric throughput analysis techniques of [12] are
limited to SDFs. We introduce a new technique that can per-
form parametric throughput analysis for the more expressive
SADF model-of-computation. In addition, our technique offers
better scalability in terms of the number of parameters that can
be used to express the actor execution times.

B. Parametric SADF

A parametric SADF is identical to an SADF except that
the actor execution times are not constant. Instead they
are a function of a set P of parameters. Each parameter
pi ∈ P can have any real value within an interval (i.e.
pi ∈ Ii = [mini,maxi] ⊂ R). Consider as an example the
SADF introduced in Sec. II-C. In a parameterized version
of this graph, the actor execution times are a function of
two parameters p1 and p2. The parameterized execution times
of our example parameterized SADF are shown in Tab. I.
For simplicity, we assume in our example that the execution
time of each actor depends only on a single parameter. Our
technique (and implementation) can handle arbitrary linear
expressions of the parameters to specify the execution time

of each actor, i.e., c0+Σ
|P |
i=1ci · pi represents the general form

of an actor execution time where each ci ∈ R is a constant.

Table I
ACTOR EXECUTION TIMES OF THE EXAMPLE PARAMETRIC SADF.

a0 a1 a2 Parameter range
scenario A 6p1 2.5p2 2p2 1 ≤ p1 ≤ 5
scenario B 1p1 4.5p2 1p2 1 ≤ p2 ≤ 5

I11 5

1

5

5/3 10/3

3/2

3

r1 r2 r3

r

2

4

I2 0 1

23

Figure 5. Throughput regions of the example SADF for the parameter
space I1 × I2. Expressions for the throughput regions: MCM1 = 5.5p2,
MCM2 = 3p1 + 4.5p2 and MCM3 = 6p1 + 2.5p2.

C. Parameter space and divide & conquer approach

Consider a parameterized SADF that uses a set P of differ-
ent parameters in the actor execution times. These parameters
form a |P |-dimensional parameter space which is a convex

polyhedron, i.e.,
∏|P |

i=1 Ii where Ii = [mini,maxi] is the
interval to which parameter pi ∈ P belongs. Fig. 5 shows
a 2-dimensional parameter space for our parametric example
SADF. In this figure, the square ν0 − ν1 − ν2 − ν3 is the
initial convex polyhedron. A throughput value Th(νi) can
be assigned for each parameter point νi inside the parameter
space. The throughput of parameter point νi can also be cal-
culated by evaluating a throughput expression ei for the given
point νi; e.g., er = 1

3p1+4.5p2
is the throughput expression for

the parameter point νr : {p1 = 2, p2 = 4} and evaluating
the expression er for νr results in the throughput amount
er(νr) =

1
24 for the given parameter point. In [12], it is shown

that such a throughput expression ei can be used to calculate
the throughput for all points in a convex sub-polyhedron
in the initial parameter space polyhedron (see Proposition 5
from [12]). Hence, the initial parameter space is composed of
one or several but a finite number of convex sub-polyhedrons
and for each sub-polyhedron a throughput expression exists.
Such a sub-polyhedron is called a throughput region.

As in [12], we use the same divide & conquer strategy
to determine all throughput regions. The parameter space
determines the initial polyhedron (e.g., the square in Fig. 5).
Initially, a random point νr is selected inside the polyhedron.
As a first step, the throughput expression er for this point must
be identified. The algorithm that does this is explained in the
next sub-section. Once the throughput expression er has been
found for this random point νr, the divide & conquer technique
from [12] evaluates the throughput of each corner point νc in
the initial polyhedron. When the throughput Th(νc) in a corner
point νc is equal to the throughput found when evaluating
the expression er for this point, then this point νc belongs
to the same throughput region as point νr (see Proposition 8
from [12]); if this statement holds for all corner points of a
polyhedron, the polyhedron will be identified as a throughput
region with throughput expression er (see Corollary 6 from
[12]). If Th(νc) is not equal to er(νc), then it holds that the
corner point νc belongs to another throughput region than the
random point νr. In that case, a new throughput expression
ec can be identified for the corner point νc. The hyperplane
er − ec = 0 cuts the initial polyhedron into two convex sub-
polyhedrons. For each convex sub-polyhedron the divide &
conquer strategy is performed recursively until all throughput
regions are identified. The interested reader is referred to [12]
for a detailed description of the divide & conquer technique.

D. Throughput expression for a parameter point

In [12], a time-based state-space exploration is used to find
the throughput expression for a parameter point νr in the
parameter space of an SDF. The technique is not directly
applicable when more than one scenario in an application
exists. Extending a time-based state-space exploration tech-
nique for a situation with multiple scenarios is not trivial.
In [8], two techniques to compute throughput of an SADF
are presented, i.e., an iteration-based state-space exploration
and an approach based on MPAG analysis (see Sec. II-C).
Inspired by [8], we use an approach based on MPAG analysis
to perform parametric throughput analysis of an SADF. The
complexity of the approach based on MPAG analysis depends
less on the number parameters than the state-space approach.
In a MPAG, iteration boundaries across all scenarios are
distinguishable; this makes the throughput analysis for SADFs
feasible. Algorithm 1 shows the pseudo-code of our algorithm
to compute the throughput expression er of a parameter point
νr in a parametric SADF G. In Sec. II-C it is explained how
a MPAG can be used to compute the throughput when all
actors have a known execution time (i.e., when all parameter
values are fixed). We extend this MPAG to a symbolic MPAG
that can be used to compute symbolic throughput expressions.
As a first step, a symbolic Max-Plus characteristic matrix
of each scenario graph must be computed (line 4-5). Next,
these matrices must be combined into a symbolic MPAG (line
6). As a third step, the symbolic MPAG is evaluated for a
concrete parameter point νr. This results in a concrete MPAG
(line 7) from which the critical cycle can be extracted using
a maximum cycle mean algorithm (line 8). Using a relation
between the edges in the concrete and symbolic MPAG, the
critical cycle in the concrete MPAG can be translated into
a symbolic cycle (expression) in the symbolic MPAG. This
symbolic expression is the inverse of the symbolic through-
put expression er. Algorithm 2 represents our approach to

Algorithm 1: Throughput expression for a parameter point

input : SADF G
input : Parameter-Point νr
output: Throughput-Expression er

n ← number of scenarios in G1
sg1 · · · sgn ← scenario graphs of G2
fsm← FSM of G3
for i← 1 to n do4

symGi ← getSymG(sgi, νr)5

symMPAG← getSymMPAG(symG1 · · · symGn, fsm)6
MPAG← evaluateSymMPAG(symMPAG, νr)7
criticalCycle← maximumCycleMean(MPAG)8
foreach channel c ∈ criticalCycle do9

periodExp ← periodExp + getTerm(c, symMPAG)10

er ← |criticalCycle|/periodExp11

determine the symbolic Max-Plus matrix of a scenario graph,
which is an SDF, for a specified parameter point. A symbolic
execution of the given graph g - up to one iteration - is
performed to determine the token timestamps (lines 1-4 in
Algorithm 2). In the symbolic execution, the parameterized
actor execution time expressions and a symbolic timestamp
for each initial token are used. Fig. 6 illustrates the symbolic
execution of scenario B in our example SADF. Step S.1

a0 a1 a2
p1+t0

a0 c0 a1 a2c1
t1t0

a0 a1 a2
max(p1+4.5p2+t0, 4.5p2+t1)

max(p1+4.5p2+t0, 4.5p2+t1)

a0 a1 a2
max(p1+5.5p2+t0, 5.5p2+t1)

c2
c3

t1

c2
c3

c0
c1

c0
c1

max(p1+4.5p2+t0, 4.5p2+t1)

c0
c1

c2
c3

c2
c3

S.1 S.3

S.2 S.4

Figure 6. Symbolic execution of scenario graph B of our example SADF.

shows the initial graph and steps S.2, S.3 and S.4 show
the graph after consecutive firing of the actors a0, a1 and
a2 respectively. Each actor firing is performed symbolically
(symbolicFire in Algorithm 2). For example the firing of actor
a0 consumes a token from channel c1 and produces a token
with timestamp τa0 + t0 = p1 + t0 on channel c0. Comparing
steps S.1 and S.4 shows that the graph returns to the initial
token distribution after one iteration (as expected). The token
timestamps in step S.4 contain the symbolic dependencies of
the initial tokens at the end of this iteration to the initial tokens
at the end of the previous iteration. For example, the timestamp
max(p1+4.5p2+t0, 4.5p2+t1) of the reproduced token t0 in
step S.4 implies that token t0 depends on the production time
of the tokens t0 and t1 in the prior iteration. The distance of t0
in the current iteration to t0 and t1 in the previous iteration are
at least p1 + 4.5p2 and 4.5p2 respectively; this information is
used to construct the symbolic Max-Plus characteristic matrix
of the scenario graph (line 5 in Algorithm 2). In our example,
the matrices for scenarios A and B are equal to:

GA =

(
6p1 + 2.5p2 2.5p2
6p1 + 4.5p2 4.5p2

)
GB =

(
p1 + 4.5p2 4.5p2
p1 + 5.5p2 5.5p2

)

Algorithm 2: Symbolic matrix extraction (getSymG)

input : SDF g
input : Parameter-Point νr
output: Symbolic Max-Plus Matrix symG

while one iteration of g is not completed do1
foreach enabled actor a ∈ g within one iteration do2

symbolicFire(a)3
prune timetamps of produced tokens by firing a for the point νr4

extract symG from the resulted timetamps5

In practice, it is often not feasible to perform a complete
symbolic execution of one iteration of a scenario graph. This
is caused by the number of terms that appear in the maximum
(max) operator of the token timestamps. In our example, both
max operators contain only two terms one for each initial
token. The number of terms may however grow rapidly when a
graph contains more initial tokens and/or has a large repetition
vector rendering a complete symbolic execution impractical.
Ref. [17] encounters a similar issue when trying to identify
timing expressions for the critical paths in an integrated circuit.
This issue is solved by removing redundant expressions which
are not affecting the critical paths. In our case, we only need
to determine a symbolic Max-Plus characteristic matrix valid
for a concrete parameter point (line 7 and 8 in Algorithm 1).
This allows us to evaluate the maximum operation (in a token
timestamp) for the given parameter point after each symbolic
firing of an actor (line 4 in Algorithm 2). In this way, only
the terms which have the largest values among all other terms
in the maximum operator propagate to the next step of the

6p1+2.5p2=22

2.5p2=10

5.5p2=22

p 1
+5
.5
p 2
=2
4

A/t0

B/t1

6p
1+
4.
5p

2=
30

A/t1

B/t0

4.5p2=18

4.5p2=18

p1+4.5p2=20

2.5p2=10
6p1+4.5p2=30

4.5p2=18
p1+5.5p2=24

4.5
p2=
18p1+4.5p2=20

5.5
p2=
22

6p1+2.5p2=22

Figure 7. Symbolic MPAG of the example SADF.

symbolic execution. This prevents an explosion in the number
of terms in the maximum operation. We construct the symbolic
MPAG using the FSM of the SADF and the symbolic Max-
Plus matrices symG1 . . . symGn in the same way as the
concrete MPAG is constructed in [8]. The only difference is
that we use expressions instead of concrete numbers as edge
weights. The function getSymMPAG in Algorithm 1 is used
to construct the symbolic MPAG symMPAG. Fig. 7 shows the
symbolic MPAG for our example SADF.

To find the critical cycle, and hence the throughput ex-
pression, a maximum cycle mean (MCM) analysis must be
performed on the symbolic MPAG. As the parameter point νr
is known, we evaluate the term of each edge in the symbolic
MPAG for the parameter values in νr. The function evalu-
ateSymMPAG in Algorithm 1 is used for this purpose. The
result of the evaluation for the parameter point νr : {p1 =
2, p2 = 4} is shown in Fig. 7 as a number that follows the
term of the edge. These numbers are used as a weight to the
corresponding edges. The evaluation of the parametric SADF
for the parameter point νr results in the MPAG shown earlier
in Fig. 4. Using the MCM analysis algorithm proposed in [18]
(function maximumCycleMean in Algorithm 1), the algorithm
identifies a critical timing cycle (criticalCycle) which in turn
is used to determine the throughput expression. The critical
timing cycle in our example graph is shown with bold arrows
in Fig. 7. The symbolic terms of each edge in the critical
cycle are used to determine the throughput expression for the
given parameter point (lines 9-11 in the algorithm). In our
example, for the given point (i.e., νr : {p1 = 2, p2 = 4}),
periodExp = 6p1 + 9p2 and the throughput expression is
er = 2

6p1+9p2
(is shown by MCM2 = 3p1 + 4.5p2 in Fig. 5).

Evaluating this expression for the example parameter point
gives the same throughput value (1/24) that has been found
using the concrete Max-Plus automaton in Sec. II-C. This
expression is used as an expression for a throughput region
in the divide & conquer technique. Continuing the divide &
conquer, different throughput expressions result for the corner
points. The symbolic MCM for ν0 and ν2 are calculated as
follows respectively: MCM1 = 5.5p2, MCM3 = 6p1+2.5p2.
The hyperplanes MCM1 − MCM2 = 0 and MCM3 −
MCM2 = 0 divide the parameter space into three throughput
regions (see Fig. 5) for the example parameterized SADF.

IV. MODEL TRANSFORMATION

The number of nodes in a MPAG is equal to the sum of
the number of initial tokens in the scenario graphs of all FSM
states of the SADF. The complexity of our throughput analysis
technique (proposed in Sec. III-D) depends, amongst others,
on this number. Initial tokens are often used to model buffer

ai

cl

aj

7

3 2

3 2
cm

(a) Original.

am 3

cmiai

cl

aj
3 2

2
cmj

7 mod 3=17/3 =2

(b) Consumer side grouping.

am3
cmiai

cl

aj
3 2

2

cmj

7 mod 2=1 7/2 =3

(c) Producer side grouping.

Figure 8. Modeling buffer with size 7 for channel cl.

sizes [11] or schedules in dataflow graphs [19]. Consider as an
example a common method to model buffer sizes in the SDF
sketched in Fig. 8(a). The dashed channel in Fig. 8(a) models
a limit on the buffer size of channel cl (i.e., the 7 tokens on cm
limit the number of tokens that can be present simultaneously
in cl to 7). Applying this transformation to all channels in a
dataflow graph may result in a graph with many initial tokens.
Dataflow models that contain implementation aspects such as
buffer sizes may therefore contain a considerable amount of
initial tokens. As a consequence, the MPAG may become large
which in turn may lead to a long run-time for our throughput
analysis technique. In this section, we introduce two types of
model transformation to reduce the number of initial tokens in
the dataflow graph without changing the timing behavior of the
actors, i.e., the proposed transformations reduce the number of
initial tokens without changing the throughput expressions that
are found using our technique. Two token reduction techniques
for SDFs are suggested in Sec. IV-A. Sec. IV-B explains under
which assumptions and how the proposed token reduction
techniques can be applied to SADFs.

A. Token reduction for SDFs

Consider again the SDF shown in Fig. 8(a). After applying
our model transformation (explained below), the graph is
transformed to the one shown in Fig. 8(b) reducing the number
of initial tokens from 7 to 3. In Fig. 8(a), 3 tokens are
consumed from cm in each firing of ai. So, initial tokens of
a channel can be grouped based on the consumer actor’s rate
(e.g., rate 3). We call this value grouping factor. Our model
transformation replaces any channel cm with n initial tokens
from some actor aj with production rate v to some actor ai
with consumption rate w with the following constructs: (1) an
actor am with zero execution time; (2) a channel cmj with n
mod w initial tokens from aj to am with production rate v
and consumption rate w, (3) a channel cmi with �n/w� initial
tokens from am to ai with production and consumption rate
1. Here, w is the grouping factor.

The proposed graph transformation does not affect the
timing behavior of SDFs. In the original graph, actor ai can
fire once whenever at least w tokens exist in channel cm
(w = 3 in our example). The n initial tokens that are present
on channel cm all have a corresponding entry in the timestamp
vector γk, i.e., γk(t1) · · · γk(tn) denote the production times
of these tokens in the kth iteration. Firing actor ai consumes
w tokens at once from channel cmi. Among this group of
w tokens, the token which has the largest timestamp may
influence the start time of the actor firing. In other words,
max{γk(t1) · · · γk(tw)} may influence the first firing of ai of

the (k+1)th iteration of the graph. Understanding this princi-
ple enables us to group the n initial tokens as much as possible.
We can form �n/w� groups of tokens and the remaining (i.e., n
mod w) tokens should preserve their individual timestamps.

Grouping initial tokens, on the producer actor side of a
channel is also possible. Fig. 8(c) shows the resulting graph
after applying initial tokens grouping to the producer side of
the channel cm. In this case, the production rate of actor aj
on channel cm (i.e., rate 2) specifies the grouping factor.

B. Token reduction for SADFs
The introduced token reduction techniques are also ap-

plicable to channels of an SADF where the initial tokens
of channels only models intra-scenario dependencies. When
tokens on channels model inter-scenario dependencies, the
following considerations are required. The token reduction
techniques are also applicable to channels of an SADF (which
contain inter-scenario token labelings) where the rates on
the source and destination side of the channels are identical
across all scenarios. In case of different rates for a channel
on its destination side for some scenarios, the token grouping
on the consumer side cannot preserve the token timestamp
information; so, this token reduction cannot be applied. In
case of different rates for a channel on its source side for
some scenarios, the tokens grouping on the producer side gets
limited to the minimum amount of the tokens produced into
the channel in one iteration across all scenario iterations. In
this situation, the grouping factor is determined based on the
greatest common divisor (gcd) of the channel’s source side
rate in all scenarios. Consider an actor aj which in each of its
firing produces v1, · · · , vs tokens in channel cm in scenarios
S1, · · · , Ss respectively. The grouping factor is specified with
gcd(v1, · · · , vs); in this way timestamp information of tokens
can be preserved and the transformation does not affect the
timing behavior of the SADF.

V. EXPERIMENTAL RESULTS

Sec. V-A presents an experimental evaluation of our initial
token reduction technique. A comparison between our tech-
nique and an existing parametric throughput analysis technique
for SDFs is made in Sec. V-B. The performance of our
technique on SADFs is evaluated in Sec. V-C. All experiments
are performed on an Intel core i7 (3 GHz) running Linux.

A. Impact of initial token reduction
We evaluate our technique on benchmark SDFs with buffer

sizes identical to the buffers sizes used in experiments of [12].
The token reduction techniques (i.e., consumer side grouping
and producer side grouping introduced in Sec. IV) are applied
to the graphs. The second column of Tab. II shows the number
of initial tokens in the original SDFs. Using the consumer
(Cnsr) side tokens grouping reduces the initial tokens to the
amount specified in the third column. Applying the producer
(Prdr.) side initial token grouping could further reduce the
initial tokens (see the fourth column).

Using the proposed token reduction techniques makes the
MPAG-based throughput analysis faster for the buffer-aware
graphs; for example in the case of the H.263 decoder (without
any token reduction), our parametric throughput analysis lasts
37846ms. The same analysis for the graph on which consumer

side token reduction is applied requires 10600ms. The analysis
time further reduces to 80ms for the graph on which both
token reductions are applied. We should also mention that
token reductions are performed in a negligible amount of time
(< 1ms) for all benchmark graphs.

Table II
NUMBER OF INITIAL TOKENS.

Benchmark Orig. Cnsr. Opt. Cnsr.+Prdr. Opt.
H.263 decoder [6] 1193 600 7
H.263 encoder [20] 304 206 10
Modem [1] 54 44 35
MP3 decoder [6] 8078 28 28
MP3 playback [21] 1983 106 106
Samplerate conv. [1] 38 14 14
Satellite receiver [22] 1564 791 48

B. Comparison with [12] on SDFs

Since SDFs are a special case of SADFs, we can compare
our technique for SADF throughput analysis to the only
existing parametric throughput analysis technique for SDFs,
i.e., [12]. In our comparison, we use the same set of SDFs
(see Tab. III) with the largest parameter range used in [12].
In this case, the parameterized actors show a variation in their
execution time between their nominal value and 150% of this
value. Tab. III shows the number of parameters (#p) in each
SDF, the number of throughput expressions (#eqn) and the
run-times of the technique presented in [12] and our technique.
The results show that our technique is faster on almost all
SDFs. The MP3 playback and modem SDFs are the only graph
on which our technique is slightly slower. This is due to the
large number of initial tokens in the graphs which results in a
large MPAG and in a long run-time of the MCM algorithm.

The divide & conquer algorithm which is used in both
[12] and in our technique performs two different kinds of
throughput calculations. It needs to determine throughput
expressions for some parameter points and compute concrete
throughput values for corner points of throughput regions.
The technique from [12] uses a state-space exploration to
determine the throughput expressions and concrete throughput
values. The state-space exploration needs to keep track of all
parameters in its state-space exploration which makes its run-
time dependent on the number of parameters. The size of the
MPAG used in our technique is not dependent on the number
of parameters. Therefore, the run-time of the MCM algorithm
is also independent of the number of parameters. Only the
function evaluateSymMPAG in Algorithm 1 depends on the
number of parameters. However this function only evaluates a
symbolic MPAG for a parameter point and this can be done in
a negligible amount of time. As a result, the run-time of our
technique is almost independent of the number of parameters
in the graph. The blue line in Fig. 9 shows the run-time of
our symbolic throughput computation (i.e., Algorithm 1) when
increasing the number of parameters. This result confirms the
independence of the run-time of our symbolic throughput com-
putation of the number of parameters. Fig. 9 also compares the
overall run-time of the technique from [12] and our technique
(including both the symbolic throughput computation as well
as all concrete throughput computations at the corner points).
When increasing the number of parameters, more concrete
throughput computations need to be performed. Our concrete

0

30000

60000

90000

120000

150000

180000

6 7 8 9 10

A
na

ly
si

s
ti

m
e

(m
s)

Parameters

[12]
Ours
symThr

(a) Satellite receiver.

0

500

1000

1500

2000

2500

7 8 9 10 11

A
na

ly
si

s
ti

m
e

(m
s)

Parameters

[12]

Ours

symThr

(b) MP3 decoder.

Figure 9. Execution time when varying number of parameters.

throughput analysis technique (which is in principle intended
for the more expressive SADF model) is slower than the
dedicated SDF technique used in [12]. As a result, part of
the gains in our symbolic throughput computation are lost.
However, our approach remains faster compared to [12] when
increasing the number of parameters. This is especially true
when the number of throughput regions increases.

Table III
NUMBER OF THROUGHPUT REGIONS AND RUN-TIME SDFS.

Benchmark #p #eqn. [12] (ms) Ours (ms)
H.263 decoder [6] 4 1 94 80
H.263 encoder [20] 5 1 36 20
Modem [1] 7 1 96 116
MP3 decoder [6] 8 1 164 160
MP3 playback [21] 1 1 1348 1680
Samplerate conv. [1] 4 2 168 128
Satellite receiver [22] 9 3 69376 33478

Table IV
NUMBER OF THROUGHPUT REGIONS AND RUN-TIME SADFS.

Benchmark #sce. #p #eqn. Ours (ms)
MPEG4 decoder [23] 9 4 3 488
MP3 decoder [8] 5 8 3 2792
WLAN [24] 4 10 3 2342
Mapped MP3 decoder [8] 5 3 4 1252
Mapped WLAN [24] 4 3 10 196

C. Performance of our technique on SADFs
Our throughput analysis technique is tested on a set of

SADFs described in the literature (see Tab. IV). Our bench-
mark consists of a set of realistic applications, i.e., an MPEG-4
decoder with 9 scenarios, an MP3 decoder with 3 scenarios,
and a wireless LAN (WLAN) receiver with 4 scenarios. For
the latter two applications, we use both a version in which
each actor is mapped to a different processor and a version in
which some actors are mapped to the same processor (labeled
‘Mapped’ in Tab. IV). In the MPEG-4 decoder, each actor
is mapped to a different processor. The execution time of all
actors is parametrized with a linear expression in which the
execution time of the actor in the non-parameterized SADF
model is multiplied with a parameter pi that corresponds to the
processor on which the actor is mapped. The actor execution
times are varied between their nominal value and 500% of
this value (i.e., 1 ≤ pi < 5). These large parameter ranges
allow us to show the scalability of our approach when the
parameter ranges are large. Tab. IV shows the number of
throughput expressions (#eqn) of each SADF and the time
used by our technique to discover these expressions. The
experimental results show that our technique is able to handle
realistic applications within a limited run-time.

VI. APPLICATION: COMPUTING DVFS SETTINGS

Ref. [23] presents the SADF model of an MPEG-4 video
decoder shown in Fig. 10. This model distinguishes 9 different

3

rcfd
c c

d
d

a b

mc

d

e

idct
vld Rate I P0 Px

Scenario

a 0 0 1
b 0 0 x
c 99 1 x
d 1 0 1
e 99 0 x

Figure 10. SADF model of an MPEG-4 decoder.

scenarios which relate to the type of frame that needs to
be decoded (I or P) and the number of macro blocks that
need to be processed. The fd and vld actors are mapped to
processor p1 and the three other actors idct, mc and rc are
mapped to respectively processor p2, p3, and p4. Assuming
that an independent, continuous DVFS setting can be made
on each processor, the actor execution times as reported in
[23] can be scaled linearly with one parameter per processor.
Using our parameterized throughput analysis technique, we
can compute that the throughput (in iterations/second) of
this parameterized SADF is equal to: min{1/(0.00792 ×
p1), 1/(0.003366 × p2), 1/(0.00078 × p3 + 0.00064 × p4)}.
When using DVFS, the objective is to maximize the parameter
values (i.e., minimize processor frequencies) while ensuring
that the throughput of the application remains within the
throughput constraint. This implies that the minimum of the
three throughput expressions of our MPEG4 decoder should
not be lower than the throughput constraint of the application.
This is a common optimization problem that can be solved
with an LP solver. Using such a solver and a throughput
constraint of 20 frames/second, we can compute that the
processor p1 in our MPEG-4 decoder should operate at 79
MHz, and all three other processors should operate at 50 MHz.

VII. RELATED WORK

The technique from [12] performs throughput analysis for
SDFs when the execution time of the model is parameterized.
SADFs are proposed to refine the SDFs for dynamic appli-
cations. In [8], a Max-Plus based SADF throughput analysis
is introduced. Neither the technique from [8] nor [12] can
determine throughput for parameterized SADFs. We propose
a technique to enable throughput analysis for parameterized
SADFs. Our technique can also be used to determine through-
put expressions for parameterized SDFs. Similar to [12], we
use a divide & conquer approach to determine throughput
regions. In order to determine the throughput expression of
a throughput region, we extend the MPAG-based analysis
from [8] to a symbolic MPAG-based analysis.

Symbolic executions of the scenario graphs are used in
our parametric throughput analysis technique to determine the
Max-Plus matrices of an SADF. Symbolic executions may
not be practical for large graphs. Approaches like [17], [25]
solve this issue by removing redundant expressions which
are not affecting the critical paths. In our case, we only
need to determine the Max-Plus characteristic matrices for
a parameter point. We avoid complex redundant expression
elimination by evaluating only the resulting terms (in a token
timestamp) for the given parameter point after each symbolic
firing of the actors. In this way, only the terms which have
the largest values amongst the others propagate to the next
step of the symbolic execution. Moreover, the techniques
developed in [17], [25], which calculate timing expressions

for integrated circuits, are limited to single scenario cases and
do not generalize to SADF.

VIII. CONCLUSIONS

Scenario-aware dataflow graphs (SADFs) with parameter-
ized execution times enable analysis of implementation deci-
sions that could change the timing property of the application
across all scenarios. The only existing parametric throughput
analysis technique can handle the less expressive SDF model-
of-computation (MoC). Experimental results show that our
technique outperforms this technique despite the fact that we
can handle a more expressive MoC. Moreover, our technique
offers better scalability when the number of parameters in-
creases. As future work, we want to use our technique to
develop a timing predictable run-time resource manager.

REFERENCES

[1] S. S. Bhattacharyya et al., “Synthesis of embedded software from syn-
chronous dataflow specifications,” Journal of VLSI Signal Processing,
vol. 21, pp. 151–166, 1999.

[2] S. Sriram et al., Embedded Multiprocessors: Scheduling and Synchro-
nization, SecondEdition. CRC Press, 2009.

[3] P. Poplavko et al., “Task-level timing models for guaranteed performance
in multiprocessor networks-on-chip,” in CASES’03. ACM, pp. 63–72.

[4] M.-Y. Ko et al., “Compact procedural implementation in DSP soft-
ware synthesis through recursive graph decomposition,” in SCOPES’04.
ACM, pp. 47–61.

[5] A. Ghamarian et al., “Throughput analysis of synchronous data flow
graphs,” in ACSD’06. IEEE, pp. 25–36.

[6] S. Stuijk et al., “Throughput-buffering trade-off exploration for cyclo-
static and synchronous dataflow graphs,” IEEE Trans. on Computers,
vol. 57, no. 10, pp. 1331–1345, 2008.

[7] B. Theelen et al., “A scenario-aware data flow model for combined long-
run average and worst-case performance analysis,” in MEMOCODE’06,
pp. 185 –194.

[8] M. Geilen et al., “Worst-case performance analysis of synchronous
dataflow scenarios,” in CODES+ISSS’10. ACM, pp. 125–134.

[9] A. W. Brekling et al., “Models and formal verification of multiprocessor
system-on-chips,” Journal of Logic and Algebraic Programming, vol. 77,
no. 1-2, pp. 1–19, 2008.

[10] I. Sander et al., “System modeling and transformational design refine-
ment in forsyde,” IEEE Trans. on CAD, vol. 23, pp. 17–32, 2004.

[11] S. Stuijk, “Predictable mapping of streaming applications on multipro-
cessors,” Ph.D. dissertation, TU Eindhoven, 2007.

[12] A. Ghamarian et al., “Parametric throughput analysis of synchronous
data flow graphs,” in DATE’08. EDAA, pp. 116 –121.

[13] S. Bhattacharyya et al., Software Synthesis from Dataflow Graphs.
Kluwer Academic Publishers, 1996.

[14] E. A. Lee et al., “Synchronous data flow,” IEEE Proceedings, vol. 75,
no. 9, pp. 1235 –1245, 1987.

[15] F. Baccelli et al., Synchronization and Linearity. John Wiley & Sons.
[16] M. Geilen, “Synchronous dataflow scenarios,” ACM Trans. Embed.

Comput. Syst., vol. 10, no. 2, pp. 16:1–16:31, Jan. 2011.
[17] K. Heloue et al., “Efficient block-based parameterized timing analysis

covering all potentially critical paths,” IEEE Trans. on CAD, vol. 31,
pp. 472–484, 2012.

[18] N. E. Young et al., “Faster parametric shortest path and minimum
balance algorithms,” CoRR, vol. cs.DS/0205041, 2002.

[19] M. Damavandpeyma et al., “Modeling static-order schedules in syn-
chronous dataflow graphs,” in DATE’12. EDAA, pp. 775–780.

[20] H. Oh et al., “Fractional rate dataflow model for efficient code synthe-
sis,” Journal of VLSI Signal Processing, vol. 37, pp. 41–51, 2004.

[21] M. H. Wiggers et al., “Efficient computation of buffer capacities for
cyclo-static dataflow graphs,” in DAC’07. ACM, pp. 658–663.

[22] S. Ritz et al., “Scheduling for optimum data memory compaction in
block diagram oriented software synthesis,” in ICASSP’95. IEEE, pp.
2651–2654.

[23] B. Theelen et al., “Scenario-aware dataflow,” TU Eindhoven, Tech. Rep.
ESR-2008-08, 2008.

[24] O. Moreira, “Temporal analysis and scheduling of hard real-time radios
running on a multi-processor,” Ph.D. dissertation, TU Eindhoven, 2012.

[25] S. V. Kumar et al., “A framework for block-based timing sensitivity
analysis,” in DAC’08. ACM, pp. 688–693.

