

This work is supported in part by the Dutch Technology Foundation STW, project NEST – 10346.



Abstract — Scratchpad memories (SPMs) have become a
promising on-chip storage solution for embedded systems from
an energy, performance and predictability perspective. The
thermal behavior of these types of memories has not been
considered in detail. This thermal behavior plays an important
role in the reliability of silicon devices and in their static
(leakage) power consumption. In this paper, we propose two
different techniques to improve the thermal behavior of SPMs.
First, we propose a hardware-based, thermal-aware address
translation technique that physically distributes memory
accesses to consecutive addresses evenly over the whole memory
area. Second, we propose a software-based, thermal-aware
address generation technique. This technique tries to distribute
the variables that are allocated to the SPM in such a way that an
even thermal distribution is achieved. The first technique works
particularly well for applications with a regular access pattern,
whereas the second technique can also improve the behavior of
applications with irregular access patterns. The two techniques
thus complement each other and work well together. Using the
first technique we show that the peak temperature of an SPM in
65nm technology, when running a typical streaming application,
is decreased by up-to 10.0°C. Temperature cycling is reduced
from up-to 14.8°C to almost zero in comparison with a non-
thermal-aware solution. For our benchmark applications with
an irregular access pattern, the second technique is able to
reduce the peak temperature by up-to 3.5°C. These savings for
both techniques are obtained without any performance
degradation or extra silicon area.

I. INTRODUCTION

Most applications in embedded systems perform complex
processing operations on a stream of input data. These
operations are typically power hungry. Low power/energy
methods have been employed to increase the availability of
handheld devices as much as possible. Studies have shown
that memory systems are contributing to a large portion of the
total energy consumption [1]. To increase performance and
decrease the energy consumption, memory hierarchies are
introduced to limit the number of off-chip memory accesses
either by using caches, SPMs, or both. SPMs have become an
efficient replacement for caches in novel embedded systems,
due to their lower energy/area cost and better predictability
 [2]. It has also been demonstrated [3] that for applications
with a regular data access pattern SPMs can give better
memory behavior when compared to caches.

The drastic increase of the power density of digital circuits
by shrinking feature sizes of transistors has become an
important concern in the VLSI industry. This aspect has
especially a large impact on memories as their density is
higher than other parts. Higher power density translates to a
higher local chip temperature. In the deep submicron domain,
leakage power has an exponential relation with temperature
 [4]. As a result of the higher power density, temperature and
therefore leakage power will increase [5]. Cooling systems

can be a way out of this issue, but the use of a large cooling
system to lower this high temperature causes extra design
cost and a larger product size. It has also been proven that
temperature plays an important role in the reliability of
silicon devices [6]. The mean time to failure (MTTF) of
silicon devices, which depends exponentially on temperature
 [10], will be affected if this issue is not considered during
design. Another side effect of a temperature rise is an
increase in the interconnect delay [7] which is due to
dependency of the resistance of the interconnect on the line
temperature. This dependency directly affects the
predictability of the device.

The number of accesses to the SPM will affect its power
consumption and a change in the power consumption will
change the thermal behavior of the SPM. So to improve the
thermal behavior of an SPM, it is necessary to consider the
access pattern of an application onto the SPM. We categorize
applications into two groups: applications with a regular
memory access pattern and applications with an irregular
memory access pattern. We propose two techniques, each one
specifically targeting one category. The two techniques
complement each other and do not interfere. When put
together, the techniques improve the thermal behavior for all
applications.

Many streaming applications that are mapped onto
embedded systems have a regular memory access pattern
(e.g. motion estimation in an H.263 encoder). When using an
SPM with a traditional address layout, consecutive elements
in large variables (e.g. arrays) are mapped onto consecutive
physical addresses in the SPM. Subsequent memory accesses
of an application that has a regular memory accesses
behavior will therefore be performed on memory locations
that are close to each other. At each moment in time, there
will be one region in the SPM that is heavily accessed. This
will incur a high power density in this region. Over time, the
highly accessed region will move over (part of) the SPM.
This will lead to a moving hotspot on the SPM and as a result
it leads to thermal cycling. This paper proposes a novel
simple SPM address decoding strategy that takes the regular
memory access pattern found in streaming applications into
account. The use of the proposed address decoder leads to a
balancing in the access pattern, power density, and
temperature distribution over the physical area. Our
simulation results show that by using our proposed technique,
the peak temperature reduces by up-to 10.0°C in a motion
estimation application and up-to 2.6°C in an image
processing application when considering the accesses to the
video frames and image blocks respectively. Temperature
cycling decreased from 14.8°C to 0.1°C and from 3.8°C to
0.1°C, respectively.

For applications with an irregular memory access
behavior, we propose a novel thermal aware address
generation technique. The proposed technique creates a
thermal equilibrium in the SPM by constructing thermal-

Morteza Damavandpeyma1, Sander Stuijk1, Twan Basten1,2, Marc Geilen1, Henk Corporaal1
1Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands

2Embedded Systems Institute, Eindhoven, The Netherlands
{m.damavandpeyma, s.stuijk, a.a.basten, m.c.w.geilen, h.corporaal}@tue.nl

Thermal-Aware Scratchpad Memory Design and Allocation

aware addresses for the variables that are allocated to the
SPM. Using our technique, we are able to reduce the peak
temperature of an SPM that contains the most frequently
accesses variables in MP3 decoder, by 3.5°C when compared
to a traditional SPM allocation technique.

The remainder of this paper is organized as follows.
Section II discusses related work on SPM management
methods and thermal-aware design. The proposed technique
for applications with a regular access pattern is discussed in
Section III. Section IV introduces the proposed technique for
applications with an irregular access pattern. Section V
explains the experimental setup that is used to evaluate our
techniques. Section VI shows the experimental results.
Section VII concludes this paper.

II. RELATED WORK

SPMs have been studied extensively to find an optimal
mapping of code or data from the performance and energy
perspectives [11] [12] [13]. In this paper, we optimize SPMs
from a thermal perspective. Thermal issues were studied
before for different elements in microprocessors (e.g. cache
memory [8], register files [9], etc) to improve their reliability
and thermal behavior. In [8], a thermal-aware method is
introduced to reduce hot spots inside a cache. The authors
propose a block permutation scheme to maximize the
physical distance between the highly accessed regions of the
instruction cache. Inspired by [8], but adapted to SPMs, we
apply a simple logical to physical address translation scheme
to increase the physical distance between consecutive data
accesses in an SPM with the objective to achieve an even
thermal distribution in case of applications with a regular
access patterns. In [14], a technique is employed to handle
the thermal issues of systems with a cache and SPM, by
swapping memory blocks between the cache and SPM at run-
time. The aim is to reach an equilibrium temperature and an
improvement in the reliability of the system. In [15], a block
duplication scheme under compiler control was proposed.
This technique is used to deal with soft-errors in SPMs and as
such to increase the reliability of the system. We focus on
improving thermal behavior and, as a result of that,
improving leakage power and life-time reliability.

Our work is the first that considers thermal issues for a
system with only SPMs. Compared to [14] which uses a
combination of caches and SPMs to achieve a better thermal
distribution by swapping data between SPM and cache, in our
work, the SPM can work stand alone and there is no need for
extra cooperation between the SPM and other elements. The
techniques proposed in this paper can be applied to any SPM.
So, in principle also on top of the technique proposed in [14].
Also, to the best of our knowledge, this paper is the first one
that considers the effect of SPM address generation on the
SPM’s thermal behavior. The position of the variables inside
the SPM will affect the thermal dissipation flow. Taking the
effect on temperature into account during address generation
provides a lower power density throughout the SPM, leading
to a reduction in peak temperature.

III. THERMAL-AWARE SPM DESIGN FOR APPLICATIONS WITH

A REGULAR ACCESS PATTERN

Our first aim is to enhance the thermal behavior of an SPM
by reducing its peak temperature and by reducing the thermal

cycling for applications with regular memory access patterns.

A. Observation

Multimedia applications typically process various types of
audio or video data streams. These data streams are placed as
a sequence of frames or macro-blocks in the memory system.
Applications access this data in a regular manner. During a
short time period (e.g. the processing time of one macro
block of an image) one region of the memory (e.g. storing a
macro block) is accessed heavily. As a result of this high
activity, the power density of the accessed region increases
and the local temperature rises. In multimedia applications,
several consecutive macro-blocks are loaded into the SPM.
During run-time, different physical regions of the SPM
experience fluctuation in their temperature. Fig. 1 shows 16
different temperature maps of an SPM. (These maps are
obtained by a simulation tool flow described in Sec. V.) In
each temperature map, a different macro-block is accessed by
a motion estimation application. Initially the application
accesses macro block B0. The temperature map at the left-top
of the figure shows the temperature map of the SPM at the
end of the time period in which this block is accessed. Once
this block is processed, the application continues with macro
block B1. The temperature map of the SPM after processing
this block is shown as the second map on the top line of the
figure. After processing this block, the application continues
with block B2 etcetera till it has processed the last block (i.e.
B15). In each period of access in Fig. 1, one specific memory
bank is accessed and as a result, its temperature becomes the
highest of the whole SPM. From the reliability perspective,
continual changes in the temperature of a silicon device will
lead to fatigue in the device and finally device failure [21].
The simplest way to decrease the local power density is by
distributing the accesses across the whole SPM area. In the
next sub-sections, we demonstrate how we can create this
equilibrium situation during the execution of an application.

B. Logical Address to Physical Location Translation

Because the subsequent memory accesses of an application
are typically performed on subsequent logical addresses, an
even distribution of accesses across the SPM can be achieved
by maximizing the physical distance between consecutive
logical memory addresses. To realize this objective, an
encoding scheme is required to translate consecutive logical
addresses into distributed physical locations. Fig. 2 illustrates
this translation by means of a simple explanatory example. In
this example, we assume that each bank contains four data
elements (words). When translating the logical addresses into
the physical address locations, we can increase the physical
distance between these four words.

Fig. 1. Temperature of SPM while running
the motion estimation application.

Fig. 2. Logical to physical
address encoding

C. Implementation
It is possible to find different optimal solutions for the

address translation problem described above. At the same
time, we require that our encoding scheme (i.e. address
decoder of the SPM) must be as simple as possible in order to
limit its implementation complexity and to incur as little
overhead on the system as possible. Therefore, we propose a
heuristic to solve the encoding problem. Based on this
heuristic, an encoding technique from the logical address
space to the physical address space is derived. The suggested
heuristic is not necessarily always optimal in terms of
distributing accesses. The advantage of the proposed heuristic
is that it has a simple implementation in hardware without
extra hardware cost or performance overhead. Assume a
memory consisting of C×R banks, with C and R the number
of columns and the number of rows in the memory bank
structure, respectively. Assume each bank has N words.

Heuristic. Choose m=N/(C×R) words from each memory
bank in order to place these m words with distance d=C×R
from each other inside the memory. Repeat the previous
action C×R times to choose all N words.
A simple and efficient way to implement this heuristic is to

change the address decoder of the SPM. The following
illustrates the proposed address translation method:

Address mirroring. The desired effect can be achieved via
address decoding by just mirroring the address bits.
Consider the following logical address:

As, As-1, , … , A3, A2, A1
The corresponding physical address is set to:

A1, A2, A3, … , As-1, As
where s= log2(C×R×N) .
By mirroring the logical addresses, consecutive accesses

within one bank are distributed over all banks of the SPM
with a distance of d words from each other. The address
mirroring scheme explained above is inspired by [8]. In [8],
an address permutation scheme was used to create a
permutation of blocks inside an instruction cache memory. In
a cache, it is reasonable to preserve the relation between the
elements of each memory bank to keep locality of cache
lines. In an SPM this is not necessary. Our mirroring scheme
increases the physical distance between consecutive accesses
to a memory bank and even increases the distance between
the currently accessed memory bank and the previously
accessed memory bank.

Fig. 3 shows a simple example of our address decoding
scheme with a memory that consists of 4 banks and 16 words
inside each bank (N=16, C=2, and R=2). The memory layout
on the left hand side of the figure shows accesses to the SPM
when a conventional address decoding is used and the right
hand side shows the memory layout of the same memory
accesses when the proposed address decoding is used. The
figure shows that the proposed technique is able to increase
the physical distance between consecutive SPM accesses.
Note that the proposed solution requires only a change in the
address lines of the SPM, so no extra hardware is required. In
other words, no extra silicon is needed and no performance
loss will occur when using the proposed technique.

IV. THERMAL-AWARE SPM ALLOCATION FOR APPLICATIONS

WITH AN IRREGULAR ACCESS PATTERN

In the previous section, we proposed a hardware-based
technique to improve thermal behavior in an SPM for

applications which have regular access patterns. In this
section, we propose a software-based SPM allocation
technique to optimize thermal behavior of the SPM in
applications with irregular access patterns. In applications
with irregular accesses to memory, different variables which
are chosen for the SPM, have different types and sizes. Each
variable has a different number of accesses during the
execution of the application. This will lead to a different
power consumption and different temperature for the
different memory locations where these variables are stored.
Better thermal dissipation can be achieved by placing the
variables in a way that creates an even memory access
density throughout the SPM. In the next subsections, first we
describe our method to order variables based on their
expected temperature and then we will propose an address
generation technique for SPM variables to take into account
their thermal behavior. We assume that the set of variables to
be considered has been generated by an SPM allocation
technique such as for example the one of [12].

A. Thermal Ordering for SPM Variables

Power dissipation directly translates to temperature in
silicon devices. From the number of accesses to memory
elements, the power consumption can be calculated. So it is
possible to order SPM variables from the expected highest
temperature (hot side) to the expected lowest temperature
(cold side) if the number of accesses to each SPM variable is
known. We use a profiling technique to estimate the number
of accesses to each SPM variable. We instrument the
application source code with profiling instructions to count
read and write operations. After compiling and executing the
instrumented source code, it is possible to separate the most
frequently accessed variables from the less frequently
accessed ones and give an ordered list of SPM variables. Our
goal is to create an even access density to the SPM, equal to
the average access count over variables. As the sizes of the
variables may be different, this must be taken into
consideration during the SPM allocation steps. We consider
an average of the accesses to different elements of an array as
the number of accesses to each element of the array. This
assumption is valid in most applications (e.g. accesses to a
frame buffer in multimedia applications) or near-optimal
from the perspective of our objective. Current compilers
place elements of an array in a consecutive order in memory.
So a larger variable causes a higher power consumption. By
multiplying the size of a variable with its average access
count, we get an estimation of the amount of power that is
dissipated through accesses to that variable. Fig. 4 shows an
explanatory view of variable ordering based on the number of
accesses and size of the variables. The product of the average
number of accesses to each variable and its size is the weight
of a variable. Based on these weights, we sort the variables
from the highest weight (the hottest) to the lowest weight (the
coldest).

Fig. 3. Logical to physical address mapping. Fig. 4. Ordering of SPM variables

B. Thermal Aware Address Generation for SPM

To get an even thermal distribution we put some cold
variables between any two hot variables. As the size and
average number of accesses to each variable is different, the
number of cold variables that is placed between the hot
variables is different throughout the SPM. The goal of the
proposed technique is to place the variables in a way to create
groups of one hot and some cold variables in such a way that
the average of the assigned weights in a group is at most the
average of the weights of all variables in the SPM. The
HotColdEqualize (HCeq) algorithm, see below, starts with
placing a hot variable; then it places some cold variables after
the hot one such that the above condition on the average
weight of the hot variable and the cold variables is satisfied.
The algorithm stops if all variables in the list are placed in the
SPM and received an address.

HotColdEqualize (HCeq)
adr =0
W = average weight over the variable list (VarList)
while VarList is not empty do {
 assign adr to VarList(1)
 adr = adr + size(VarList(1))

L= length of VarList
take N such that variables VarList(1) and VarList(L-N) … VarList(L)

 have an average weight ≤ W or N=L-1
 for i=1 to N {
 assign adr to VarList(L-i)
 adr = adr + size(VarList(L-i))
 }
 remove VarList(1) and VarList(L-N) … VarList(L) from VarList
}

In this paper, we apply HCeq along with a static SPM
allocation technique. It is also possible to use the proposed
address generation technique for dynamic SPM management.
We leave the complete implementation of address generation
for dynamic SPM as future work.

V. EXPERIMENTAL METHODOLOGY

This section explains how we combine the different tools
that are used in our experimental setup.

A. Temperature Model

Due to the electrical-thermal duality, it is straightforward
to use electrical concepts for modeling thermal behavior. The
thermal model can be derived from the electrical model by
replacing voltage with temperature, current with power,
resistance by thermal resistance, capacitance by thermal
capacitance, and electrical RC constant with thermal RC
constant. In this work, we used HotSpot 5.0 [5] as our
thermal simulation tool, which offers a platform to simulate
thermal behavior. In our experiments to find the possible
temperature range of an SPM during the execution of an
application, we use two different scenarios. In the first
scenario, we put the SPM as a single element in a die
surrounded with air. In the second scenario, we put the SPM
within a large inactive silicon area. The result of the first
scenario shows the temperature distribution in the SPM when
heat transfer with the surrounding is negligible (air is a good
insulator). The second scenario shows the temperature
distribution in an SPM when the SPM can transfer heat
through the surrounding easily (silicon without power
dissipation). Using these two scenarios, we can show the
performance range of our proposed techniques in the best

case and worst case situation based on the physical position
of the SPM with respect to other elements (core,
interconnects, etc) inside the chip.

B. Experimental Setup

An experimental setup was devised to evaluate the effect
of the proposed method on the thermal behavior of an SPM.
Fig. 5 shows the tool flow used in this paper. We used
SimpleScalar [17] and Valgrind [18] to extract timing
information and memory access patterns, respectively.
SimpleScalar is a micro architectural simulator and Valgrind
is a tool that can be used to trace the memory operations of
an application. Table 1 shows the configuration of
SimpleScalar that was used in our experiments. We added a
patch to Valgrind to profile the access pattern of a user-
selected set of variables inside an application. We used
CACTI 6.0 [19] to determine the amount of dynamic power
consumption of each access to the SPM, which is assumed to
be implemented with an SRAM. Inputs to CACTI are the size
of the SPM and its detailed configuration (e.g. size of
memory banks (set to 256 bytes), number of read ports (set to
1), number of write ports (set to 1), and bus width (set to 32
bits)). The power trace is created by multiplying the access
trace file from Valgrind by the amount of power consumed
on each access. The latter number is obtained from CACTI.
To determine the temperature of the SPM, we used HotSpot
to perform a transient temperature simulation for the SPM
layout. In our experiments, HotSpot was further configured
as follows: the clock frequency is set to 1GHz, the ambient
air temperature is set to 45°C, the initial silicon temperature
is set to 45°C, and the rest of the parameters are left with
their default setting.

VI. EXPERIMENTAL RESULTS

To evaluate our techniques we use two applications that
have a regular memory access pattern and one application
with a mostly irregular memory access behavior. The first
application is motion estimation [16], which is an important
element of many video compression algorithms. The second
application is SUSAN [20], which is an edge detection and
filtering application used in for example medical
applications. The third application is an MP3 audio decoder.

Table 1. Configuration of SimpleScalar

Parameter Value Parameter Value

Issue width 4 insts/cycle Functional
units

4 Int ALU,
1 Int Mult/Div
4 FP ALU,
1 FP Mult/Div

Inst. fetch
queue size 4 (in insts)

Branch
predictor

Bimodal 2048
Table L1 I/D cache 16 KB, 4‐way, 32 Byte

blocks, 1 cycle

RUU/LSQ size 16/8 Memory
latency 18 cycles

Fig. 5. Tool flow for thermal simulation

A. Motion Estimation

The motion estimation application was compiled using the
PISA compiler and then simulated with the sim-outorder
simulator of SimpleScalar. Using these tools, we determined
that the processing time of a single macro-block is 1.4 ms.
Therefore, we set the duration of each simulation cycle in
HotSpot to 1.4ms. In the motion estimation application, each
image window is composed of 4x4 macro blocks. Therefore,
we set the size of the SPM to the size of the window, which
is equal to 4KB. For simplicity, we assume that the size of
one memory bank is equal to one macro block. Since this
application exhibits regular access patterns, we use it to
evaluate our address mirroring technique. Figures 6 and 7
show the average temperature within each of the memory
banks of the SPM when running the motion estimation
application. For readability, the line corresponding to one
memory bank, the bank storing macro block 4, is changed to
a bold, dashed line labeled MB4. Fig. 6 shows the results
when the SPM is surrounded by air and Fig. 7 shows the
results when the SPM is surrounded by inactive silicon (SPM
placed in the center of the die). The results of these two
figures determine the efficiency range of the proposed
mirroring technique. Fig. 6.a shows the result of a baseline
solution where no thermal aware address mirroring is applied
and Figure 6.b shows the result when using the proposed
method. The horizontal axis in these figures represents a time
step within the application execution (each step is equal to
the processing of one macro block). We simulated the
application for 32 steps in which each memory bank is
accessed two times (first access occurs in between time step 1
and time step 16 and the second access occurs between time
steps 17 and 32). We evaluated the system based on the
second access to each memory bank, because we see from the
graph that the transient effects have disappeared. In the first
access to the memory banks, the temperature of a memory
bank traverses from its transient situation to a steady state.
This steady state behavior occurs from the second access to
the bank onwards. Fig. 6.a shows that when a memory bank
is accessed, its temperature will increase. Once the accesses
have been completed, it starts to cool down. For example
when the processing of macro block 4 is started, its
temperature increases and when processing other macro
blocks its temperature decreases. By using the address
mirroring technique, we distribute the accesses to one
memory bank across the whole SPM. As a result, the whole
SPM will experience even accesses over time. Therefore, it
shows an even temperature when running the application.
Another outcome that can be observed from Fig. 6 is that

macro blocks which are placed at the corner of the SPM (in
Fig. 6.a macro block 1, 4, 13, and 16) experience a higher
temperature in comparison to the macro blocks that are not
placed at a corner of the SPM. This is related to the different
thermal dissipation flow in the outside banks as compared to
the internal banks of the SPM. Internal banks can dissipate
temperature through neighboring memory banks, but outside
banks must dissipate the heat through an insulator (the
surrounding air). By distributing accesses using our
technique, this effect is reduced and an even distribution of
temperature can be achieved. In Fig. 7, a similar experiment
is repeated with an SPM surrounded by inactive silicon. As is
clear from Fig. 7.a, all memory banks show similar
temperature trends, because outside memory banks are also
in the neighborhood of inactive silicon, like internal memory
banks. When comparing the results of Fig. 6 and 7, it is clear
that the second situation has a lower average temperature due
to the better heat transfer in silicon in comparison to air. The
peak temperature is reduced up to 10.0°C and at least 3.9°C
in the motion estimation application and its thermal cycling
(i.e. a repeating difference between maximum and minimum
temperature) is reduced from 14.8°C to 0.1°C in the best case
and from 5.8°C to 0.1°C in the worst case.

B. SUSAN

As a second experiment to evaluate the address mirroring
technique, we used the SUSAN application, which is an
application from the image processing domain. This
application processes consecutively accessed image blocks.
These image blocks are placed in the SPM. In this
experiment, we allocate 4 KB SPM to this application. The
processing time needed for one image block is equal to 0.4
ms. Therefore, this value was set as the simulation cycle time
in HotSpot. Fig. 8 shows the average temperature of each
memory bank of the SPM when running this application.
When comparing the result of the motion estimation
application with the results of the SUSAN application (note
the different vertical scales), it is clear that our proposed
technique can get more gain in applications in which the
memory region of the SPM that is accessed by the
application, changes with a lower frequency (i.e. if the
processing time is larger). The execution time of one data
block in SUSAN is less than the execution time for one data
block in motion estimation (i.e. 0.4 ms versus 1.2 ms).
Therefore, SUSAN inherently already exhibits a better
distribution. The peak temperature is reduced up-to 2.6°C in
the SUSAN application and its thermal cycling is reduced
from 3.8°C to 0.1°C.

Fig. 6. Motion estimation-SPM surrounded by air, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis). (a)
temperature result for baseline solution (b) temperature result for address mirroring technique.

(b)(a)

Fig. 7. Motion estimation-SPM surrounded by inactive silicon, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis).
(a) temperature result for baseline solution (b) temperature result for address mirroring technique.

Fig. 8. SUSAN-SPM surrounded by air, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis). (a) temperature result
for baseline solution (b) temperature result for address mirroring technique.

Fig. 9. MP3 decoder-SPM surrounded by air, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis). (ax) temperature
result for baseline solution (bx) temperature result for HCeq technique.

C. MP3 Decoder

As a third application, we studied an MP3 decoder.
Compared to the previous two applications, where most of
the memory accesses are into a single frame, in the MP3
decoder, several variables are put in the SPM that do not have
a regular access pattern. We therefore use it to evaluate our
software-based thermal aware address generation. We used
the static allocation method from [12] to choose the variables
for a 2 KB, 4 KB, and 8 KB SPM. Fig. 9 shows the result of
a thermal simulation of this application. This figure shows
the temperature results for decoding a sequence of eight
audio frames four times. We repeatedly decoded the audio

frames to evaluate the temperature in the steady state. As it is
clear from Fig. 9, the temperature of memory banks move
from their initial state into a steady state after the first
repetition (i.e. 1st till 8th‘s time period in horizontal axis). Fig.
9.ax (x=1,2,3) shows the results of the thermal simulations
for the base line solution. Each memory bank has a different
temperature compared to the other banks and the relative
temperature does not change (e.g. the temperature of bank 1
is most of the times higher than the temperature of bank 6).
These effects are related to the irregular access patterns
inside the application. Variables with a higher number of
accesses will increase the temperature of a memory bank
compared to banks that contain variables with a lower

(a)

(a) (b)

(b)

a1) 2 KB - Base b1) 2 KB - HCeq

a2) 4 KB - Base

a3) 8 KB - Base

b2) 4 KB - HCeq

b3) 8 KB - HCeq

number of accesses.
Fig. 9.bx shows the results of thermal simulations of the

SPM when our thermal-aware address generation technique
is used to allocate the variables to the SPM. The figure shows
that our technique achieves an even average temperature
across the whole SPM. Furthermore, our technique is able to
reduce the peak temperature of the SPM, up-to 3.5°C for the
MP3 decoder. For larger SPM sizes, the gain that can be
achieved by HCeq is larger. More less-frequently accessed
variables can then be placed in the SPM which means that the
ratio of cold variables to hot variables will increase. This will
lead to a better variable distribution that the proposed HCeq
address generation can exploit.

When applying the address mirroring technique to this
application, a result similar to the result for the HCeq
technique is achieved. However, address mirroring requires a
change in the hardware and cannot be applied in a platform in
which the hardware is fixed. The software-based HCeq
address generation technique can be applied also to a fixed
hardware platform. When the memory accesses to the SPM
are regular, it is inevitable to use address mirroring because
then the HCeq technique does not work. The HCeq technique
is effective when number of access to variables is different.
Hence applying this technique to applications with regular
memory access pattern has no gain. We also ran simulations
combining the two techniques, which confirm the expected
result that the two techniques do not interfere. The results are
almost identical to the results reported in Fig. 9.

VII. CONCLUSION

SPMs are often used in embedded systems to improve their
predictability along with a better performance and a lower
energy usage. In streaming applications, it is common to
allocate the SPM for streams of data (e.g. image or audio
frames). Most streaming applications have a regular access
pattern to the memory. In this paper, we propose a technique
to reduce the peak temperature and temperature cycling in
SPMs when an application with a regular access pattern is
executed. Via an address mirroring method, we distribute the
memory accesses across the whole SPM evenly. To improve
thermal behavior for applications with an irregular memory
access pattern, a thermal-aware address generation technique
is proposed. It allocates variables to the SPM in such a way
that an even power consumption density through the SPM is
achieved. A tool flow was developed to measure the
application’s temperature at the architectural level. In our
tool flow, we combine different tools: SimpleScalar,
Valgrind, CACTI, and HotSpot. Experimental results show
that our techniques are able to reduce the peak temperature in
a motion estimation application and SUSAN by respectively
10.0°C and 2.6°C. Thermal cycling is reduced from 14.8°C
to 0.1°C in motion estimation and from 3.8°C to 0.1°C in
SUSAN by using the proposed address mirroring technique.

We applied our thermal-aware address generation technique
to an MP3 decoder. This application has an irregular accesses
pattern on the SPM. Our technique is able to achieve a 3.5°C
reduction in the peak temperature. The two techniques
proposed in this paper work well together, improving the
SPM thermal behavior for all applications, without incurring
silicon overhead or performance loss.

REFERENCES
[1] P. R. Panda et. al. Efficient utilization of scratch-pad memory in

embedded processor applications. EDA&T, pp.7-11, 1997.
[2] R. Banakar et. al. Scratchpad memory: A design alternative for cache

on-chip memory in embedded systems. CODES, pp. 73-78, 2002.
[3] J.W. Sias et. al. Enhancing loop buffering of media and

telecommunications applications using low-overhead predication.
MICRO, pp. 262–273, 2001.

[4] W. Liao et. al. Microarchitecture level power and thermal simulation
considering temperature dependent leakage model. ISLPED, pp. 211-
216, 2003.

[5] W. Huang et. al. HotSpot: a compact thermal modeling methodology
for early-stage VLSI design. IEEE Transactions on VLSI systems, pp.
501-513, 2006.

[6] J. Srinivasan et. al. The case for lifetime reliability-aware
microprocessors. ISCA, pp. 276-287, 2004.

[7] A. Ajami et. al. Modeling and analysis of nonuniform substrate
temperature effects on global interconnects. IEEE Transaction on
CAD, pp. 849-861, 2005.

[8] J. C. Ku et. al. Thermal management of on-chip caches through power
density minimization. IEEE Transaction on VLSI systems, pp. 592-
604, 2007.

[9] K. Patel et. al. Active bank switching for temperature control of the
register file in a microprocessor. GLSVLSI, pp. 231-233, 2007.

[10] JEDEC. Failure mechanisms and models for semiconductor devices.
JEDEC Solid State Technology Association, 2003.

[11] S. Steinke et. al. Assigning program and data objects to scratchpad for
energy reduction. DATE, pp. 409-415, 2002.

[12] F. Angiolini et. al. A post-compiler approach to scratchpad mapping of
code. CASES, pp. 259-267, 2004.

[13] M. Verma and P. Marwedel. Overlay techniques for scratchpad
memories in low power embedded processors. IEEE Transaction on
VLSI Systems, pp. 802-815, 2006.

[14] M. Wang et. al. Improving the reliability of embedded systems with
cache and SPM. TSP, pp. 825-830, 2009.

[15] F. Li et. al. Improving scratch-pad memory reliability through
compiler-guided data block duplication. ICCAD, pp. 1002-1005, 2005.

[16] P.H.S. Torr and A. Zisserman. Feature based methods for structure and
motion estimation. ICCV Workshop on Vision Algorithms. pp.278-
294,1999.

[17] D. Burger et. al. Memory hierarchy extensions to simplescalar 3.0.
Technical Report TR99-25, Department of Computer Sciences, The
University of Texas at Austin, 2000.

[18] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. PLDI, 2007.

[19] N. Muralimanohar et. al. Optimizing NUCA organizations and wiring
alternatives for large caches with CACTI 6.0. MICRO, pp. 3-14, 2007.

[20] S.M. Smith and J.M. Brady. SUSAN - a new approach to low level
image processing. Journal of Computer Vision, pp. 45-78, 1997.

[21] J.H.L. Pang et. al. Thermal cycling analysis of flip-chip solder joint
reliability. IEEE Transactions on components and packaging
technologies. pp. 705 – 712, 2001.

