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Abstract — Scratchpad memories (SPMs) have become a 
promising on-chip storage solution for embedded systems from 
an energy, performance and predictability perspective. The 
thermal behavior of these types of memories has not been 
considered in detail. This thermal behavior plays an important 
role in the reliability of silicon devices and in their static 
(leakage) power consumption. In this paper, we propose two 
different techniques to improve the thermal behavior of SPMs. 
First, we propose a hardware-based, thermal-aware address 
translation technique that physically distributes memory 
accesses to consecutive addresses evenly over the whole memory 
area. Second, we propose a software-based, thermal-aware 
address generation technique. This technique tries to distribute 
the variables that are allocated to the SPM in such a way that an 
even thermal distribution is achieved. The first technique works 
particularly well for applications with a regular access pattern, 
whereas the second technique can also improve the behavior of 
applications with irregular access patterns. The two techniques 
thus complement each other and work well together. Using the 
first technique we show that the peak temperature of an SPM in 
65nm technology, when running a typical streaming application, 
is decreased by up-to 10.0°C. Temperature cycling is reduced 
from up-to 14.8°C to almost zero in comparison with a non-
thermal-aware solution. For our benchmark applications with 
an irregular access pattern, the second technique is able to 
reduce the peak temperature by up-to 3.5°C. These savings for 
both techniques are obtained without any performance 
degradation or extra silicon area.  

I. INTRODUCTION 

Most applications in embedded systems perform complex 
processing operations on a stream of input data. These 
operations are typically power hungry. Low power/energy 
methods have been employed to increase the availability of 
handheld devices as much as possible. Studies have shown 
that memory systems are contributing to a large portion of the 
total energy consumption  [1]. To increase performance and 
decrease the energy consumption, memory hierarchies are 
introduced to limit the number of off-chip memory accesses 
either by using caches, SPMs, or both. SPMs have become an 
efficient replacement for caches in novel embedded systems, 
due to their lower energy/area cost and better predictability 
 [2]. It has also been demonstrated  [3] that for applications 
with a regular data access pattern SPMs can give better 
memory behavior when compared to caches. 

The drastic increase of the power density of digital circuits 
by shrinking feature sizes of transistors has become an 
important concern in the VLSI industry. This aspect has 
especially a large impact on memories as their density is 
higher than other parts. Higher power density translates to a 
higher local chip temperature. In the deep submicron domain, 
leakage power has an exponential relation with temperature 
 [4]. As a result of the higher power density, temperature and 
therefore leakage power will increase  [5]. Cooling systems 

can be a way out of this issue, but the use of a large cooling 
system to lower this high temperature causes extra design 
cost and a larger product size. It has also been proven that 
temperature plays an important role in the reliability of 
silicon devices  [6]. The mean time to failure (MTTF) of 
silicon devices, which depends exponentially on temperature 
 [10], will be affected if this issue is not considered during 
design. Another side effect of a temperature rise is an 
increase in the interconnect delay  [7] which is due to 
dependency of the resistance of the interconnect on the line 
temperature. This dependency directly affects the 
predictability of the device.  

The number of accesses to the SPM will affect its power 
consumption and a change in the power consumption will 
change the thermal behavior of the SPM. So to improve the 
thermal behavior of an SPM, it is necessary to consider the 
access pattern of an application onto the SPM. We categorize 
applications into two groups: applications with a regular 
memory access pattern and applications with an irregular 
memory access pattern. We propose two techniques, each one 
specifically targeting one category. The two techniques 
complement each other and do not interfere. When put 
together, the techniques improve the thermal behavior for all 
applications. 

Many streaming applications that are mapped onto 
embedded systems have a regular memory access pattern 
(e.g. motion estimation in an H.263 encoder). When using an 
SPM with a traditional address layout, consecutive elements 
in large variables (e.g. arrays) are mapped onto consecutive 
physical addresses in the SPM. Subsequent memory accesses 
of an application that has a regular memory accesses 
behavior will therefore be performed on memory locations 
that are close to each other. At each moment in time, there 
will be one region in the SPM that is heavily accessed. This 
will incur a high power density in this region. Over time, the 
highly accessed region will move over (part of) the SPM.  
This will lead to a moving hotspot on the SPM and as a result 
it leads to thermal cycling. This paper proposes a novel 
simple SPM address decoding strategy that takes the regular 
memory access pattern found in streaming applications into 
account. The use of the proposed address decoder leads to a 
balancing in the access pattern, power density, and 
temperature distribution over the physical area. Our 
simulation results show that by using our proposed technique, 
the peak temperature reduces by up-to 10.0°C in a motion 
estimation application and up-to 2.6°C in an image 
processing application when considering the accesses to the 
video frames and image blocks respectively. Temperature 
cycling decreased from 14.8°C to 0.1°C and from 3.8°C to 
0.1°C, respectively.  

For applications with an irregular memory access 
behavior, we propose a novel thermal aware address 
generation technique. The proposed technique creates a 
thermal equilibrium in the SPM by constructing thermal-
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aware addresses for the variables that are allocated to the 
SPM.  Using our technique, we are able to reduce the peak 
temperature of an SPM that contains the most frequently 
accesses variables in MP3 decoder, by 3.5°C when compared 
to a traditional SPM allocation technique. 

The remainder of this paper is organized as follows. 
Section II discusses related work on SPM management 
methods and thermal-aware design. The proposed technique 
for applications with a regular access pattern is discussed in 
Section III. Section IV introduces the proposed technique for 
applications with an irregular access pattern.  Section V 
explains the experimental setup that is used to evaluate our 
techniques. Section VI shows the experimental results. 
Section VII concludes this paper. 

II. RELATED WORK 

SPMs have been studied extensively to find an optimal 
mapping of code or data from the performance and energy 
perspectives  [11] [12] [13]. In this paper, we optimize SPMs 
from a thermal perspective. Thermal issues were studied 
before for different elements in microprocessors (e.g. cache 
memory  [8], register files  [9], etc) to improve their reliability 
and thermal behavior.  In  [8], a thermal-aware method is 
introduced to reduce hot spots inside a cache. The authors 
propose a block permutation scheme to maximize the 
physical distance between the highly accessed regions of the 
instruction cache. Inspired by  [8], but adapted to SPMs, we 
apply a simple logical to physical address translation scheme 
to increase the physical distance between consecutive data 
accesses in an SPM with the objective to achieve an even 
thermal distribution in case of applications with a regular 
access patterns. In  [14], a technique is employed to handle 
the thermal issues of systems with a cache and SPM, by 
swapping memory blocks between the cache and SPM at run-
time. The aim is to reach an equilibrium temperature and an 
improvement in the reliability of the system. In  [15], a block 
duplication scheme under compiler control was proposed. 
This technique is used to deal with soft-errors in SPMs and as 
such to increase the reliability of the system. We focus on 
improving thermal behavior and, as a result of that, 
improving leakage power and life-time reliability.  

Our work is the first that considers thermal issues for a 
system with only SPMs. Compared to  [14] which uses a 
combination of caches and SPMs to achieve a better thermal 
distribution by swapping data between SPM and cache, in our 
work, the SPM can work stand alone and there is no need for 
extra cooperation between the SPM and other elements. The 
techniques proposed in this paper can be applied to any SPM. 
So, in principle also on top of the technique proposed in  [14]. 
Also, to the best of our knowledge, this paper is the first one 
that considers the effect of SPM address generation on the 
SPM’s thermal behavior. The position of the variables inside 
the SPM will affect the thermal dissipation flow. Taking the 
effect on temperature into account during address generation 
provides a lower power density throughout the SPM, leading 
to a reduction in peak temperature.  

III. THERMAL-AWARE SPM DESIGN FOR APPLICATIONS WITH 

A REGULAR ACCESS PATTERN  

Our first aim is to enhance the thermal behavior of an SPM 
by reducing its peak temperature and by reducing the thermal 

cycling for applications with regular memory access patterns. 

A. Observation 

Multimedia applications typically process various types of 
audio or video data streams. These data streams are placed as 
a sequence of frames or macro-blocks in the memory system. 
Applications access this data in a regular manner. During a 
short time period (e.g. the processing time of one macro 
block of an image) one region of the memory (e.g. storing a 
macro block) is accessed heavily. As a result of this high 
activity, the power density of the accessed region increases 
and the local temperature rises. In multimedia applications, 
several consecutive macro-blocks are loaded into the SPM. 
During run-time, different physical regions of the SPM 
experience fluctuation in their temperature. Fig. 1 shows 16 
different temperature maps of an SPM. (These maps are 
obtained by a simulation tool flow described in Sec. V.) In 
each temperature map, a different macro-block is accessed by 
a motion estimation application. Initially the application 
accesses macro block B0. The temperature map at the left-top 
of the figure shows the temperature map of the SPM at the 
end of the time period in which this block is accessed. Once 
this block is processed, the application continues with macro 
block B1. The temperature map of the SPM after processing 
this block is shown as the second map on the top line of the 
figure. After processing this block, the application continues 
with block B2 etcetera till it has processed the last block (i.e. 
B15). In each period of access in Fig. 1, one specific memory 
bank is accessed and as a result, its temperature becomes the 
highest of the whole SPM. From the reliability perspective, 
continual changes in the temperature of a silicon device will 
lead to fatigue in the device and finally device failure  [21]. 
The simplest way to decrease the local power density is by 
distributing the accesses across the whole SPM area. In the 
next sub-sections, we demonstrate how we can create this 
equilibrium situation during the execution of an application. 

B. Logical Address to Physical Location Translation 

Because the subsequent memory accesses of an application 
are typically performed on subsequent logical addresses, an 
even distribution of accesses across the SPM can be achieved 
by maximizing the physical distance between consecutive 
logical memory addresses. To realize this objective, an 
encoding scheme is required to translate consecutive logical 
addresses into distributed physical locations. Fig. 2 illustrates 
this translation by means of a simple explanatory example. In 
this example, we assume that each bank contains four data 
elements (words). When translating the logical addresses into 
the physical address locations, we can increase the physical 
distance between these four words.  

    
 
 

Fig. 1. Temperature of SPM while running 
the motion estimation application. 

Fig. 2. Logical to physical 
address encoding 



  

C. Implementation  
It is possible to find different optimal solutions for the 

address translation problem described above. At the same 
time, we require that our encoding scheme (i.e. address 
decoder of the SPM) must be as simple as possible in order to 
limit its implementation complexity and to incur as little 
overhead on the system as possible. Therefore, we propose a 
heuristic to solve the encoding problem. Based on this 
heuristic, an encoding technique from the logical address 
space to the physical address space is derived. The suggested 
heuristic is not necessarily always optimal in terms of 
distributing accesses. The advantage of the proposed heuristic 
is that it has a simple implementation in hardware without 
extra hardware cost or performance overhead. Assume a 
memory consisting of C×R banks, with C and R the number 
of columns and the number of rows in the memory bank 
structure, respectively. Assume each bank has N words.  

Heuristic. Choose m=N/(C×R) words from each memory 
bank in order to place these m words with distance d=C×R 
from each other inside the memory. Repeat the previous 
action C×R times to choose all N words.  
A simple and efficient way to implement this heuristic is to 

change the address decoder of the SPM. The following 
illustrates the proposed address translation method: 

Address mirroring. The desired effect can be achieved via 
address decoding by just mirroring the address bits. 
Consider the following logical address: 

As, As-1, , … , A3, A2, A1 
The corresponding physical address is set to:  

A1, A2, A3, … , As-1, As 
where s=  log2(C×R×N) . 
By mirroring the logical addresses, consecutive accesses 

within one bank are distributed over all banks of the SPM 
with a distance of d words from each other.  The address 
mirroring scheme explained above is inspired by  [8]. In  [8], 
an address permutation scheme was used to create a 
permutation of blocks inside an instruction cache memory. In 
a cache, it is reasonable to preserve the relation between the 
elements of each memory bank to keep locality of cache 
lines. In an SPM this is not necessary. Our mirroring scheme 
increases the physical distance between consecutive accesses 
to a memory bank and even increases the distance between 
the currently accessed memory bank and the previously 
accessed memory bank.  

Fig. 3 shows a simple example of our address decoding 
scheme with a memory that consists of 4 banks and 16 words 
inside each bank (N=16, C=2, and R=2). The memory layout 
on the left hand side of the figure shows accesses to the SPM 
when a conventional address decoding is used and the right 
hand side shows the memory layout of the same memory 
accesses when the proposed address decoding is used. The 
figure shows that the proposed technique is able to increase 
the physical distance between consecutive SPM accesses. 
Note that the proposed solution requires only a change in the 
address lines of the SPM, so no extra hardware is required. In 
other words, no extra silicon is needed and no performance 
loss will occur when using the proposed technique.  

IV. THERMAL-AWARE SPM ALLOCATION FOR APPLICATIONS 

WITH AN IRREGULAR ACCESS PATTERN  

In the previous section, we proposed a hardware-based 
technique to improve thermal behavior in an SPM for 

applications which have regular access patterns. In this 
section, we propose a software-based SPM allocation 
technique to optimize thermal behavior of the SPM in 
applications with irregular access patterns. In applications 
with irregular accesses to memory, different variables which 
are chosen for the SPM, have different types and sizes.  Each 
variable has a different number of accesses during the 
execution of the application. This will lead to a different 
power consumption and different temperature for the 
different memory locations where these variables are stored. 
Better thermal dissipation can be achieved by placing the 
variables in a way that creates an even memory access 
density throughout the SPM. In the next subsections, first we 
describe our method to order variables based on their 
expected temperature and then we will propose an address 
generation technique for SPM variables to take into account 
their thermal behavior. We assume that the set of variables to 
be considered has been generated by an SPM allocation 
technique such as for example the one of  [12]. 

A. Thermal Ordering for SPM Variables 

Power dissipation directly translates to temperature in 
silicon devices. From the number of accesses to memory 
elements, the power consumption can be calculated. So it is 
possible to order SPM variables from the expected highest 
temperature (hot side) to the expected lowest temperature 
(cold side) if the number of accesses to each SPM variable is 
known. We use a profiling technique to estimate the number 
of accesses to each SPM variable. We instrument the 
application source code with profiling instructions to count 
read and write operations. After compiling and executing the 
instrumented source code, it is possible to separate the most 
frequently accessed variables from the less frequently 
accessed ones and give an ordered list of SPM variables. Our 
goal is to create an even access density to the SPM, equal to 
the average access count over variables. As the sizes of the 
variables may be different, this must be taken into 
consideration during the SPM allocation steps. We consider 
an average of the accesses to different elements of an array as 
the number of accesses to each element of the array. This 
assumption is valid in most applications (e.g. accesses to a 
frame buffer in multimedia applications) or near-optimal 
from the perspective of our objective. Current compilers 
place elements of an array in a consecutive order in memory. 
So a larger variable causes a higher power consumption. By 
multiplying the size of a variable with its average access 
count, we get an estimation of the amount of power that is 
dissipated through accesses to that variable. Fig. 4 shows an 
explanatory view of variable ordering based on the number of 
accesses and size of the variables. The product of the average 
number of accesses to each variable and its size is the weight 
of a variable. Based on these weights, we sort the variables 
from the highest weight (the hottest) to the lowest weight (the 
coldest).  

  
Fig. 3. Logical to physical address mapping.       Fig. 4. Ordering of SPM variables 



  

B. Thermal Aware Address Generation for SPM 

To get an even thermal distribution we put some cold 
variables between any two hot variables. As the size and 
average number of accesses to each variable is different, the 
number of cold variables that is placed between the hot 
variables is different throughout the SPM. The goal of the 
proposed technique is to place the variables in a way to create 
groups of one hot and some cold variables in such a way that 
the average of the assigned weights in a group is at most the 
average of the weights of all variables in the SPM. The 
HotColdEqualize (HCeq) algorithm, see below, starts with 
placing a hot variable; then it places some cold variables after 
the hot one such that the above condition on the average 
weight of the hot variable and the cold variables is satisfied. 
The algorithm stops if all variables in the list are placed in the 
SPM and received an address.  

HotColdEqualize (HCeq) 
adr =0 
W = average weight over the variable list (VarList) 
while VarList is not empty do { 
 assign adr to VarList(1) 
 adr = adr + size(VarList(1)) 

L= length of VarList 
take N such that variables VarList(1) and VarList(L-N) … VarList(L) 

  have an average weight ≤ W or N=L-1 
 for i=1 to N { 
  assign adr to VarList(L-i) 
  adr = adr + size(VarList(L-i)) 
 } 
 remove VarList(1) and VarList(L-N) … VarList(L) from VarList 
} 

In this paper, we apply HCeq along with a static SPM 
allocation technique. It is also possible to use the proposed 
address generation technique for dynamic SPM management. 
We leave the complete implementation of address generation 
for dynamic SPM as future work. 

V. EXPERIMENTAL METHODOLOGY 

This section explains how we combine the different tools 
that are used in our experimental setup.  

A. Temperature Model 

Due to the electrical-thermal duality, it is straightforward 
to use electrical concepts for modeling thermal behavior. The 
thermal model can be derived from the electrical model by 
replacing voltage with temperature, current with power, 
resistance by thermal resistance, capacitance by thermal 
capacitance, and electrical RC constant with thermal RC 
constant. In this work, we used HotSpot 5.0  [5] as our 
thermal simulation tool, which offers a platform to simulate 
thermal behavior. In our experiments to find the possible 
temperature range of an SPM during the execution of an 
application, we use two different scenarios. In the first 
scenario, we put the SPM as a single element in a die 
surrounded with air. In the second scenario, we put the SPM 
within a large inactive silicon area. The result of the first 
scenario shows the temperature distribution in the SPM when 
heat transfer with the surrounding is negligible (air is a good 
insulator). The second scenario shows the temperature 
distribution in an SPM when the SPM can transfer heat 
through the surrounding easily (silicon without power 
dissipation). Using these two scenarios, we can show the 
performance range of our proposed techniques in the best 

case and worst case situation based on the physical position 
of the SPM with respect to other elements (core, 
interconnects, etc) inside the chip. 

B. Experimental Setup  

An experimental setup was devised to evaluate the effect 
of the proposed method on the thermal behavior of an SPM. 
Fig. 5 shows the tool flow used in this paper. We used 
SimpleScalar  [17] and Valgrind  [18] to extract timing 
information and memory access patterns, respectively. 
SimpleScalar is a micro architectural simulator and Valgrind 
is a tool that can be used to trace the memory operations of 
an application. Table 1 shows the configuration of 
SimpleScalar that was used in our experiments. We added a 
patch to Valgrind to profile the access pattern of a user-
selected set of variables inside an application. We used 
CACTI 6.0  [19] to determine the amount of dynamic power 
consumption of each access to the SPM, which is assumed to 
be implemented with an SRAM. Inputs to CACTI are the size 
of the SPM and its detailed configuration (e.g. size of 
memory banks (set to 256 bytes), number of read ports (set to 
1), number of write ports (set to 1), and bus width (set to 32 
bits)). The power trace is created by multiplying the access 
trace file from Valgrind by the amount of power consumed 
on each access. The latter number is obtained from CACTI.  
To determine the temperature of the SPM, we used HotSpot 
to perform a transient temperature simulation for the SPM 
layout. In our experiments, HotSpot was further configured 
as follows: the clock frequency is set to 1GHz, the ambient 
air temperature is set to 45°C, the initial silicon temperature 
is set to 45°C, and the rest of the parameters are left with 
their default setting.  

VI. EXPERIMENTAL RESULTS  

To evaluate our techniques we use two applications that 
have a regular memory access pattern and one application 
with a mostly irregular memory access behavior. The first 
application is motion estimation  [16], which is an important 
element of many video compression algorithms. The second 
application is SUSAN  [20], which is an edge detection and 
filtering application used in for example medical 
applications. The third application is an MP3 audio decoder.  

 
Table 1. Configuration of SimpleScalar 

Parameter Value Parameter  Value

Issue width  4 insts/cycle  Functional 
units 

4 Int ALU, 
1 Int Mult/Div 
4 FP ALU,  
1 FP Mult/Div

Inst. fetch 
queue size  4 (in insts) 

Branch 
predictor

Bimodal 2048 
Table L1 I/D cache   16 KB, 4‐way, 32 Byte 

blocks, 1 cycle

RUU/LSQ size  16/8  Memory 
latency  18 cycles 

 
Fig. 5. Tool flow for thermal simulation  



  

A. Motion Estimation 

The motion estimation application was compiled using the 
PISA compiler and then simulated with the sim-outorder 
simulator of SimpleScalar. Using these tools, we determined 
that the processing time of a single macro-block is 1.4 ms. 
Therefore, we set the duration of each simulation cycle in 
HotSpot to 1.4ms. In the motion estimation application, each 
image window is composed of 4x4 macro blocks. Therefore, 
we set the size of the SPM to the size of the window, which 
is equal to 4KB. For simplicity, we assume that the size of 
one memory bank is equal to one macro block. Since this 
application exhibits regular access patterns, we use it to 
evaluate our address mirroring technique. Figures 6 and 7 
show the average temperature within each of the memory 
banks of the SPM when running the motion estimation 
application. For readability, the line corresponding to one 
memory bank, the bank storing macro block 4, is changed to 
a bold, dashed line labeled MB4. Fig. 6 shows the results 
when the SPM is surrounded by air and Fig. 7 shows the 
results when the SPM is surrounded by inactive silicon (SPM 
placed in the center of the die). The results of these two 
figures determine the efficiency range of the proposed 
mirroring technique. Fig. 6.a shows the result of a baseline 
solution where no thermal aware address mirroring is applied 
and Figure 6.b shows the result when using the proposed 
method. The horizontal axis in these figures represents a time 
step within the application execution (each step is equal to 
the processing of one macro block). We simulated the 
application for 32 steps in which each memory bank is 
accessed two times (first access occurs in between time step 1 
and time step 16 and the second access occurs between time 
steps 17 and 32). We evaluated the system based on the 
second access to each memory bank, because we see from the 
graph that the transient effects have disappeared. In the first 
access to the memory banks, the temperature of a memory 
bank traverses from its transient situation to a steady state. 
This steady state behavior occurs from the second access to 
the bank onwards. Fig. 6.a shows that when a memory bank 
is accessed, its temperature will increase. Once the accesses 
have been completed, it starts to cool down. For example 
when the processing of macro block 4 is started, its 
temperature increases and when processing other macro 
blocks its temperature decreases. By using the address 
mirroring technique, we distribute the accesses to one 
memory bank across the whole SPM. As a result, the whole 
SPM will experience even accesses over time. Therefore, it 
shows an even temperature when running the application. 
Another outcome that can be observed from Fig. 6 is that 

macro blocks which are placed at the corner of the SPM (in 
Fig. 6.a macro block 1, 4, 13, and 16) experience a higher 
temperature in comparison to the macro blocks that are not 
placed at a corner of the SPM. This is related to the different 
thermal dissipation flow in the outside banks as compared to 
the internal banks of the SPM. Internal banks can dissipate 
temperature through neighboring memory banks, but outside 
banks must dissipate the heat through an insulator (the 
surrounding air). By distributing accesses using our 
technique, this effect is reduced and an even distribution of 
temperature can be achieved. In Fig. 7, a similar experiment 
is repeated with an SPM surrounded by inactive silicon. As is 
clear from Fig. 7.a, all memory banks show similar 
temperature trends, because outside memory banks are also 
in the neighborhood of inactive silicon, like internal memory 
banks. When comparing the results of Fig. 6 and 7, it is clear 
that the second situation has a lower average temperature due 
to the better heat transfer in silicon in comparison to air. The 
peak temperature is reduced up to 10.0°C and at least 3.9°C 
in the motion estimation application and its thermal cycling 
(i.e. a repeating difference between maximum and minimum 
temperature) is reduced from 14.8°C to 0.1°C in the best case 
and from 5.8°C to 0.1°C in the worst case. 

B. SUSAN 

As a second experiment to evaluate the address mirroring 
technique, we used the SUSAN application, which is an 
application from the image processing domain. This 
application processes consecutively accessed image blocks. 
These image blocks are placed in the SPM. In this 
experiment, we allocate 4 KB SPM to this application. The 
processing time needed for one image block is equal to 0.4 
ms. Therefore, this value was set as the simulation cycle time 
in HotSpot. Fig. 8 shows the average temperature of each 
memory bank of the SPM when running this application. 
When comparing the result of the motion estimation 
application with the results of the SUSAN application (note 
the different vertical scales), it is clear that our proposed 
technique can get more gain in applications in which the 
memory region of the SPM that is accessed by the 
application, changes with a lower frequency (i.e. if the 
processing time is larger). The execution time of one data 
block in SUSAN is less than the execution time for one data 
block in motion estimation (i.e. 0.4 ms versus 1.2 ms). 
Therefore, SUSAN inherently already exhibits a better 
distribution. The peak temperature is reduced up-to 2.6°C in 
the SUSAN application and its thermal cycling is reduced 
from 3.8°C to 0.1°C.  

 

 
Fig. 6. Motion estimation-SPM surrounded by air, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis). (a) 
temperature result for baseline solution (b) temperature result for address mirroring technique.  
 

(b)(a) 



  

 
Fig. 7. Motion estimation-SPM surrounded by inactive silicon, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis). 
(a) temperature result for baseline solution (b) temperature result for address mirroring technique. 

 
Fig. 8. SUSAN-SPM surrounded by air, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis). (a) temperature result 
for baseline solution (b) temperature result for address mirroring technique. 
 

 
Fig. 9. MP3 decoder-SPM surrounded by air, average temperature (○C) of memory bank (vertical axis) versus time period (horizantal axis). (ax) temperature 
result for baseline solution (bx) temperature result for HCeq technique. 

C. MP3 Decoder 

As a third application, we studied an MP3 decoder. 
Compared to the previous two applications, where most of 
the memory accesses are into a single frame, in the MP3 
decoder, several variables are put in the SPM that do not have 
a regular access pattern. We therefore use it to evaluate our 
software-based thermal aware address generation. We used 
the static allocation method from  [12] to choose the variables 
for a 2 KB, 4 KB, and 8 KB SPM. Fig. 9 shows the result of 
a thermal simulation of this application. This figure shows 
the temperature results for decoding a sequence of eight 
audio frames four times. We repeatedly decoded the audio 

frames to evaluate the temperature in the steady state. As it is 
clear from Fig. 9, the temperature of memory banks move 
from their initial state into a steady state after the first 
repetition (i.e. 1st till 8th‘s time period in horizontal axis). Fig. 
9.ax (x=1,2,3) shows the results of the thermal simulations 
for the base line solution. Each memory bank has a different 
temperature compared to the other banks and the relative 
temperature does not change (e.g. the temperature of bank 1 
is most of the times higher than the temperature of bank 6). 
These effects are related to the irregular access patterns 
inside the application. Variables with a higher number of 
accesses will increase the temperature of a memory bank 
compared to banks that contain variables with a lower 

(a) 

(a) (b)

(b)

a1) 2 KB - Base b1) 2 KB - HCeq

a2) 4 KB - Base 

a3) 8 KB - Base 

b2) 4 KB - HCeq 

b3) 8 KB - HCeq 



  

number of accesses.  
Fig. 9.bx shows the results of thermal simulations of the 

SPM when our thermal-aware address generation technique 
is used to allocate the variables to the SPM. The figure shows 
that our technique achieves an even average temperature 
across the whole SPM. Furthermore, our technique is able to 
reduce the peak temperature of the SPM, up-to 3.5°C for the 
MP3 decoder. For larger SPM sizes, the gain that can be 
achieved by HCeq is larger. More less-frequently accessed 
variables can then be placed in the SPM which means that the 
ratio of cold variables to hot variables will increase. This will 
lead to a better variable distribution that the proposed HCeq 
address generation can exploit. 

When applying the address mirroring technique to this 
application, a result similar to the result for the HCeq 
technique is achieved. However, address mirroring requires a 
change in the hardware and cannot be applied in a platform in 
which the hardware is fixed. The software-based HCeq 
address generation technique can be applied also to a fixed 
hardware platform. When the memory accesses to the SPM 
are regular, it is inevitable to use address mirroring because 
then the HCeq technique does not work. The HCeq technique 
is effective when number of access to variables is different. 
Hence applying this technique to applications with regular 
memory access pattern has no gain. We also ran simulations 
combining the two techniques, which confirm the expected 
result that the two techniques do not interfere. The results are 
almost identical to the results reported in Fig. 9. 

VII. CONCLUSION 

SPMs are often used in embedded systems to improve their 
predictability along with a better performance and a lower 
energy usage. In streaming applications, it is common to 
allocate the SPM for streams of data (e.g. image or audio 
frames). Most streaming applications have a regular access 
pattern to the memory. In this paper, we propose a technique 
to reduce the peak temperature and temperature cycling in 
SPMs when an application with a regular access pattern is 
executed. Via an address mirroring method, we distribute the 
memory accesses across the whole SPM evenly. To improve 
thermal behavior for applications with an irregular memory 
access pattern, a thermal-aware address generation technique 
is proposed. It allocates variables to the SPM in such a way 
that an even power consumption density through the SPM is 
achieved. A tool flow was developed to measure the 
application’s temperature at the architectural level. In our 
tool flow, we combine different tools: SimpleScalar, 
Valgrind, CACTI, and HotSpot. Experimental results show 
that our techniques are able to reduce the peak temperature in 
a motion estimation application and SUSAN by respectively 
10.0°C and 2.6°C. Thermal cycling is reduced from 14.8°C 
to 0.1°C in motion estimation and from 3.8°C to 0.1°C in 
SUSAN by using the proposed address mirroring technique. 

We applied our thermal-aware address generation technique 
to an MP3 decoder. This application has an irregular accesses 
pattern on the SPM. Our technique is able to achieve a 3.5°C 
reduction in the peak temperature. The two techniques 
proposed in this paper work well together, improving the 
SPM thermal behavior for all applications, without incurring 
silicon overhead or performance loss.  
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