
Conservative Abstraction of Dataflow Graphs

Gabriela Breaban, Sander Stuijk, and Kees Goossens

Eindhoven University of Technology, Postbus 513, 5600 MB Eindhoven. Tel: +3140-247 3614

{g.breaban, s.stuijk, k.g.w.goossens}@tue.nl

Abstract

The dataflow model of computation provides useful semanticsto model the behavior of real-time embedded systems. Dataflow
graphs can be used to compute the performance applications running on a given platform. This document presents a framework
to define a conservative abstract model of a given dataflow graph.

The synchronous dataflow model is a restricted version of dataflow. In synchronous dataflow graphs (SDF), the actor
production and consumption rates are constant. To perform timing analysis, we assume that the actors have a execution time.
When a designer creates an application model he can choose thelevel of implementation detail of the model. A refined model
is more precise and, hence, the performance analysis can give a tighter result. However, adding details increases the size of
the model. As a consequence, the analysis takes more time to complete. Thus, there is trade-off between expressiveness and
analysability. This motivates us to find a method that reduces the size of a dataflow graph through a conservative abstraction. The
resulting abstract model should provide conservative results in terms of performance analysis metrics, such as throughput and
latency. Consequently, the abstract model will offer performance guarantees that are no worse than the original detailed model.
To give a concrete example, let us consider an application mapped to a multi-core platform. The communication between two
tasks mapped to different cores can involve several platform components such as DMA’s, network on chip, and arbiters. When
creating a binding-aware graph for the application, we needto incorporate all the above mentioned components. A detailed
model that can be easily correlated to the hardware behaviorwould include at least one actor for each component. Figure 1
shows such a binding-aware graph modeling the communication between a source application actor,input and a destination
application actor,output. Furthermore, if we take into account that such a communication model would be replicated for
all the application graph edges that cross different cores,and that this model can be further refined for each of the included
hardware components, we can see that the size of the resulting graph can increase significantly.

i nput

src_fake

ch0(2)
5

5

ch1(2)

5

5

fifo_split

ch2

1

3

ni_split

ch3
1

1

ch5(3)

3

1

latency

ch4
1

5

ch6(2)
1

1

r a t e

ch7
1

1

ch8(1)
1
1

rate_conversion

ch9
1 5

1

ou tpu t

ch10
2

5

dst_dma_delay

ch11
1

1

dst_latency

ch12

1

1

ch12(1)
1

1

ds t_ ra te

ch13
1

1

ch15(6)

5

2

ch14(1)
1
1

Fig. 1. Example of inter-tile communication model



a

d

cb

e f

g

(a) Example SDF graph

e f

g

L R

(b) Abstracted graph

Fig. 2. Example of input graph and abstracted graph

Our current abstraction technique consists of taking an input SDF graph and selecting a subset of actors and the edges
that connect them. For this subset of actors and edges, we define the subgraph that we want to abstract. The result of the
abstraction is a chain of two actors, one actor which can fire concurrently followed by a sequential actor. This is called a
Latency-Rate model and it has been widely used to model resource arbitration schemes, such as Time Division Multiple Access,
Round-Robin, Credit-Controlled Static Priority. It was derived from the Real-Time Calculus formalism which characterizes
resources in terms of input and outputarrival curves and provided and remainingservice curves [1]. Since the graphH that
we abstract, i.e. replace with the Latency-Rate component,is part of another SDF graph,G, which forms the context forH, it
follows, implicitly, that we have to preserve the properties of G, such as consistency and liveliness throughout the abstraction.

To illustrate our technique, let us consider the graph shownin Figure 2a. We show two possible choices for the abstraction.
The first one selects actorsa, b and c and the edges which connect them to define the subgraph to be abstracted, while the
second one selects actorsa, b, c, d ande and the connecting edges as the subgraph to be abstracted. The resulting abstracted
graph will be a copy of the original input graph in which the selected subgraph is replaced with the Latency-Rate model. The
result of the abstraction for the example SDF graph for whichthe innermost subgraph has been selected can be seen in Figure
2b. Furthermore, for the same set of selected actors, we can generate multiple Latency-Rate abstractions that trade latency and
throughput while making sure that both metrics remain conservative with respect to the original ones. This means that wecan
chose different approximations for the latency and throughput and each such pair will impact the analysis time in a different
way.

Keywords: Model of Computation; Dataflow Graph; Abstraction

REFERENCES

[1] M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit, “Modelling run-time arbitration by latency-rate servers in dataflow graphs,” inProceedings of the
10th International Workshop on Software &Amp; Compilers for Embedded Systems, ser. SCOPES ’07. New York, NY, USA: ACM, 2007, pp. 11–22.
[Online]. Available: http://doi.acm.org/10.1145/1269843.1269846


