
Sibyl: Adaptive and Extensible Data Placement in
Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh1 Rakesh Nadig1 Jisung Park1 Rahul Bera1 Nastaran Hajinazar1
David Novo3 Juan Gómez-Luna1 Sander Stuijk2 Henk Corporaal2 Onur Mutlu1

1ETH Zürich 2Eindhoven University of Technology 3LIRMM, Univ. Montpellier, CNRS

ABSTRACT
Hybrid storage systems (HSS) use multiple different storage devices
to provide high and scalable storage capacity at high performance.
Data placement across different devices is critical to maximize the
benefits of such a hybrid system. Recent research proposes various
techniques that aim to accurately identify performance-critical data
to place it in a “best-fit” storage device. Unfortunately, most of these
techniques are rigid, which (1) limits their adaptivity to performwell
for a wide range of workloads and storage device configurations,
and (2) makes it difficult for designers to extend these techniques
to different storage system configurations (e.g., with a different
number or different types of storage devices) than the configuration
they are designed for. Our goal is to design a new data placement
technique for hybrid storage systems that overcomes these issues
and provides: (1) adaptivity, by continuously learning from and
adapting to the workload and the storage device characteristics,
and (2) easy extensibility to a wide range of workloads and HSS
configurations.

We introduce Sibyl, the first technique that uses reinforcement
learning for data placement in hybrid storage systems. Sibyl ob-
serves different features of the running workload as well as the
storage devices to make system-aware data placement decisions.
For every decision it makes, Sibyl receives a reward from the sys-
tem that it uses to evaluate the long-term performance impact of
its decision and continuously optimizes its data placement policy
online.

We implement Sibyl on real systems with various HSS config-
urations, including dual- and tri-hybrid storage systems, and ex-
tensively compare it against four previously proposed data place-
ment techniques (both heuristic- and machine learning-based)
over a wide range of workloads. Our results show that Sibyl pro-
vides 21.6%/19.9% performance improvement in a performance-
oriented/cost-oriented HSS configuration compared to the best
previous data placement technique. Our evaluation using an HSS
configuration with three different storage devices shows that Sibyl
outperforms the state-of-the-art data placement policy by 23.9%-
48.2%, while significantly reducing the system architect’s burden

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527442

in designing a data placement mechanism that can simultaneously
incorporate three storage devices. We show that Sibyl achieves 80%
of the performance of an oracle policy that has complete knowl-
edge of future access patterns while incurring a verymodest storage
overhead of only 124.4 KiB.

CCS CONCEPTS
•Hardware→Communication hardware, interfaces and stor-
age; • Computing methodologies→ Reinforcement learning.

KEYWORDS
solid-state drives (SSDs), reinforcement learning, hybrid storage
systems, data placement, hybrid systems, machine learning

ACM Reference Format:
Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Ha-
jinazar, David Novo, Juan Gómez-Luna, Sander Stuijk, Henk Corporaal,
Onur Mutlu. Sibyl: Adaptive and Extensible Data Placement in Hybrid
Storage Systems Using Online Reinforcement Learning. In The 49th An-
nual International Symposium on Computer Architecture (ISCA ’22), June
18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3470496.3527442

1 INTRODUCTION
Hybrid storage systems (HSS) take advantage of both fast-yet-small
storage devices and large-yet-slow storage devices to deliver high
storage capacity at low latency [1–48]. The key challenge in design-
ing a high-performance and cost-effective hybrid storage system
is to accurately identify the performance-criticality of application
data and place data in the “best-fit” storage device [22].

Past works [49–73] propose many different data placement tech-
niques to improve the performance of an HSS. We identify two
major shortcomings of prior proposals that significantly limit their
performance: lack of (1) adaptivity to workload changes and the
storage device characteristics, and (2) extensibility.
(1a) Lack of adaptivity to workload changes. To guide data
placement, past techniques consider only a limited number of work-
load characteristics [49–57, 74, 75]. Designers statically tune the
parameters values for all considered workloads at design time based
on empirical analysis and designer experience, and expect those
statically-fixed values to be equally effective for a wide range of
dynamic workload demands and system configurations seen in
the real world. As a result, such data placement techniques cannot
easily adapt to a wide range of dynamic workload demands and
significantly underperform when compared to an oracle technique
that has complete knowledge of future storage access patterns (up
to 41.1% lower performance, ref. §3).

https://doi.org/10.1145/3470496.3527442
https://doi.org/10.1145/3470496.3527442

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

(1b) Lack of adaptivity to changes in device types and config-
urations.Most prior HSS data placement techniques (e.g., [49–59])
do not adapt well to changes in the underlying storage device char-
acteristics (e.g., changes in the level of asymmetry in the read/write
latencies, or the number and types of storage devices). As a re-
sult, existing techniques cannot effectively take into account the
cost of data movement between storage devices while making data
placement decisions. This lack of adaptivity leads to highly ineffi-
cient data placement policies, especially in HSSs with significantly-
different device access latencies than what prior techniques were
designed for (as shown in §3).
(2) Lack of extensibility. A large number of prior data placement
techniques (e.g., [49–51, 53–57]) are typically designed for an HSS
that consists of only two storage devices. As modern HSSs already
incorporate more than two types of storage devices [49, 59, 76],
system architects need to put significant effort into extending prior
techniques to accommodate more than two devices. We observe
that a state-of-the-art heuristic-based data placement technique
optimized for an HSS with two storage devices [76] often leads to
suboptimal performance in an HSS with three storage devices (up
to 48.2% lower performance, ref. §8.7).

Our goal is to develop a new, efficient, and high-performance
data placement mechanism for hybrid storage systems that pro-
vides (1) adaptivity, by continuously learning from and adapting
to the workload and storage device characteristics, and (2) easy
extensibility to a wide range of workloads and HSS configurations.

Key ideas. To this end, we propose Sibyl, a reinforcement
learning-based data placement technique for hybrid storage sys-
tems.1 Reinforcement learning (RL) [78] is a goal-oriented decision-
making process in which an autonomous agent learns to take opti-
mal actions that maximize a reward function by interacting with an
environment. The key idea of Sibyl is to design the data placement
module in hybrid storage systems as a reinforcement learning agent
that autonomously learns and adapts to the best-fit data placement
policy for the running workload and the current hybrid storage
system configuration. For every storage page access, Sibyl observes
different features from the running workload and the underlying
storage system (e.g., access count of the current request, remain-
ing capacity in the fast storage, etc.). It uses the features as state
information to take a data placement action (i.e., which device
to place the page into). For every action, Sibyl receives a delayed
reward from the system in terms of per-request latency. This re-
ward encapsulates the internal device characteristics of an HSS
(such as read/write latencies, latency of garbage collection, queu-
ing delays, error handling latencies, and write buffer state). Sibyl
uses this reward to estimate the long-term impact of its action (i.e.,
data placement decision) on the overall application performance
and continuously optimizes its data placement policy online to
maximize the long-term benefit (i.e., reward) of its actions.

Benefits. Formulating the data placement module as an RL agent
enables a human designer to specify only what performance objec-
tive the data placement module should target, rather than designing
and implementing a new data placement policy that requires ex-
plicit specification of how to achieve the performance objective.

1In Greek mythology, Sibyl is an oracle who makes accurate prophecies [77].

The use of RL not only enables the data placement module to au-
tonomously learn the “best-fit” data placement strategy for a wide
range of workloads and hybrid storage system configurations but
also significantly reduces the burden of a human designer in finding
a good data placement policy.

Challenges.While RL provides a promising alternative to exist-
ing data placement techniques, we identify two main challenges in
applying RL to data placement in an HSS.
(1) Problem formulation. The RL agent’s effectiveness depends
on how the data placement problem is cast as a reinforcement
learning-based task. Two key issues arise when formulating HSS
data placement as an RL problem: (1) taking into account the latency
asymmetry within and across storage devices, and (2) deciding
which actions to reward and penalize (also known as the credit
assignment problem [79]). First, we need to make the agent aware
of the asymmetry in read and write latencies of each storage device
and the differences in latencies across multiple storage devices. Real-
world storage devices could have dynamic latency variations due
to their complex hardware and software components (e.g., internal
caching, garbage collection, error handling, multi-level cell reading,
etc.) [80–87]. Second, if the fast storage is running out of free space,
there might be evictions in the background from the fast storage
to the slow storage. As a result, when we reward the agent, not
only there is a variable and delayed reward, but it is also hard to
properly assign credit or blame to different decisions.
(2) Implementation overhead. A workload could have hundreds
of thousands of pages of storage data, making it challenging to effi-
ciently handle the large data footprint with a low design overhead
for the learning agent.

To address the first challenge, we use two main techniques. First,
we design a reward structure in terms of request latency, which al-
lows Sibyl to learn the workload and storage device characteristics
when continuously and frequently interacting with a hybrid storage
system. We add a negative penalty to the reward structure in case of
eviction, which helps with handling the credit assignment problem
and encourages the agent to place only performance-critical pages
in the fast storage. Second, we perform thorough hyper-parameter
tuning to find parameter values that work well for a wide variety of
workloads. To address the second challenge, we use two main tech-
niques. First, we divide states into a small number of bins that reduce
the state space, which directly affects the implementation overhead.
Second, instead of adopting a traditional table-based RL approach
(e.g., [88, 89]) to store the agent’s state-action information (collected
by interacting with an HSS), which can easily introduce significant
performance overheads in the presence of a large state/action space,
we use a simple feed-forward neural network [90] with only two
hidden layers of 20 and 30 nodes, respectively.

Key results. We evaluate Sibyl using two different dual-HSS
configurations and two different tri-HSS configurations. We use
fourteen diverse storage traces fromMicrosoft Research Cambridge
(MSRC) [91] collected on real enterprise servers. We evaluate Sibyl
on workloads from FileBench [92] on which it has never been
trained. We compare Sibyl to four state-of-the-art data placement
techniques. We demonstrate four key results. First, Sibyl provides
21.6%/19.9% performance improvement in a performance-oriented/
cost-oriented HSS configuration compared to the best previous

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

data placement technique. Second, Sibyl outperforms the best-
performing supervised learning-based technique on workloads it
has never been trained on by 46.1% and 54.6%, on average, in
performance-oriented and cost-oriented HSS configurations, res-
pectively. Third, Sibyl provides 23.9%-48.2% higher performance in
tri-hybrid storage systems than a state-of-the-art heuristic-based
data placement technique demonstrating that Sibyl is easily exten-
sible and alleviates the designer’s burden in finding sophisticated
data placement mechanisms for new and complex HSS configura-
tions. Fourth, Sibyl’s performance benefits come with a low storage
implementation overhead of only 124.4 KiB.
This work makes the followingmajor contributions:
• We show on real hybrid storage systems (HSSs) that prior state-
of-the-art HSS data placement mechanisms fall short of the oracle
placement due to: lack of (1) adaptivity to workload changes and
storage device characteristics, and (2) extensibility.
• We propose Sibyl, a new self-optimizing mechanism that uses re-
inforcement learning to make data placement decisions in hybrid
storage systems. Sibyl dynamically learns, using both multiple
workload features and system-level feedback information, how
to continuously adapt its policy to improve its long-term perfor-
mance for a workload.
• We conduct an in-depth evaluation of Sibyl on real systems with
various HSS configurations, showing that it outperforms four
state-of-the-art techniques over a wide variety of applications
with a low implementation overhead.
• We provide an in-depth explanation of Sibyl’s actions that show
that Sibyl performs dynamic data placement decisions by learning
changes in the level of asymmetry in the read/write latencies and
the number and types of storage devices.
• We freely open-source Sibyl to aid future research in data place-
ment for storage systems [93].

2 BACKGROUND
2.1 Hybrid Storage Systems (HSSs)
Figure 1 depicts a typical HSS consisting of a fast-yet-small stor-
age device (e.g., [94, 95]) and a large-yet-slow storage device (e.g.,
[96–99]). Traditional hybrid storage systems [51, 100, 101] were
designed with a smaller NAND flash-based SSD and a larger HDD.
Nowadays, hybrid storage systems come with emerging NVM de-
vices (e.g., [102–105]) coupled with slower high-density NAND
flash devices [49, 106–108]. The storage management layer can be
implemented either as system software running on the host system
or as the firmware of a hybrid storage device (e.g., flash translation
layer (FTL) in flash-based SSDs [84, 109]), depending on the config-
uration of the HSS. In this work, we demonstrate and implement
our ideas in the storage management layer of the operating system
(OS), but they can be easily implemented in firmware as well. The
storage management layer in the OS orchestrates host I/O requests
across heterogeneous devices, which are connected via an NVM
Express (NVMe) [110] or SATA [111] interface. The storage man-
agement layer provides the operating system with a unified logical
address space (like the multiple device driver (md) kernel module in
Linux [112]). As illustrated in Figure 1, the unified logical address
space is divided into a number of logical pages (e.g., 4 KiB pages).
The pages in the logical address space are assigned to an application.
The storage management layer translates a read/write performed

on a logical page into a read/write operation on a target storage
device based on the data placement policy. In addition, the storage
management layer manages data migration between the storage
devices in an HSS. When data currently stored in the slow storage
device is moved to the fast storage device, it is called promotion.
Promotion is usually performed when a page in the slow storage
device is accessed frequently. Data is moved from the fast storage
device to the slow storage device during an eviction. Eviction typi-
cally occurs when the data in the fast storage device is infrequently
accessed or when the fast storage device becomes full.

Figure 1: Overview of a hybrid storage system
The performance of a hybrid storage system highly depends

on the ability of the storage management layer (Figure 1) to effec-
tively manage diverse devices and workloads [49, 59]. This diversity
presents a challenge for system architects when they design an
intelligent data placement policy. A desirable policy has to effec-
tively utilize the low latency characteristics of the fast device while
making optimal use of its small capacity and should provide easy
extensibility to a wide range of workloads and HSS configurations.

3 MOTIVATION
To assess the effectiveness of existing HSS data placement tech-
niques under diverse workloads and hybrid storage configura-
tions, we evaluate state-of-the-art heuristic-based (CDE [49] and
HPS [113]) and supervised learning-based (Archivist [59]) tech-
niques.We also implement an RNN-based data placement technique
(RNN-HSS), adapted from hybrid main memory [58]. To evaluate
the effect of underlying storage device technologies, we use three
different storage devices: high-end (H) [94], middle-end (M) [96],
and low-end (L) [98], configured into two different hybrid storage
configurations: a performance-oriented HSS (H&M) and a cost-
oriented HSS (H&L). Table 3 provides details of our system and
devices. We restrict the fast storage capacity to 10% of the working
set size of a workload, which ensures eviction of data from fast
storage to slow storage when fast storage capacity is full.

CDE [49] allocates hot or random write requests in the faster
storage, whereas cold and sequential write requests are evicted
to the slower device. HPS [113] uses the access count of pages
to periodically migrate cold pages to the slower storage device.
Archivist [59] uses a neural network classifier to predict the target
device for data placement. RNN-HSS, adapted from [58], is a su-
pervised learning-based mechanism that exploits recurrent neural
networks (RNN) to predict the hotness of a page and place hot
pages in fast storage. We compare the above policies with three
extreme baselines: (1) Slow-Only, where all data resides in the slow
storage device (i.e., there is no fast storage device), (2) Fast-Only,
where all data resides in the fast storage device, and (3)Oracle [113],
which exploits complete knowledge of future I/O-access patterns to

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

perform data placement and to select victim data blocks for eviction
from the fast device.

We identify two major shortcomings of the state-of-the-art base-
line data placement techniques: lack of (1) adaptivity to workload
changes and the storage device characteristics, and (2) extensibility.
(1a) Lack of adaptivity to workload changes. Figure 2 shows
the average request latency of all policies, normalized to Fast-Only,
under two different hybrid storage configurations. We make the
following three observations. First, all the baseline techniques are
only effective under specific workloads, showing significantly lower
performance than Oracle in most workloads. CDE, HPS, Archivist,
and RNN-HSS achieve comparable performance to Oracle for spe-
cific workloads (e.g., hm_1 for HPS in H&M, usr_0 for CDE in H&L,
hm_1 for Archivist in H&M, and RNN-HSS in proj_2 for CDE in
H&L). Second, the baselines show a large average performance
loss of 41.1% (32.6%), 37.2% (55.5%), 39.7% (66.7%), and 34.4% (47.6%)
compared to Oracle’s performance, under the H&M (H&L) hybrid
storage configuration, respectively. Third, in H&M, the baseline
techniques provide a performance improvement of only 1.4%, 7.4%,
3.5%, and 11.3% compared to Slow-Only.

hm
_1
prn

_1
pro

j_2
prx

y_1 usr
_0

wd
ev_

2
AV

G

(a) H&M HSS configuration

0
1
2
3
4

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

hm
_1
prn

_1
pro

j_2
prx

y_1 usr
_0

wd
ev_

2
AV

G

(b) H&L HSS configuration

0

50

100

Slow-Only CDE HPS Archivist RNN-HSS Oracle

Figure 2: Average request latency normalized to Fast-
Only policy

We conclude that all four baselines consider only a limited num-
ber of workload characteristics to construct a data placement tech-
nique, which leads to a significant performance gap compared to
the Oracle policy. Thus, there is no single policy that works well
for all the workloads.

To further analyze the characteristics of our evaluated workloads,
we plot the average hotness (y-axis) and randomness (x-axis) in
Figure 3. We provide details on these workloads in Table 4. In these
workload traces, each storage request is labeled with a timestamp
that indicates the time when the request was issued from the pro-
cessor core. Therefore, the time interval between two consecutive
I/O requests represents the time the core has spent computing. We
quantify a workload’s hotness (or coldness) using the average ac-
cess count, which is the average of the access counts of all pages in
a workload; the higher (lower) the average access count, the hotter
(colder) the workload. We quantify a workload’s randomness using
the average request size in the workload; the higher (lower) the
average request size, the more sequential (random) the workload.
From Figure 3, we make the following two observations. First, the
average hotness and randomness vary widely between workloads.
Second, we observe that each of our evaluated workloads exhibits
highly dynamic behavior throughout its execution. For example,
in Figure 4, we show the execution timeline of rsrch_0, which
depicts the accessed addresses and request sizes. We conclude that
an efficient policy needs to incorporate continuous adaptation to
highly dynamic changes in workload behavior.

1

4

16

64

256

0 10 20 30 40 50

Av
er

ag
e

ac
ce

ss
 c

ou
nt

Average request size [KiB]

SequentialRandom

Hot

Cold

proj_0

src1_0

proj_2

stg_1web_1

usr_0

prn_1proj_3

wdev_2

rsrch_0
hm_1

prxy_0 prxy_1

mds_0

Figure 3: Ran-
domness and
hotness char-
acteristics of
real-world
MSRC work-
loads [91]

2
4
6
8

10

Lo
gi

ca
l

Ad
dr

es
s

[1
08

]

0 1 2 3 4 5 6 7
Time (sec)

0

10

Re
qu

es
t

Si
ze

Figure 4: Time-
line of accessed
logical addresses
and request sizes
during the execu-
tion of rsrch_0
workload

(1b) Lack of adaptivity to changes in device types and con-
figurations. There are a wide variety and number of storage de-
vices [49, 94–99, 102–108, 114–117] that can be used to configure
an HSS. The underlying storage technology used in an HSS signifi-
cantly influences the effectiveness of a data placement policy. We
demonstrate this with an example observation from Figure 2. In
the H&M configuration (Figure 2(a)), we observe that for certain
workloads (hm_1 and prn_1), both CDE and HPS provide rather
low performance even compared to Slow-Only. Similarly, Archivist
and RNN-HSS provide lower performance for hm_1 and proj_2
in H&M compared to Slow-Only. While in the H&L configuration
(Figure 2(b)), we observe thatCDE,HPS,Archivist, andRNN-HSS re-
sult in lower latency than Slow-Only for the respective workloads.
Thus, we conclude that both heuristic-based and learning-based
data placement policies lead to poor performance due to their in-
ability to holistically take into account the device characteristics.
The high diversity in device characteristics makes it very difficult
for a system architect to design a generic data-placement technique
that is suitable for all HSS configurations.
(2) Lack of extensibility. As modern HSSs already incorporate
more than two types of storage devices [1, 49, 59, 76], system ar-
chitects need to put significant effort into extending prior data
placement techniques to accommodate more than two devices. In
§8.7, we evaluate the effectiveness of a state-of-the-art heuristic-
based policy [76] for different tri-HSS configurations, comprising of
three different storage devices. This policy is based on the CDE [49]
policy that divides pages into hot, cold, and frozen data and allo-
cates these pages to H, M, and L devices, respectively. A system
architect needs to statically define the hotness values and explicitly
handle the eviction and promotion between the three devices dur-
ing design-time. Through our evaluation in §8.7, we conclude that
such a heuristic-based policy (1) lacks extensibility, thereby increas-
ing the system architect’s effort, and (2) leads to lower performance
when compared to an RL-based solution (up to 48.2% lower).

Our empirical study shows that the state-of-the-art heuristic-
and learning-based data placement techniques are rigid and
far from optimal, which strongly motivates us to develop a new
data placement technique to achieve significantly higher perfor-
mance than existing policies. The new technique should provide
(1) adaptivity to better capture the features and dynamic changes in

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

I/O-access patterns and storage device characteristics, and (2) easy
extensibility to a wide range of workloads and HSS configurations.
Our goal is to develop such a technique using reinforcement learn-
ing.

4 REINFORCEMENT LEARNING
4.1 Background
Reinforcement learning (RL) [78] is a class of machine learning (ML)
algorithms that involve an agent learning to achieve an objective by
interacting with its environment, as shown in Figure 5. The agent
starts from an initial representation of its environment in the form
of an initial state2 𝑠0 ∈ 𝑆 , where 𝑆 is the set of all possible states.
Then, at each time step 𝑡 , the agent performs an action 𝑎𝑡 ∈𝐴 in state
𝑠𝑡 (𝐴 represents the set of possible actions) and moves to the next
state 𝑠𝑡+1. The agent receives a numerical reward 𝑟𝑡+1 ∈ 𝑅, which
could be immediate or delayed in time, for action 𝑎𝑡 that changes the
environment state from 𝑠𝑡 to 𝑠𝑡+1. The sequence of states and actions
starting from an initial state to the final state is called an episode.
The agent makes decisions and receives corresponding rewards
while trying to maximize the accumulated reward, as opposed to
maximizing the reward for only each action. In this way, the agent
can optimize for the long-term impact of its decisions.

Figure 5: Main components of general RL
The policy 𝜋 governs an agent’s action in a state. The agent’s

goal is to find the optimal policy that maximizes the cumulative
reward3 collected from the environment over time. The agent finds
an optimal policy 𝜋∗ by calculating the optimal action-value func-
tion (𝑄∗), also known as theQ-value of the state-action pair, where
𝑄 (𝑆,𝐴) represents the expected cumulative reward by taking an
action A in a given state S.

Traditional RL methods (e.g., [88, 89, 118–120]) use a tabular
approach with a lookup table to store the Q-values associated with
each state-action pair. These approaches can lead to high storage
and computation overhead for environments with a large number
of states and actions. To overcome this issue, value function approx-
imation was proposed. [121–124]. Value function approximation re-
places the lookup table with a supervised-learningmodel [121–126],
which provides the capability to generalize over a large number of
state-action pairs with a low storage and computation overhead.

4.2 Why Is RL a Good Fit for Data Placement in
Hybrid Storage Systems?

We choose RL for data placement in HSS due to the following advan-
tages compared to heuristic-based (e.g., [49, 113]) and supervised
learning-based (e.g., [59]) techniques.
(1) Adaptivity. As discussed in §1 and §3, a data placement tech-
nique should have the ability to adapt to changing workload de-
mands and underlying device characteristics. This adaptivity re-
quirement of data placement makes RL a good fit to model data
2State is a representation of an environment using different features.
3The total cumulative reward is also known as the return [78].

placement. The RL agent works autonomously in an HSS using
the provided state features and reward to make data placement
decisions without any human intervention.
(2) Online learning. Unlike an offline learning-based approach, an
RL agent uses an online learning approach. Online learning allows
an RL agent to continuously adapt its decision-making policy using
system-level feedback and specialize to the current workload and
system configuration.
(3) Extensibility. RL provides the ability to easily extend a mecha-
nism with a small effort required to implement the extension. As
shown in §8.7, unlike heuristic-based mechanisms, RL can be easily
extended to different types and number of storage devices. Such
extensibility reduces the system architect’s burden in designing
sophisticated data placement mechanisms.
(4) Design Ease.With RL, the designer of the HSS does not need
to specify a data placement policy. They need to specify what to
optimize (via reward function) but not how to optimize it.
(5) Implementation Ease. RL provides ease of implementation
that requires a small computation overhead. As shown in §8, func-
tion approximation-based RL techniques can generalize over all
the possible state-action pairs by using a simple feed-forward neu-
ral network to provide high performance at low implementation
overhead (compared to sophisticated RNN-based mechanisms).

5 SIBYL: RL FORMULATION
Figure 6 shows our formulation of data placement as an RL problem.
We design Sibyl as an RL agent that learns to perform accurate and
system-aware data placement decisions by interacting with the
hybrid storage system. With every storage request, Sibyl observes
multiple workload and system-level features as a state to make a
data placement decision. After every action, Sibyl receives a reward
in terms of the served request latency that takes into account the
data placement decision and internal storage system state. Sibyl’s
goal is to find an optimal data placement policy that maximizes
overall performance for the running workload and the current
system configuration. To reach its performance goal, Sibyl needs to
minimize the average request latency of the running workload by
maximizing the use of the fast storage device while avoiding the
eviction penalty due to non-performance critical pages.

Figure 6: Formulating data placement as an RL problem
Reward. After every data placement decision at time-step4 𝑡 , Sibyl
gets a reward from the environment at time-step 𝑡 + 1 that acts as a
feedback to Sibyl’s previous action. To achieve Sibyl’s performance
goal, we craft the reward function R as follows:

𝑅 =

1
𝐿𝑡

if no eviction of a page from the
fast storage to the slow storage

𝑚𝑎𝑥 (0, 1
𝐿𝑡
− 𝑅𝑝) in case of eviction

(1)

where 𝐿𝑡 and 𝑅𝑝 represent the last served request latency and
eviction penalty, respectively. If the fast storage is running out of
free space, there might be evictions in the background from the fast
4In HSS, a time-step is defined as a new storage request.

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

storage to the slow storage. Therefore, we add an eviction penalty
(𝑅𝑝) to guide Sibyl to place only performance-critical pages in the
fast storage. We empirically select 𝑅𝑝 to be equal to 0.001×𝐿𝑒 (𝐿𝑒
is the time spent in evicting pages from the fast storage to the slow
storage), which prevents the agent from aggressively placing all
requests into the fast storage device.

𝐿𝑡 (request latency) is the time taken to service the last read or
write I/O request from the OS. Request latency can faithfully cap-
ture the status of the hybrid storage system, as it significantly varies
depending on the request type, device type, and the internal state
and characteristics of the device (e.g., such as read/write latencies,
the latency of garbage collection, queuing delays, and error han-
dling latencies). Intuitively, if 𝐿𝑡 is low (high), i.e., if the agent serves
a storage request from the fast (slow) device, the agent receives a
high (low) reward. However, if there is an eviction, we penalize
the agent so as to encourage the agent to place only performance-
critical pages in the fast storage device.We need the eviction penalty
to be large enough to discourage the agent from evicting and small
enough not to deviate the learned policy too much on a placement
decision that leads to higher latency.
State.At each time-step 𝑡 , the state features for a particular read/write
request are collected in an observation vector. We perform feature
selection [127] to determine the best state features to include in
Sibyl’s observation vector.

We use a limited number of features due to two reasons. First,
a limited feature set allows us to reduce the implementation over-
head of our mechanism (see §10). Second, we empirically observe
that our RL agent is more sensitive to the reward structure than
to the number of features in the observation vector. Specifically,
using the request latency as a reward provides indirect feedback
on the internal timing characteristics and the current state (e.g.,
queueing delays, buffer dependencies, effects of garbage collection,
read/write latencies, write buffer state, and error handling laten-
cies) of the hybrid storage system. Our observation aligns with a
recent study [128] that argues that the reward is the most critical
component in RL to find an optimal decision-making policy.

In our implementation of Sibyl, the observation vector is a 6-
dimensional tuple:

𝑂𝑡 = (𝑠𝑖𝑧𝑒𝑡 , 𝑡𝑦𝑝𝑒𝑡 , 𝑖𝑛𝑡𝑟𝑡 , 𝑐𝑛𝑡𝑡 , 𝑐𝑎𝑝𝑡 , 𝑐𝑢𝑟𝑟𝑡) . (2)
Table 1 lists our six selected features. We quantize the representa-
tion of each state into a small number of bins to reduce the storage
overhead of state representation. These features can be captured in
the block layer of the storage system and stored in a separate meta-
data table (§10). 𝑠𝑖𝑧𝑒𝑡 represents the size of the current request in
terms of the number of pages associated with it. It indicates whether
the incoming request is sequential or random. 𝑡𝑦𝑝𝑒𝑡 (request type)
differentiates between read and write requests, important for data
placement decisions since storage devices have asymmetric read
and write latencies. 𝑖𝑛𝑡𝑟𝑡 (access interval) and 𝑐𝑛𝑡𝑡 (access count)
represent the temporal and spatial reuse characteristics of the cur-
rently requested page, respectively. Access interval is defined as
the number of page accesses between two references to the same
page. Access count is defined as the total number of accesses to
the page. These metrics provide insight into the dynamic behav-
ior of the currently requested page.5 𝑐𝑎𝑝𝑡 is a global counter that
5We did not use the reuse distance as a locality metric due to its high computation
overhead during online profiling [129].

tracks the remaining capacity in the fast storage device, which is an
important feature since our agent’s goal is to maximize the use of
the limited fast storage capacity while avoiding evictions from the
fast storage device. By including this feature, the agent can learn to
avoid the eviction penalty (i.e., learn to restrain itself from placing
in fast storage non-performance critical pages that would lead to
evictions). 𝑐𝑢𝑟𝑟𝑡 is the current placement of the requested page.
Since every data placement decision affects the decision for future
requests, 𝑐𝑢𝑟𝑟𝑡 guides Sibyl to perform past-aware decisions.

Table 1: State features used by Sibyl
Feature Description # of bins Encoding (bits)
𝑠𝑖𝑧𝑒𝑡 Size of the requested page (in pages) 8 8
𝑡𝑦𝑝𝑒𝑡 Type of the current request (read/write) 2 4
𝑖𝑛𝑡𝑟𝑡 Access interval of the requested page 64 8
𝑐𝑛𝑡𝑡 Access count of the requested page 64 8
𝑐𝑎𝑝𝑡 Remaining capacity in the fast storage device 8 8
𝑐𝑢𝑟𝑟𝑡 Current placement of the requested page (fast/slow) 2 4

Action. At each time-step 𝑡 , in a given state, Sibyl selects an action
(𝑎𝑡 in Figure 6) from all possible actions. In a hybrid storage system
with two devices, possible actions are: placing data in (1) the fast
storage device or (2) the slow storage device. This is easily extensible
to 𝑁 storage devices, where 𝑁 ≥ 3.

6 SIBYL: DESIGN
We implement Sibyl in the storage management layer of the host
system’s operating system. Figure 7(a) shows a high-level overview
of Sibyl. Sibyl is composed of two parts, each implemented as a
separate thread, that run in parallel (1) the RL decision thread, where
Sibyl decides the data placement 4 of the current storage request
while collecting information 7 about its decisions 4 and their ef-
fects 6 in an experience buffer 5 , and (2) the RL training thread,
where Sibyl uses the collected experiences6 8 to update its decision-
making policy online 9 . Sibyl continuously learns from its past de-
cisions and their impact. Our two-threaded implementation avoids
that the learning (i.e., training) interrupts or delays data placement
decisions for incoming requests. To enable the parallel execution
of the two threads, we duplicate the neural network that is used
to make data placement decisions. While one network (called the
inference network 2) is deployed (i.e., makes decisions) the second
network (called the training network 9), is trained in the back-
ground. The inference network is used only for inference, while the
training network is used only for training. Therefore, Sibyl does
not perform a separate training step for the inference network and
instead periodically copies the training network weights to the
inference network 10.

For every new storage request to the HSS, Sibyl uses the state
information 1 to make a data placement decision 4 . The infer-
ence network predicts the Q-value for each available action given
the state information. Sibyl policy 3 selects the action with the
maximum Q-value or, with a low probability, a random action for
exploration and performs the data placement.

6.1 Sibyl Data Placement Algorithm
Algorithm 1 describes how Sibyl performs data placement for an
HSS. Initially, the experience buffer is allocated to hold 𝑒𝐸𝐵 entries
(line 1), and the training and the inference network weights are ini-
tialized to random values (lines 2 and 3). When a storage request is
6Experience is a representation of a transition from one time step to another, in terms
of ⟨𝑆𝑡𝑎𝑡𝑒,𝐴𝑐𝑡𝑖𝑜𝑛, 𝑅𝑒𝑤𝑎𝑟𝑑, 𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 ⟩.

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

(a) (b)
Figure 7: (a) Overview of Sibyl (b) Training network design using as input the state features from Table 1. The inference network
is identical except it is used only for inference
received (line 4), Sibyl policy (3 Figure 7(a)) either (1) randomly se-
lects an action with 𝜖 probability (lines 6-7) to perform exploration
in an HSS environment, or (2) selects the action that maximizes
the Q-value, based on information stored in the inference network
(lines 8-9). After performing the selected action (line 10), Sibyl col-
lects its reward, whose value depends on whether an eviction is
needed from fast storage (lines 11-14). The generated experience is
stored in the experience buffer (line 15). Once the experience buffer
has 𝑒𝐸𝐵 entries (line 16), Sibyl trains the training network. Dur-
ing training, the training network samples a batch of experiences
from the experience buffer (line 17) and updates its weights using
stochastic gradient descent (SGD) [130] (line 18). Sibyl does not
perform a separate training step for the inference network. Instead,
the training network weights are copied to the inference network
(line 19), which removes the training of the inference network from
the critical path of decision-making.
Algorithm 1 Sibyl’s reinforcement learning-based data placement
algorithm
1: Intialize: the experience buffer EB to capacity 𝑒𝐸𝐵
2: Intialize: the training network with random weights 𝜃

3: Intialize: the inference network with random weights 𝜃
4: Intialize: the observation vector 𝑂𝑡 =𝑂 (𝑠1) with storage request 𝑠1={𝑟𝑒𝑞𝑡 }, and

host and storage features
5: for all storage requests do
6: if (rand() < 𝜖) then ⊲ with probability 𝜖 , perform exploration
7: random action 𝑎𝑡
8: else ⊲ with probability 1-𝜖 , perform exploitation
9: 𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄𝑡 (𝑎) ⊲ select action with the highest𝑄𝑡 value from inference network
10: execute 𝑎𝑡 ⊲ place the requested page to fast or slow storage
11: if no eviction then
12: 𝑟𝑡 ← 1

𝐿𝑡
⊲ reward, given no eviction of a page from fast to slow storage

13: else
14: 𝑟𝑡 ← max(0, 1

𝐿𝑡
-𝑅𝑝) ⊲ reward with an eviction penalty in case of an eviction

15: store experience (𝑂𝑡 , 𝑎𝑡 , 𝑟𝑡 ,𝑂 (𝑡 + 1)) in EB
16: if (num requests in EB==𝑒𝐸𝐵) then ⊲ train training network when EB is full
17: sample random batches of experiences from EB, which are in format
(𝑂 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ,𝑂 (𝑗 + 1)) ⊲ where𝑂 𝑗 represents an observation at a time instant j from EB

18: Perform stochastic gradient descent ⊲ update the training network weights
19: 𝜃 ← 𝜃 ⊲ copy the training network weights to the inference network

6.2 Detailed Design of Sibyl
6.2.1 RL Decision Thread. In this thread, Sibyl makes data
placement decisions while storing experiences in an experience
buffer. Sibyl extracts the observation vector 1 from the attributes
of the incoming request and the current system state (e.g., access
count, remaining capacity in the fast storage) and uses the infer-
ence network 2 to predict the Q-values for each possible action
with the given state vector. While making data placement decisions,
Sibyl balances the random exploration of the environment (to find
a better policy without getting stuck at a suboptimal one) with the

exploitation of its current policy (to maximize its reward based on
the current inference network weights).
Sibyl policy. For every storage request, Sibyl policy selects the
action that leads to the highest long-term reward 6 . We use a
Categorical Deep Q-Network (also known as C51) [131] to update
𝑄 (𝑠, 𝑎). C51’s objective is to learn the distribution of Q-values,
whereas other variants of Deep Q-Networks [121–126] aim to ap-
proximate a single value for 𝑄 (𝑠, 𝑎). This distribution helps Sibyl
to capture more information from the environment to make better
data placement decisions [132].

For tracking the state, we divide each feature into a small number
of bins to reduce the state space (see §5), which directly affects
the implementation overhead of Sibyl. We select the number of
bins (Table 1) based on empirical sensitivity analysis. Our state
representation uses a more relaxed encoding of 40 bits (than using
only 20 bits for the observation vector) to allow for future extensions
(e.g., features with more bins). Similarly, we use a relaxed 4-bit
encoding for the action to allow extensibility to a different number
of storage devices. For the reward structure, we use a half-precision
floating-point (16-bit) representation.
Experience buffer. Sibyl stores experiences it collects while inter-
acting with the HSS in an experience buffer [133]. The experience
buffer is allocated in the host main memory (DRAM). To minimize
its design overhead, we deduplicate data in the stored experiences.
To improve the training quality, we perform batch training where
each batch consists of randomly sampled experiences. This tech-
nique of randomly sampling experiences from the experience buffer
is called experience replay [133].

Figure 8 shows the effect of different experience buffer sizes on
Sibyl’s performance in the H&M configuration. We observe that
Sibyl’s performance saturates at 1000 entries, which we select as the
experience buffer size. Since the size of our state representation is
40 bits, to store a single experience tuple, we need 40-bit+4-bit+16-
bit+40-bit, i.e., 100 bits. In total, for 1000 experiences, the experience
buffer requires 100 KiB in the host DRAM.

1 10 10
0

10
00

10
00
0

10
00
00

Experience Buffer Size

0
5

10
15
20

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Figure 8: Effect of different experience buffer sizes on the
average request latency (normalized to Fast-Only)

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

Exploration vs. exploitation. An RL agent needs to explore the
environment to improve its policy to maximize its long-term re-
ward beyond local maxima [78]. At the same time, the agent needs
to exploit what it has already experienced so that it can take advan-
tage of its learning so far. To balance exploration and exploitation,
we use the 𝜖-greedy policy [134]: the best-known action based on
the agent’s experience is selected with (1-𝜖) probability, and oth-
erwise, i.e., with 𝜖 probability, another action is chosen randomly.
Exploration allows Sibyl to experience states it may not otherwise
get into [78] and thus avoid missing higher long-term rewards. To
perform exploration, Sibyl randomly chooses to place data to the
fast or the slow storage device, so that it can get more information
about the HSS and the workload. Based on the received reward,
Sibyl updates its training network. Such exploration helps Sibyl to
avoid making suboptimal data placement decisions in the long run.

6.2.2 RL Training Thread. This thread uses a batch of collected
experiences 8 from the experience buffer to train the training
network 9 . The updated weights of the training network are trans-
ferred to the inference network after every 1000 requests 10.
Training and inference networks. The training and inference
network allows the parallel execution of decision and training
threads. We use an identical neural network structure for the train-
ing and inference networks. A deep neural network can be prohibi-
tive due to the long time it requires for training and convergence,
preventing Sibyl to adapt to new state-action pairs in a timely man-
ner. Based on experiments, we find that a simple feed-forward
network [135] with only two hidden layers [136] provides good
performance for Sibyl’s data placement task. Figure 7(b) shows the
structure of our training network.7 The network takes the observa-
tion vector 𝑂𝑡 as its input and produces a probability distribution
of Q-values as its output. Before feeding the data to the network,
we preprocess the data by normalizing and casting the data to low
precision data types, which allows us to reduce memory in the ex-
perience buffer. Next, we apply two fully-connected hidden layers
of 20 and 30 neurons, respectively. We select these neurons based
on our extensive design space exploration with different numbers
of hidden layers and neurons per layer. After the two hidden lay-
ers, we have an output layer of 2 neurons, one for each action.
Sibyl policy 3 selects the action with the maximum Q-value. All
fully-connected layers use the swish activation function [137], a
non-monotonic function that outperforms ReLU [138].

During the training of the training network, the inference net-
work’s weights are fixed. After every 1000 requests, the weights of
the training network are copied to the inference network, which
removes the training of the inference network from the critical
path. We set the number of requests to 1000 based on our empirical
evaluation of the experience buffer size (Figure 8). Each training
step is composed of 8 batches of experiences from an experience
buffer of 1000 experiences with a batch size of 128. We perform
the training on the host CPU rather than on a dedicated hardware
accelerator because (1) the network size is small and the weights
perfectly fit in on-chip caches of the CPU in our evaluated system,
and (2) to avoid continuous weight transfer overhead between the
host CPU and the accelerator over the external interface.
7The inference network is identical in shape to the training network.

Hyper-parameter tuning. We improve Sibyl’s accuracy by tun-
ing its hyper-parameters. Hyper-parameters are sets of RL algo-
rithm variables that can be tuned to optimize the accuracy of
the RL agent [139, 140]. For hyper-parameter tuning, we perform
cross-validation [141] using different hyper-parameter values. Dur-
ing cross-validation, we randomly select one workload for hyper-
parameter tuning and use the other thirteen workloads for valida-
tion. On the selected workload, we use different hyper-parameter
configurations that we choose using the design of experiments
(DoE) [142]. DoE allows us to minimize the number of experiments
needed to find the best hyper-parameter values without sacrificing
the quality of the information gathered by the experiments. Unlike
traditional supervised learning methods, we do not train Sibyl of-
fline using a training dataset before deploying it for data placement.
All training happens online in Sibyl. For every evaluated workload,
Sibyl starts with no prior knowledge and gradually learns to make
data placement decisions online by interacting with the hybrid
storage system. Sibyl needs only one-time offline hyper-parameter
tuning.

Table 2 shows the hyper-parameters considered in Sibyl’s design
as well as their chosen values after the tuning process. The discount
factor (𝛾) determines the balance between the immediate and future
rewards. At𝛾=0 (𝛾=1), Sibyl gives importance only to the immediate
(long-term) reward. The learning rate (𝛼) determines the rate at
which neural network weights are updated. A lower 𝛼 makes small
updates to the neural network weights, which could take more
training iterations to converge to an optimal policy. While a higher
𝛼 results in large updates to the neural network weights, which
could cause the model to converge too quickly to a suboptimal solu-
tion. The exploration rate (𝜖) balances exploration and exploitation
for Sibyl. We also explore different batch sizes (i.e., the number of
samples processed in each training iteration) and experience buffer
sizes to train our training network.

Table 2: Hyper-parameters considered for tuning
Hyper-parameter Design Space Chosen Value
Discount factor (𝛾) 0-1 0.9
Learning rate (𝛼) 1𝑒−5 − 1𝑒0 1𝑒−4
Exploration rate (𝜖) 0-1 0.001
Batch size 64-256 128
Experience buffer size (𝑒𝐸𝐵) 10-10000 1000

7 EVALUATION METHODOLOGY
Evaluation setup. We evaluate Sibyl using real systems with
various HSS configurations. The HSS devices appear as a single
flat block device that exposes one contiguous logical block address
space to the OS, as depicted in Figure 1. We implement a lightweight
custom block driver interface that manages the I/O requests to stor-
age devices. Table 3 provides our system details, including the char-
acteristics of the three storage devices we use. To analyze the sensi-
tivity of our approach to different device characteristics, we evaluate
two different hybrid storage configurations (1) performance-oriented
HSS: high-end device (H) [94] and middle-end device (M) [96], and
(2) cost-oriented HSS: high-end device (H) [94] and low-end device
(L) [98]. We also evaluate two tri-hybrid HSS configurations consist-
ing of (1) H&M&L and (2) H&M&L𝑆𝑆𝐷 devices. We run the Linux
Mint 20.1 operating system [143] with the Ext3 file system [144].
We use the TF-Agents API [145] to develop Sibyl. We evaluate Sibyl
using two different metrics: (1) average request latency, i.e., average

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

of the latencies of all storage read/write requests in a workload, and
(2) request throughput (IOPS), i.e., throughput of all storage requests
in a workload in terms of completed I/O operations per second.

Table 3: Host system and storage devices used in hybrid stor-
age configurations

Host System
AMD Ryzen 7 2700G [146], 8-cores@3.5 GHz,
8×64/32 KiB L1-I/D, 4 MiB L2, 8 MiB L3,
16 GiB RDIMM DDR4 2666 MHz

Storage Devices Characteristics

H: Intel Optane SSD P4800X [94] 375 GB, PCIe 3.0 NVMe, SLC, R/W: 2.4/2 GB/s,
random R/W: 550000/500000 IOPS

M: Intel SSD D3-S4510 [96] 1.92 TB, SATA TLC (3D), R/W: 550/510 MB/s,
random R/W: 895000/21000 IOPS

L: Seagate HDD ST1000DM010 [98] 1 TB, SATA 6Gb/s 7200 RPM
Max. Sustained Transfer Rate: 210 MB/s

L𝑆𝑆𝐷 : ADATA SU630 SSD [99] 960 GB, SATA 6 Gb/s, TLC,
Max R/W: 520/450 MB/s

HSS Configurations Fast Device Slow Device
H&M (Performance-oriented) high-end (H) middle-end (M)
H&L (Cost-oriented) high-end (H) low-end (L)

Baselines. We compare Sibyl against two state-of-the-art heuristic-
based HSS data placement techniques, (1) cold data eviction (CDE)
[49] and (2) history-based page selection (HPS) [113], (3) a state-of-
the-art supervised learning-based technique (Archivist) [59], and (4)
a recurrent neural network (RNN)-based data placement technique
(RNN-HSS), adapted fromKleio [58], a data placement technique for
hybrid memory systems. RNN-HSS provides a state-of-the-art ML-
based data placement baseline. We compare the above policies with
three extreme baselines: (1) Slow-Only, where all data resides in the
slow storage (i.e., there is no fast storage), (2) Fast-Only, where all
data resides in the fast storage, and (3) Oracle [113], which exploits
complete knowledge of future I/O-access patterns to perform data
placement and to select victim data blocks for eviction from the
fast device.
Workloads.We use fourteen different block-I/O traces from the
MSRC benchmark suite [91] that are collected from real enterprise
server workloads. We carefully select the fourteen traces to have
distinct I/O-access patterns, as shown in Table 4, in order to study
a diverse set of workloads with different randomness and hotness
properties (see Figure 3). We quantify a workload’s randomness
using the average request size of the workload; the higher (lower)
the average request size, themore sequential (random) theworkload.
The average access count provides the average of the access counts
of all pages in a workload; the higher (lower) the average access
count, the hotter (colder) the workload. Table 4 also shows the
number of unique requests in a workload. To demonstrate Sibyl’s
ability to generalize and provide performance gains across unseen
traces, i.e., traces that are not used to tune the hyper-parameters
of Sibyl, we evaluate Sibyl using four additional workloads from
FileBench [92].

8 RESULTS
8.1 Performance Analysis
Figure 9 compares the average request latency of Sibyl against the
baseline policies for H&M (Figure 9(a)) and H&L (Figure 9(b)) HSS
configurations. All values are normalized to Fast-Only. We make
five major observations. First, Sibyl consistently outperforms all
the baselines for all the workloads in H&L and all but two work-
loads in H&M. In the H&M HSS configuration (Figure 9(a)), where

Table 4: Characteristics of 14 evaluated workloads
Workload Write Read Avg. request Avg. access No. of unique

% % size count requests
hm_1 4.7% 95.3% 15.2 44.5 6265
mds_0 88.1% 11.9% 9.6 3.5 31933
prn_1 24.7% 75.3% 20.0 2.6 6891
proj_0 87.5% 12.5% 38.0 48.3 1381
proj_2 12.4% 87.6% 42.4 2.9 27967
proj_3 5.2% 94.8% 9.6 3.6 19397
prxy_0 96.9% 3.1% 7.2 95.7 525
prxy_1 34.5% 65.5% 12.8 150.1 6845
rsrch_0 90.7% 9.3% 9.2 34.7 5504
src1_0 43.6% 56.4% 43.2 12.7 13640
stg_1 36.3% 63.7% 40.8 1.1 3787
usr_0 59.6% 40.4% 22.8 19.7 2138
wdev_2 99.9% 0.1% 8.0 17.7 4270
web_1 45.9% 54.1% 29.6 1.2 6095

the latency difference between two devices is relatively smaller
than H&L, Sibyl improves average performance by 28.1%, 23.2%,
36.1%, and 21.6% over CDE, HPS, Archivist, and RNN-HSS, respec-
tively. In the H&L HSS configuration (Figure 9(b)), where there
is a large difference between the latencies of the two storage de-
vices, Sibyl improves performance by 19.9%, 45.9%, 68.8%, and 34.1%
over CDE, HPS, Archivist and RNN-HSS, respectively. We observe
that the larger the latency gap between HSS devices, the higher
the expected benefits of avoiding the eviction penalty by placing
only performance-critical pages in the fast storage. Second, in the
H&M HSS configuration, CDE and HPS are ineffective for certain
workloads (hm_1, prn_1, proj_2, proj_3, and src1_0) evenwhen com-
pared to Slow-Only. In contrast, Sibyl consistently and significantly
outperforms Slow-Only for all workloads because it can learn the
small latency difference between the two storage devices in H&M
and dynamically adapts its data placement decisions, which is diffi-
cult for CDE and HPS due to their inability to holistically take into
account the underlying device characteristics. Third, Sibyl provides
slightly lower performance than other baselines in only two work-
loads: Slow-Only, HPS, Archivist, and RNN-HSS for hm_1 and CDE
and HPS for prxy_0 in the H&M HSS configuration. We observe
that such workloads are write-intensive and have many random re-
quests (in terms of both access pattern and request size). Therefore,
such workloads would benefit from more frequent retraining of
Sibyl’s training network. We experimentally show in §8.3 that using
a lower learning rate during the training of the training network
helps to improve Sibyl’s performance for such workloads. Fourth,
Sibyl achieves, on average, 80% of the performance of the Oracle,
which has complete knowledge of future access patterns, across
H&M and H&L. Fifth, RNN-HSS provides higher performance than
heuristic-based policies (2.1% and 8.9% than CDE and HPS, respec-
tively, in H&M and 9.8% than HPS in H&L), but Sibyl outperforms
it by 27.9%. Unlike Sibyl, the two machine learning-based policies,
Archivist and RNN-HSS, do not consider any system-level feedback,
which leads to their suboptimal performance.

Figure 10 compares the request throughput (IOPS) of Sibyl
against other baseline policies. We make two observations. First,
in the H&M (H&L) HSS configuration (Figure 10), Sibyl improves
throughput by 32.6% (22.8%), 21.9% (49.1%), 54.2% (86.9%), and 22.7%
(41.9%) over CDE, HPS, Archivist, and RNN-HSS, respectively. Sec-
ond, Sibyl provides slightly lower performance than Slow-Only,
CDE, HPS, Archivist, and RNN-HSS for only hm_1 in H&M HSS
configuration. We draw similar observations for throughput results
as we did for latency results (Figure 9) because as Sibyl considers
the request size in state features and request latency in the reward,
it also indirectly captures throughput (size/latency).

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0
1
2
3
4
5

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(a) H&M HSS configuration

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0

50

100

150

200

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(b) H&L HSS configuration
Figure 9: Average request latency under two different hybrid storage configurations (normalized to Fast-Only)

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.0
0.2
0.4
0.6
0.8
1.0
1.2

No
rm

al
ize

d
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(a) H&M HSS configuration
hm

_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.00

0.05

0.10

0.15

0.20

No
rm

al
ize

d
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

0.2
3

0.8
5

0.7
7

0.8
1

0.7
8

0.9
6

Slow-Only CDE HPS Archivist RNN-HSS Sibyl Oracle

(b) H&L HSS configuration
Figure 10: Request throughput (IOPS) under two different hybrid storage configurations (normalized to Fast-Only)

We conclude that Sibyl consistently provides higher performance
than all five baselines and significantly improves both average
request latency and request throughput.

8.2 Performance on Unseen Workloads
To demonstrate Sibyl’s ability to generalize and provide perfor-
mance gains across unseen workloads that are not used to tune
the hyper-parameters of the data placement policy of Sibyl, we
evaluate Sibyl using four additional workloads from FileBench [92].
No data placement policy we evaluate, including Sibyl, is tuned
on these workloads. Figure 11 shows the performance of these
unseen workloads. We observe the following observations. First, in
H&M (H&L) HSS configuration, Sibyl outperforms RNN-HSS and
Archivist by 46.1% (54.6%) and 8.5% (44.1%), respectively. Second,
Sibyl may misplace some pages during the online adaptation period,
but it provides significant performance benefits over existing ML-
based data placement techniques. We conclude that Sibyl provides
high performance benefits on unseen workloads for which it has
not been tuned.

file
se

rve
r

ntrx
_rw

oltp
_rw

va
rm

ail AVG
0
1
2
3
4
5

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy (a) H&M

file
se

rve
r

ntrx
_rw

oltp
_rw

va
rm

ail AVG
0

25
50
75

100
125 (b) H&L

Slow-Only Archivist RNN-HSS Sibyl Oracle

Figure 11: Average request latency on unseen workloads (nor-
malized to Fast-Only) under two HSS configurations

8.3 Performance on Mixed Workloads
We evaluate mixing two or more workloads at the same time while
randomly varying their relative start times. Table 5 describes the
characteristics of these mixed workloads. These workloads are truly
independent of each other, potentially creating more evictions from
the fast storage device than a single workload. Such a scenario
(1) leads to unpredictable execution where requests arrive at dif-
ferent, unpredictable timesteps, (2) mimics distributed workloads,

and (3) further tests the ability of Sibyl to dynamically adapt its
decision-making policy.

Figure 12 shows average request latency for mixed workloads.
We use two different settings for Sibyl: (a) Sibyl𝐷𝑒𝑓 , where we use
our default hyper-parameters (§6.2.2), and (b) Sibyl𝑂𝑝𝑡 , where we
optimize the hyper-parameters for these mixed workloads and use
a lower learning rate (𝛼) of 1𝑒−5. A lower learning rate performs
smaller updates to the training network’s weights in each training
iteration, thus requiring more training to converge to an optimal
solution.

Table 5: Characteristics of mixed workloads
Mix Workloads Description

mix1 prxy_0 [91] and ntrx_rw [92] Both prxy_0 and
ntrx_rw are write-intensive

mix2 rsrch_0 [91] and oltp_rw [92] rsrch_0 is write-intensive and
oltp_rw is read-intensive

mix3 proj_3 [91] and YCSB_C [147] Both proj_3 and
YCSB_C are read-intensive

mix4 src1_0 [91] and fileserver [92]
Both src1_0 and
fileserver have nearly equal
numbers of reads and writes

mix5 prxy_0 [91], oltp_rw [92] and
fileserver [92]

prxy_0 is write-intensive,
oltp_rw is read-intensive, and
fileserver has nearly equal
numbers of reads and writes

mix6 src1_0 [91], YCSB_C [147] and
fileserver [92]

src1_0 and fileserver have
nearly equal numbers
of reads and writes while
YCSB_C is read-intensive

mix1
mix2

mix3
mix4

mix5
mix6

AVG
0
1
2
3
4
5

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

(a) H&M

mix1
mix2

mix3
mix4

mix5
mix6

AVG
0

25
50
75

100
125

(b) H&L

Slow-Only CDE HPS Archivist RNN-HSS SibylDef SibylOpt Oracle

Figure 12: Average request latency on mixed workloads (nor-
malized to Fast-Only) and two HSS configurations

We make two observations. First, Sibyl𝐷𝑒𝑓 consistently outper-
forms CDE, HPS, Archivist, and RNN-HSS by 27.9%, 12.2%, 12.1%,
and 12.9%, respectively, in the H&M HSS configuration and 9.4%,
21.3%, 19.4%, and 17.1%, respectively, in H&L HSS configuration.
Second, with a lower learning rate and optimized hyper-parameters,
Sibyl𝑂𝑝𝑡 provides 5.2% (9.3%) higher average performance forH&M
(H&L) HSS configuration than Sibyl𝐷𝑒𝑓 . Third, for mix_1, HPS

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

provides comparable performance to Sibyl𝐷𝑒𝑓 in H&M, and CDE
provides slightly better performance in H&L. As discussed in §8.1,
prxy_0 is write-intensive and has random requests (with an average
request size of 7.2) within every 1000 requests, which is the expe-
rience buffer size to train the training network. Such a workload
requires more frequent retraining of Sibyl’s training network to
achieve higher performance. We conclude that Sibyl can effectively
adapt its data placement policy online to highly dynamic workloads.

8.4 Performance with Different Features
Figure 13 compares the use of some of the most useful features
for the state of Sibyl in our H&L HSS configuration. All represents
using all the six features in Table 1. Sibyl autonomously decides
which features are important to maximize the performance of the
running workload.

hm
_1

prn
_1

pro
j_2

prx
y_1 usr

_0

wd
ev_

2
AV

G
0

50
100
150

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy rt ft rt+ ft rt+ ft+mt rt+ ft+pt All

Figure 13: Average request latency when using different fea-
tures (see Table 1) for the state space of Sibyl in the H&LHSS
configuration (normalized to Fast-Only)

We make two key observations from Figure 13. First, Sibyl con-
sistently achieves the lowest latency (up to 43.6% lower) by using
all the features mentioned in Table 1 (All in Figure 13). Second, by
using the same features as in baseline heuristic-based policies, Sibyl
is able to perform better data placement decisions. For example,
𝑟𝑡 and 𝑓𝑡 configurations of Sibyl (in Figure 13) use only one fea-
ture, just like CDE and HPS do. These two Sibyl configurations
outperform CDE and HPS policies by 4.9% and 5.5%, respectively
(ref. Figure 9(b)). Using the same features as a heuristic-based policy,
Sibyl autonomously finds a higher-performance dynamic policy
that can maximize the reward function, which heuristic-based poli-
cies cannot possibly do. We conclude that Sibyl uses a richer set
of features that can capture multiple aspects of a storage request
to make better data placement decisions than a heuristic-based
policy. RL reduces the design burden on system architects, as Sibyl
autonomously learns to use the provided features to achieve the
highest cumulative reward. In contrast, traditional heuristic-based
policies use features to make rigid data placement decisions without
any system-level feedback, and thus they underperform compared
to Sibyl.

8.5 Performance with Different
Hyper-Parameters

Figures 14(a), 14(b), and 14(c) show the effect of three critical hyper-
parameters (discount factor, learning rate, and exploration rate) on
Sibyl’s throughput in H&M HSS configuration. Figure 14(a) shows
that Sibyl’s throughput drops sharply at 𝛾 = 0. At 𝛾 = 0, Sibyl gives
importance only to the immediate reward and not at all to the long-
term reward, leading to lower performance. We use 𝛾 = 0.9, where
Sibyl is more forward-looking, giving enough weight to long-term
rewards. Figure 14(b) shows that at a learning rate of 𝛼 = 1𝑒−4,
Sibyl provides the best performance. The learning rate determines
the rate at which training network weights are updated. Both too

slow and too fast updates are detrimental for adaptive learning
and stable exploitation of a learned policy, respectively. Third,
Figure 14(c) shows that the performance of Sibyl drops sharply
if it performs exploration too frequently (i.e., 𝜖 = 1𝑒−1) and thus
does not sufficiently exploit its learned policy. Sibyl achieves the
highest performance improvements for 1𝑒−5 ≤ 𝜖 ≤ 1𝑒−2.

0 0.1 0.5 0.9 0.95 1
Discount Factor (γ)

0.40
0.45
0.50
0.55
0.60
0.65

No
rm

al
ize

d
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

(a)

1. e
−5

1. e
−4

1. e
−3

1. e
−2

1. e
−1

Learning Rate (α)

0.40
0.45
0.50
0.55
0.60
0.65

No
rm

al
ize

d
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

(b)

1. e
−5

1. e
−4

1. e
−3

1. e
−2

1. e
−1

1. e
0

Exploration Rate (ε)

0.40
0.45
0.50
0.55
0.60
0.65

No
rm

al
ize

d
Re

qu
es

t
 T

hr
ou

gh
pu

t (
IO

PS
)

(c)

Figure 14: Sensitivity of Sibyl throughput to: (a) the discount
factor (𝛾), (b) the learning rate (𝛼), (c) the exploration rate (𝜖),
averaged across 14 workloads (normalized to Fast-Only)

8.6 Sensitivity to Fast Storage Capacity
Figure 15 shows the average request latency of Sibyl and baseline
policies as we vary the available capacity in the fast storage. The
x-axis denotes a range of fast storage device sizes available for data
placement and represented in terms of percentages of the entire
fast storage device capacity, where 100% represents the size where
all pages of a workload can fit in the fast storage.

0%
0.5% 1% 2% 4%

10%
20%

40%
80%

90%
100%

Available capacity in
fast storage

1

2

3

4

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

(a) H&M

0%
0.5% 1% 2% 4%

10%
20%

40%
80%

90%
100%

Available capacity in
fast storage

0
20
40
60
80

100
120

(b) H&L

CDE HPS Archivist RNN-HSS Sibyl Oracle

Figure 15: Average request latency for various fast storage
device sizes (normalized to Fast-Only)

We make two observations. First, for all fast storage sizes, Sibyl
performs better than the baseline heuristic- and supervised learning-
based policies for both H&M and H&L HSS configurations. Even
when the fast storage size is as small as 1%, Sibyl outperforms
CDE, HPS, Archivist, RNN-HSS by 47.2% (11.5%), 17.3% (58.9%),
12.3% (110.1%), 21.7% (50.2%), respectively, in H&M (H&L) . Sec-
ond, at a larger (smaller) fast storage device size, the performance
approaches that of the Fast-Only (Slow-Only) policy, except for
Archivist. Archivist classifies pages as hot or cold at the beginning
of an epoch and does not change its placement decision throughout
the execution of that epoch. It does not perform any promotion
or eviction of data. We observe that Archivist often mispredicts

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

the target device for a request and classifies the same number of
requests for the fast and slow storage device under different fast
storage sizes.

As we vary the size of the fast storage device, a dynamically
adaptable data placement policy is required, which considers fea-
tures from both the running workload and the underlying storage
system. We conclude that Sibyl can provide scalability by dynami-
cally and effectively adapting its policy to the available storage size
to achieve high performance.

8.7 Tri-Hybrid Storage Systems
We evaluate two different tri-HSS configurations, H&M&L and
H&M&L𝑆𝑆𝐷 (Table 3), implemented as a single flat block device.
The H&M&L𝑆𝑆𝐷 configuration has a low-end SSD (L𝑆𝑆𝐷), whose
performance is lower than the H and M devices but higher than
the L device. We restrict the available capacity of H andM to 5%
and 10%, respectively, of the working set size of a given workload.
This ensures data eviction from H andM devices once they are full.
We compare the performance of Sibyl on a tri-hybrid system with a
state-of-the-art heuristic-based policy [49, 76] that divides data into
hot, cold, and frozen and places them respectively into H, M, and L
devices.8 Figure 16 shows the performance of the heuristic-based
and Sibyl data placement policies.

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 avg
0

25

50

75

100

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Heuristic-Tri-Hybrid Sibyl-Tri-Hybrid

(a) H&M&L configuration

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 avg
0

5

10

No
rm

al
ize

d
Av

er
ag

e
Re

qu
es

t L
at

en
cy

Heuristic-Tri-Hybrid Sibyl-Tri-Hybrid

(b) H&M&L𝑆𝑆𝐷 configuration
Figure 16: Average request latency for the tri-hybrid HSS
(normalized to Fast-Only)

We observe that Sibyl outperforms the heuristic-based pol-
icy by, on average, 43.5% (48.2%) and 23.9% (25.2%) for H&M&L
(H&M&L𝑆𝑆𝐷). This is because Sibyl is much more dynamic and
adaptive to the storage system configuration due to its RL-based
decision-making than the baseline heuristic-based policy, which
is rigid in its decision-making. To extend Sibyl for three storage
devices, we had to only (1) add a new action in Sibyl’s action space,
and (2) add the remaining capacity in theM device as a state feature.
We conclude that Sibyl provides ease of extensibility to new storage
system configurations, which reduces the system architect’s burden
in designing sophisticated data placement mechanisms.

9 EXPLAINABILITY ANALYSIS
We perform an explainability analysis to understand our results
further and explain Sibyl’s decisions. We extract Sibyl’s actions
8CDE, HPS, Archivist, and RNN-HSS do not consider more than two devices and are
not easily adaptable to a tri-hybrid HSS.

for different workloads under H&M and H&L HSS configurations
and analyze the page placements for each workload. Figure 17
shows Sibyl’s preference for the fast storage device over the slow
storage device, measured as the ratio of the number of fast storage
placements to the sum of the number of placements in both fast
and slow storage devices (i.e., Preference= #fast placements

#fast+#slow placements).

hm
_1
md

s_0 prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1

usr
_0

wd
ev_

2
we

b_1
0.00

0.25

0.50

0.75

1.00

Pr
ef

er
en

ce
 fo

r
Fa

st
 S

to
ra

ge

H&M
H&L

Figure 17: Sibyl’s preference for the fast storage device under
different HSS configurations

We make the following four observations. First, in the H&L
configuration, where the latency difference is large between the two
storage devices, Sibyl prefers to place more data in the fast storage
device. Sibyl learns that despite the eviction penalty, the benefit of
serving more requests from the fast storage device is significant.
On the other hand, in the H&M device configuration, where the
latency difference between two devices is smaller compared toH&L,
Sibyl places only performance-critical pages in the faster storage
device to avoid the eviction penalty.

Second, in the H&M configuration, Sibyl shows less preference
to place pages from mds_0, prn_1, proj_2, proj_3, src1_0, stg_1,
and web_1 in the fast storage device. These workloads are cold and
sequential (Table 4) and thus are less suitable for the fast storage
device. Therefore, for such workloads, Sibyl shows more preference
for the slow storage device. In contrast, for hot and random work-
loads (prxy_0 and prxy_1), Sibyl shows more preference to place
pages in the fast storage device.

Third, for rsrch_0, wdev_2, and web_1, Sibyl places ≤40% of
pages in the fast storage device. Such requests have random access
patterns, while pages with cold and sequential accesses are placed
in the slow storage.

Fourth, in the H&L setting, Sibyl shows more preference to place
requests in the fast storage device, except for proj_2 and src1_0
workloads. We observe that these two workloads are highly random
with a low average access count (Table 4). Therefore, aggressive
placement in the fast storage is not beneficial for long-term perfor-
mance.

We also measure the number of evictions (as a fraction of all
storage requests) that occur while using Sibyl and other baseline
policies, as shown in Figure 18. We make two observations. First,
in the H&M HSS configuration, Sibyl leads to 68.4%, 43.2%, 19.7%,
and 29.3% fewer evictions from the fast storage than CDE, HPS,
Archivist, and RNN-HSS, respectively. Second, CDE places more
data in the fast storage, which leads to a large number of evictions in
both HSS configurations. However, if the latency difference between
the two devices is large (e.g., H&L configuration), CDE provides
higher performance than other baseline policies (see Figure 9(b)).
Therefore, in the H&L HSS configuration, we observe that Sibyl
follows a similar policy, leading to more evictions compared to
other baselines.

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

hm
_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.0

0.2

0.4

Ev
ict

io
n

Fr
ac

tio
n

CDE HPS Archivist RNN-HSS Sibyl

(a) H&M HSS configuration
hm

_1
md

s_0prn
_1
pro

j_0
pro

j_2
pro

j_3
prx

y_0
prx

y_1
rsr

ch_
0
src

1_0 stg
_1
usr

_0

wd
ev_

2
we

b_1 AV
G

0.0
0.2
0.4
0.6
0.8

Ev
ict

io
n

Fr
ac

tio
n

0.9

CDE HPS Archivist RNN-HSS Sibyl

(b) H&L HSS configuration
Figure 18: Comparison of evictions from the fast storage to the slow storage (normalized to the total number of storage requests)

10 OVERHEAD ANALYSIS
10.1 Inference and Training Latencies
The input layer of the training and inference networks consists
of six neurons, equal to the number of features listed in Table 1.
Each feature is normalized to transform the value range of different
features to a common scale. The size of one state entry is 40 bits (32
bits for state features and 8 bits for the counter used for tracking the
remaining capacity in the fast storage device). We make use of two
hidden layers with 20 and 30 neurons each. The final output layer
has neurons equivalent to our action space, i.e., two for dual-HSS
configurations and three for the tri-HSS configurations.
Inference latency. Our inference network has 52 inference neu-
rons (20+30+2) with 780 weights (6×20+20×30+30×2). As a result,
Sibyl requires 780MAC operations per inference (1×6×20+1×20×30
+1×30×2). On our evaluated CPU, we can perform these operations
in ∼10ns, which is several orders of magnitude smaller than the
I/O read latency of even a high-end SSD (∼10us) [94, 95]. Sibyl’s
inference computation can also be performed in the SSD controller.
Training latency. For each training step, Sibyl needs to compute
1,597,440 MAC operations, where each batch requires 128×6×20+
128×20×30+128×30×2 MAC operations. This computation takes
∼2us on our evaluated CPU. This training latency does not affect
the benefits of Sibyl because (1) training occurs asynchronously
with inference, and (2) training latency is ∼5× smaller than the I/O
read latency of even a high-end SSD.
We conclude that Sibyl’s performance benefits come at small latency
overheads that are easily realizable in existing CPUs.

10.2 Area Overhead
Storage cost. We use a half-precision floating-point format for the
weights of the training and the inference networks. With 780 16-bit
weights, each neural network requires 12.2 KiB of memory. Since
we use the same network architecture for the two networks, we
need 24.4 KiB of memory. In total, with an experience buffer of
100 KiB (§6.2), Sibyl requires 124.4 KiB of DRAM overhead, which
is negligible compared to the memory size of modern computing
systems.
Metadata cost. HSSs need to maintain the address mapping infor-
mation for the underlying storage devices [148]. Sibyl requires 40
bits to store state information (i.e., the per-page state features; see
Table 1). This overhead is ∼0.1% of the total storage capacity when
using a 4-KiB data placement granularity (5-byte per 4-KiB data).
We conclude that Sibyl has a very modest cost in terms of storage
capacity overhead in main memory (DRAM).

11 DISCUSSION
Cost of generality. We identify two main limitations of using
RL for data placement. First, currently, RL is largely a black-box
policy. Our explainability analysis (§9) tries to provide intuition into
Sibyl’s internal mechanism. However, providing rigorous explain-
ability to reinforcement learning-based mechanisms is an active
field of research [149–154], a problem that is beyond the scope
of this paper. Perfectly finding worst-case workloads against an
RL policy is, therefore, very difficult, in fact, impossible, given the
state-of-the-art in reinforcement learning. There are many dynamic
decisions that the agent performs, which cannot be easily explained
or modeled in human-understandable terms. Second, Sibyl requires
engineering effort to (1) thoroughly tune the RL hyper-parameters,
and (2) implement and integrate Sibyl components into the host
OS’s storage management layer. This second limitation is not spe-
cific to Sibyl and applies to any ML-based storage management
technique. As quantified in §10, Sibyl’s storage and latency over-
heads are small.
Sibyl’s implications. Sibyl (1) provides performance improve-
ments on a wide variety of workloads and system configurations
(our evaluations in §8 show that Sibyl outperforms all evaluated
state-of-the-art data placement policies under all system configura-
tions), (2) provides extensibility by reducing the designer burden
when extending data placement policies to multiple devices and
different storage configurations, and (3) enables reducing the fast
storage device size by taking better advantage of the fast-yet-small
storage device and large-yet-slow storage device to deliver high
storage capacity at low latency.
Adding more features and optimization objectives. An RL-
based approach simplifies adding new features (such as bandwidth
utilization) in the RL state and optimization objectives (such as
endurance) using the RL reward function. This flexibility allows an
RL-basedmechanism to self-optimize and adapt its decision-making
policy to achieve an objective without the designer explicitly defin-
ing how to achieve it. We demonstrate and evaluate example im-
plementations of Sibyl using a reward scheme that is a function of
request latency and eviction latency. We find that request latency
in the reward structure best encapsulates system conditions since
latency could vary for each storage request based on complex sys-
tem conditions. To optimize for a different device-level objective,
one needs to define a new reward function with appropriate state
features, e.g., to optimize for endurance, one might use the number
of writes to an endurance-critical device in the reward function.
Another interesting research direction would be to perform multi-
objective optimization, e.g., optimizing for both performance and
energy. We leave the study of different objectives and features to
future work.

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

Necessity of the reward. RL training is highly dependent upon the
quality of the reward function and state features. Using an incorrect
reward or improper state features could lead to severe performance
degradation. Creating the right reward is a human-driven effort
that could benefit from design insights. We tried two other reward
structures to achieve our objective to improve system performance:
• Hit rate of the fast storage device: Maximizing the hit rate of
the fast storage device is another potentially plausible objective.
However, if we use the hit rate as a reward, Sibyl (1) tries to
aggressively place data in the fast storage device, which leads
to unnecessary evictions, and (2) cannot capture the asymme-
try in the latencies present in modern storage devices (e.g., due
to read/write latencies, latency of garbage collection, queuing
delays, error handling latencies, and write buffer state).
• High negative reward for eviction:We also tried a negative
reward for eviction and a zero reward in other cases. We observe
that such a reward structure provides suboptimal performance
because Sibyl places more pages in the slow device to avoid
evictions. Thus, with such a reward structure, Sibyl is not able to
effectively utilize the fast storage.

We conclude that our chosen reward structure works well for a
wide variety of workloads §8, as reinforced by our generality studies
using unseen workloads in §8.2.
Managing hybridmainmemory using RL. The key idea of Sibyl
can be adapted for managing hybrid main memory architectures.
However, managing data placement at different levels of the mem-
ory hierarchy has its own set of challenges [1, 155–167] that Sibyl
would need to adapt to, such as the low latency decision-making
and control requirements in main memory. Even with the use of hy-
brid main memories, many systems continue to benefit from using
hybrid storage devices due to much lower cost-per-bit of storage,
which accommodates increasingly larger datasets. Therefore, we
focus on hybrid storage systems and leave it to future work to study
RL to manage hybrid main memories.

12 RELATEDWORK
To our knowledge, this is the first work to propose a reinforcement
learning-based data placement technique for hybrid storage sys-
tems. Sibyl can continuously learn from and adapt to the running
application and the storage configuration and device characteristics.
We briefly discuss closely-related prior works that propose data
management techniques for hybrid memory/storage systems and
RL-based system optimizations.
Heuristic-based data placement. Many prior works [1, 14, 18,
20, 25, 49–57, 62, 65, 68, 70, 74, 76, 100, 155–157, 162, 168–176] pro-
pose heuristic-based techniques to perform data placement. These
techniques rely on statically-chosen design features that usually
favor certain workloads and/or device characteristics, leading to rel-
atively rigid policies. In §3 and §8, we show that Sibyl outperforms
two state-of-the-art works, CDE [49] and HPS [113].
ML-based data placement. Several works [58–60, 177, 178] pro-
pose ML-based techniques for data placement in hybrid memory/s-
torage systems. These works 1) are based on supervised learning
techniques that require frequent and very costly retraining to adapt
to changing workload and device characteristics, and 2) have not
been evaluated on a real system. We evaluate RNN-HSS, which is
inspired by the state-of-the-art data placement technique in hybrid

main memory [58]. It uses sophisticated recurrent neural networks
(RNNs) for data placement and shows promising results compared
to heuristic-based techniques. However, it has two major limita-
tions that make it impractical or difficult to implement: it (1) trains
an RNN for each page, which leads to large computation, storage,
and training time overheads, and (2) requires offline application
profiling. Our evaluation (ref. §8.1) shows that Sibyl outperforms
two state-of-the-art ML-based data placement techniques, RNN-
HSS [58] and Archivist [59], across a wide variety of workloads.
RL-based techniques in storage systems. Recent works (e.g.,
[179–183]) propose the use of RL-based approaches for managing
different aspects of storage systems. These works cater to use cases
and objectives that are very different from Sibyl’s. Specifically,
Liu et al. [179] (1) propose data placement in cloud systems and not
hybrid storage systems, (2) consider devices with unlimited capacity,
sidestepping the capacity limitations, (3) emulate a data center
network rather than use a real system for design and evaluation,
and (4) focus only on data-analytics workloads. Yoo et al. [180]
do not focus on data placement; they instead deal with dynamic
storage resizing based on workload characteristics using a trace-
based simulator. Wang et al. [181] (1) focus on cloud systems to
predict the data storage consumption, and (2) do not consider hybrid
storage systems. Sibyl is the first RL-based mechanism for data
placement in hybrid storage systems.
RL-based system optimizations. Past works [88, 89, 184–195]
propose RL-based methods for various system optimizations, such
as memory scheduling [88, 192], data prefetching [89, 190], cache re-
placement [185], and network-on-chip arbitration [184, 186]. Along
with Sibyl, designed for efficient data placement in hybrid storage
systems, this body of work demonstrates that RL is a promising
approach to designing high-performance, and highly-adaptive self-
optimizing computing systems.

13 CONCLUSION
We introduce Sibyl, the first reinforcement learning-based mecha-
nism for data placement in hybrid storage systems. Our extensive
real-system evaluation demonstrates that Sibyl provides adaptivity
and extensibility by continuously learning from and autonomously
adapting to the workload characteristics, storage configuration and
device characteristics, and system-level feedback to maximize the
overall long-term performance of a hybrid storage system.We inter-
pret Sibyl’s policy through our explainability analysis and conclude
that Sibyl provides an effective and robust approach to data place-
ment in current and future hybrid storage systems. We hope that
Sibyl and our open-sourced implementation of it [93] inspire future
work and ideas in self-optimizing storage and memory systems.

ACKNOWLEDGMENTS
We thank anonymous reviewers of ISCA 2022, HPCA 2022, and MI-
CRO 2022 for their feedback and comments. We thank the SAFARI
Research Group members for valuable feedback and the stimulating
intellectual environment they provide. We acknowledge the gen-
erous gifts of our industrial partners, especially Google, Huawei,
Intel, Microsoft, VMware. This research was partially supported
by the Semiconductor Research Corporation and the ETH Future
Computing Laboratory.

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

REFERENCES
[1] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu, “A Case for Efficient Hard-

ware/Software Cooperative Management of Storage and Memory,” in WEED,
2013.

[2] K. A. Bailey, P. Hornyack, L. Ceze, S. D. Gribble, and H. M. Levy, “Exploring
Storage Class Memory with Key Value Stores,” in SOSP, 2013.

[3] C. W. Smullen, J. Coffman, and S. Gurumurthi, “Accelerating Enterprise Solid-
State Disks With Non-Volatile Merge Caching,” in IGSC, 2010.

[4] N. Lu, I.-S. Choi, S.-H. Ko, and S.-D. Kim, “A PRAM Based Block Updating
Management for Hybrid Solid State Disk,” in ELEX, 2012.

[5] M. Tarihi, H. Asadi, A. Haghdoost, M. Arjomand, and H. Sarbazi-Azad, “AHybrid
Non-Volatile Cache Design for Solid-State Drives Using Comprehensive I/O
Characterization,” in TC, 2015.

[6] W. Xiao, H. Dong, L. Ma, Z. Liu, and Q. Zhang, “HS-BAS: A Hybrid Storage
System Based on Band Awareness of Shingled Write Disk,” in ICCD, 2016.

[7] C. Wang, D. Wang, Y. Chai, C. Wang, and D. Sun, “Larger, Cheaper, but Faster:
SSD-SMR Hybrid Storage Boosted by a New SMR-Oriented Cache Framework,”
in MSST, 2017.

[8] Z.-W. Lu and G. Zhou, “Design and Implementation of Hybrid Shingled Record-
ing RAID System,” in PiCom, 2016.

[9] D. Luo, J. Wan, Y. Zhu, N. Zhao, F. Li, and C. Xie, “Design and Implementation
of a Hybrid Shingled Write Disk System ,” in TPDS, 2015.

[10] M. Srinivasan, P. Saab, and V. Tkachenko, “Flashcache,” in Facebook, 2010.
[11] D. Reinsel and J. Rydning, “Breaking the 15K-rpm HDD Performance Barrier

with Solid State Hybrid Drives,” in IDC, 2013.
[12] S. Lee, Y. Won, and S. Hong, “Mining-Based File Caching in a Hybrid Storage

System,” in JISE, 2014.
[13] W. Felter, A. Hylick, and J. Carter, “Reliability-Aware Energy Management for

Hybrid Storage Systems,” in MSST, 2011.
[14] K. Bu, M. Wang, H. Nie, W. Huang, and B. Li, “The Optimization of the Hi-

erarchical Storage System Based on the Hybrid SSD Technology,” in ISDEA,
2012.

[15] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A. Lang, “SSD
Bufferpool Extensions for Database Systems,” in VLDB, 2010.

[16] T. Bisson and S. A. Brandt, “Reducing Hybrid Disk Write Latency with Flash-
Backed I/O Requests,” in MASCOTS, 2007.

[17] M. Saxena, M. M. Swift, and Y. Zhang, “FlashTier: A Lightweight, Consistent
and Durable Storage Cache,” in EuroSys, 2012.

[18] K. Krish, B. Wadhwa, M. S. Iqbal, M. M. Rafique, and A. R. Butt, “On Efficient
Hierarchical Storage for Big Data Processing,” in CCGrid, 2016.

[19] D. Zhao, K. Qiao, and I. Raicu, “Towards Cost-Effective and High-Performance
Caching Middleware for Distributed Systems,” in IJBDI, 2016.

[20] L. Lin, Y. Zhu, J. Yue, Z. Cai, and B. Segee, “Hot Random Off-Loading: A Hybrid
Storage System with Dynamic Data Migration,” in MASCOTS, 2011.

[21] X. Chen, W. Chen, Z. Lu, P. Long, S. Yang, and Z. Wang, “A Duplication-Aware
SSD-Based Cache Architecture for Primary Storage in Virtualization Environ-
ment,” in ISJ, 2015.

[22] J. Niu, J. Xu, and L. Xie, “Hybrid Storage Systems: A Survey of Architectures
and Algorithms,” in IEEE Access, 2018.

[23] Y. Oh, E. Lee, C. Hyun, J. Choi, D. Lee, and S. H. Noh, “Enabling Cost-Effective
Flash Based Caching with an Array of Commodity SSDs,” in Middleware, 2015.

[24] Y. Liu, X. Ge, X. Huang, and D. H. Du, “MOLAR: A Cost-Efficient, High-
Performance SSD-Based Hybrid Storage Cache,” in CLUSTER, 2013.

[25] J. Tai, B. Sheng, Y. Yao, and N. Mi, “SLA-Aware Data Migration in a Shared
Hybrid Storage Cluster,” in CC, 2015.

[26] S. Huang, Q. Wei, D. Feng, J. Chen, and C. Chen, “Improving Flash-Based Disk
Cache with Lazy Adaptive Replacement,” in TOS, 2016.

[27] T. Kgil and T. Mudge, “FlashCache: A NAND Flash Memory File Cache for Low
Power Web Servers,” in CASES, 2006.

[28] T. Kgil, D. Roberts, and T. Mudge, “Improving NAND Flash Based Disk Caches,”
in ISCA, 2008.

[29] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching Less For Better Performance:
Balancing Cache Size and Update Cost of FlashMemory Cache in Hybrid Storage
Systems,” in FAST, 2012.

[30] J. Yang, N. Plasson, G. Gillis, N. Talagala, S. Sundararaman, and R. Wood, “HEC:
Improving Endurance of High Performance Flash-Based Cache Devices,” in
SYSTOR, 2013.

[31] J. Ou, J. Shu, Y. Lu, L. Yi, and W. Wang, “EDM: An Endurance-Aware Data
Migration Scheme for Load Balancing in SSD Storage Clusters,” in IPDPS, 2014.

[32] R. Appuswamy, D. C. van Moolenbroek, and A. S. Tanenbaum, “Cache, Cache
Everywhere, Flushing All Hits Down the Sink: On Exclusivity in Multilevel,
Hybrid Caches,” in MSST, 2013.

[33] Y. Cheng, W. Chen, Z. Wang, X. Yu, and Y. Xiang, “AMC: An Adaptive Multi-
Level Cache Algorithm in Hybrid Storage Systems,” in CCPE, 2015.

[34] Y. Chai, Z. Du, X. Qin, and D. A. Bader, “WEC: Improving Durability of SSD
Cache Drives by Caching Write-Efficient Data,” in TC, 2015.

[35] N. Dai, Y. Chai, Y. Liang, and C. Wang, “ETD-Cache: An Expiration-Time Driven
Cache Scheme to Make SSD-Based Read Cache Endurable and Cost-Efficient,”

in CF, 2015.
[36] F. Ye, J. Chen, X. Fang, J. Li, and D. Feng, “A Regional Popularity-Aware Cache

Replacement Algorithm to Improve the Performance and Lifetime of SSD-Based
Disk Cache,” in NAS, 2015.

[37] H.-P. Chang, S.-Y. Liao, D.-W. Chang, and G.-W. Chen, “Profit Data Caching
and Hybrid Disk-Aware Completely Fair Queuing Scheduling Algorithms For
Hybrid Disks,” in SPE, 2015.

[38] M. Saxena and M. M. Swift, “Design and Prototype of a Solid-State Cache,” in
TOS, 2014.

[39] Y. Li, L. Guo, A. Supratak, and Y. Guo, “Enabling Performance as a Service For a
Cloud Storage System,” in CLOUD, 2014.

[40] Z. Zong, R. Fares, B. Romoser, and J. Wood, “FastStor: Data-Mining-Based
Multilayer Prefetching for Hybrid Storage Systems,” in CC, 2014.

[41] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F. Naughton, and A. Halverson,
“Turbocharging DBMS Buffer Pool Using SSDs,” in SIGMOD, 2011.

[42] D. Lee, C. Min, and Y. I. Eom, “Effective SSD Caching For High-Performance
Home Cloud Server,” in ICCE, 2015.

[43] S. H. Baek and K.-W. Park, “A Fully Persistent and Consistent Read/Write Cache
Using Flash-Based General SSDs for Desktop Workloads,” in ICEIS, 2016.

[44] Y. Liu, J. Huang, C. Xie, and Q. Cao, “RAF: A Random Access First Cache
Management to Improve SSD-Based Disk Cache,” in NAS, 2010.

[45] Y. Liang, Y. Chai, N. Bao, H. Chen, and Y. Liu, “Elastic Queue: A Universal SSD
Lifetime Extension Plug-in for Cache Replacement Algorithms,” in SYSTOR,
2016.

[46] G. Yadgar, M. Factor, K. Li, and A. Schuster, “Management of Multilevel, Multi-
client Cache Hierarchies with Application Hints,” in TOCS, 2011.

[47] Z. Zhang, Y. Kim, X. Ma, G. Shipman, and Y. Zhou, “Multi-level Hybrid Cache:
Impact and Feasibility,” in ORNL Tech. Rep, 2012.

[48] Y. Klonatos, T. Makatos, M. Marazakis, M. D. Flouris, and A. Bilas, “Azor: Using
Two-Level Block Selection to Improve SSD-Based I/O Caches,” in NAS, 2011.

[49] C. Matsui, C. Sun, and K. Takeuchi, “Design of Hybrid SSDs With Storage Class
Memory and NAND Flash Memory,” in Proc. IEEE, 2017.

[50] C. Sun, K. Miyaji, K. Johguchi, and K. Takeuchi, “A High Performance and
Energy-Efficient Cold Data Eviction Algorithm for 3D-TSVHybrid ReRAM/MLC
NAND SSD,” in CAS, 2013.

[51] F. Chen, D. A. Koufaty, and X. Zhang, “Hystor: Making the Best Use of Solid
State Drives in High Performance Storage Systems,” in SC, 2011.

[52] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Hybrid2: Combining
Caching and Migration in Hybrid Memory Systems,” in HPCA, 2020.

[53] Y. Lv, X. Chen, G. Sun, and B. Cui, “A Probabilistic Data Replacement Strategy
for Flash-Based Hybrid Storage System,” in APWeb, 2013.

[54] Z. Li, “GreenDM: A Versatile Tiering Hybrid Drive for the Trade-Off Evalua-
tion of Performance, Energy, and Endurance,” Ph.D. dissertation, Stony Brook
University, NY, 2014.

[55] J. Guerra, H. Pucha, J. S. Glider, W. Belluomini, and R. Rangaswami, “Cost
Effective Storage Using Extent Based Dynamic Tiering,” in FAST, 2011.

[56] A. Elnably, H. Wang, A. Gulati, and P. J. Varman, “Efficient QoS for Multi-Tiered
Storage Systems,” in HotStorage, 2012.

[57] H. Wang and P. Varman, “Balancing Fairness and Efficiency in Tiered Storage
Systems with Bottleneck-Aware Allocation,” in FAST, 2014.

[58] T. D. Doudali, S. Blagodurov, A. Vishnu, S. Gurumurthi, and A. Gavrilovska,
“Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence,” in HPDC,
2019.

[59] J. Ren, X. Chen, Y. Tan, D. Liu, M. Duan, L. Liang, and L. Qiao, “Archivist: A
Machine Learning Assisted Data Placement Mechanism for Hybrid Storage
Systems,” in ICCD, 2019.

[60] P. Cheng, Y. Lu, Y. Du, Z. Chen, and Y. Liu, “Optimizing Data Placement on
Hierarchical Storage Architecture via Machine Learning,” in NPC, 2019.

[61] A. Raghavan, A. Chandra, and J. B. Weissman, “Tiera: Towards Flexible Multi-
Tiered Cloud Storage Instances,” in Middleware, 2014.

[62] R. Salkhordeh, H. Asadi, and S. Ebrahimi, “Operating System Level Data Tiering
Using Online Workload Characterization,” in JSC, 2015.

[63] J. Hui, X. Ge, X. Huang, Y. Liu, and Q. Ran, “E-HASH: An Energy-Efficient
Hybrid Storage System Composed of One SSD and Multiple HDDs,” in ICSI,
2012.

[64] J. Xue, F. Yan, A. Riska, and E. Smirni, “Storage Workload Isolation via Tier
Warming,” in ICAC, 2014.

[65] G. Zhang, L. Chiu, C. Dickey, L. Liu, P. Muench, and S. Seshadri, “Automated
Lookahead Data Migration in SSD-enabled Multi-tiered Storage Systems,” in
MSST, 2010.

[66] X. Zhao, Z. Li, and L. Zeng, “FDTM: Block Level Data Migration Policy in Tiered
Storage System,” in NPC, 2010.

[67] H. Shi, R. V. Arumugam, C. H. Foh, and K. K. Khaing, “Optimal Disk Storage
Allocation for Multitier Storage System,” in TMAG, 2013.

[68] X. Wu and A. N. Reddy, “Data Organization in a Hybrid Storage System,” in
ICNC, 2012.

[69] S. Ma, H. Chen, Y. Shen, H. Lu, B. Wei, and P. He, “Providing Hybrid Block
Storage for Virtual Machines using Object-based Storage,” in ICPADS, 2014.

ISCA ’22, June 18–22, 2022, New York, NY, USA G. Singh, et al.

[70] I. Iliadis, J. Jelitto, Y. Kim, S. Sarafijanovic, and V. Venkatesan, “ExaPlan:
Queueing-Based Data Placement and Provisioning for Large Tiered Storage
Systems,” in MASCOTS, 2015.

[71] X. Wu and A. N. Reddy, “Managing Storage Space in a Flash and Disk Hybrid
Storage System,” in MASCOTS, 2009.

[72] X. Wu and A. N. Reddy, “Exploiting Concurrency to Improve Latency and
throughput in a Hybrid Storage System,” in MASCOTS, 2010.

[73] D. Park and D. H. Du, “Hot Data Identification for Flash-based Storage Systems
Using Multiple Bloom Filters,” in MSST, 2011.

[74] Y. Lv, B. Cui, X. Chen, and J. Li, “Hotness-Aware Buffer Management For Flash-
Based Hybrid Storage Systems,” in CIKM, 2013.

[75] D. Montgomery, “Extent Migration For Tiered Storage Architecture,” in USPTO,
2014.

[76] C. Matsui, T. Yamada, Y. Sugiyama, Y. Yamaga, and K. Takeuchi, “Tri-Hybrid
SSD with Storage Class Memory (SCM) and MLC/TLC NAND Flash Memories,”
Proc. IEEE, 2017.

[77] Wikipedia, “Sibyl, https://en.wikipedia.org/wiki/Sibyl.”
[78] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2018.
[79] M. Minsky, “Steps Toward Artificial Intelligence,” in Proc. IRE, 1961.
[80] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC

NAND Flash Memory: Characterization, Optimization, and Recovery,” in HPCA,
2015.

[81] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel,
and J. K. Wolf, “Characterizing Flash Memory: Anomalies, Observations, and
Applications,” in MICRO, 2009.

[82] M. Jung, E. H.Wilson, D. Donofrio, J. Shalf, andM. T. Kandemir, “NANDFlashSim:
Intrinsic Latency Variation Aware NAND Flash Memory System Modeling and
Simulation at Microarchitecture Level,” in MSST, 2012.

[83] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai,
“Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” in
SIGMETRICS, 2014.

[84] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Error Characterization,
Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives,” in Proc.
IEEE, 2017.

[85] J. Cui, Y. Zhang, W. Wu, J. Yang, Y. Wang, and J. Huang, “DLV: Exploiting De-
vice Level Latency Variations for Performance Improvement on Flash Memory
Storage Systems,” in TCAD, 2017.

[86] Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, and O. Mutlu, “Reliability Issues in
Flash-Memory-Based Solid-State Drives: Experimental Analysis, Mitigation,
Recovery,” in Inside Solid State Drives (SSDs), 2018.

[87] J. Park, M. Kim, M. Chun, L. Orosa, J. Kim, and O. Mutlu, “Reducing Solid-State
Drive Read Latency by Optimizing Read-Retry,” in ASPLOS, 2021.

[88] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, “Self-Optimizing Memory
Controllers: A Reinforcement Learning Approach,” in ISCA, 2008.

[89] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and O. Mutlu,
“Pythia: A Customizable Hardware Prefetching Framework Using Online Rein-
forcement Learning,” in MICRO, 2021.

[90] A. Zell, Simulation neuronaler netze. Addison-Wesley Bonn, 1994.
[91] “MSR Cambridge Traces., http://iotta.snia.org/traces/388.”
[92] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A Flexible Framework for File

System Benchmarking,” 2016.
[93] CMU-SAFARI, “Sibyl, https://github.com/CMU-SAFARI/Sibyl.”
[94] Intel, “Intel Optane SSD DC P4801X Series, https://ark.intel.com/content/www/

us/en/ark/products/149365/intel-optane-ssd-dc-p4801x-series-100gb-2-5in-
pcie-x4-3d-xpoint.html.”

[95] Samsung, “Ultra-Low Latency with Samsung Z-NAND SSD,
https://www.samsung.com/semiconductor/global.semi.static/Ultra-
Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf.”

[96] Intel, “Intel SSD D3-S4510 Series, https://www.intel.com/content/www/us/en/
products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-
s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html.”

[97] Intel, “Intel SSD 660p Series, https://www.intel.com/content/www/us/en/
products/docs/memory-storage/solid-state-drives/consumer-ssds/660p-
series-brief.html.”

[98] Seagate, “Seagate Barracuda Datasheet, https://www.seagate.com/www-
content/datasheets/pdfs/3-5-barracuda-3tbDS1900-10-1710US-en_US.pdf.”

[99] ADATA, “ADATA Ultimate Series: SU630, https://shop.adata.com/adata-
ultimate-series-su630-960gb-sata-iii-internal-2-5-solid-state-drive/.”

[100] Z. Feng, Z. Feng, X. Wang, G. Rao, Y. Wei, and Z. Li, “HDStore: An SSD/HDD
Hybrid Distributed Storage Scheme for Large-Scale Data,” in WAIM, 2014.

[101] R. Micheloni, L. Crippa, and M. Picca, “Hybrid Storage Systems,” in Inside Solid
State Drives (SSDs), 2018.

[102] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu, “Evaluating Phase ChangeMemory
for Enterprise Storage Systems: A Study of Caching and Tiering Approaches,”
in FAST, 2014.

[103] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama,
M. Iwayama, K. Sugiura, S. Ikegawa et al., “A 64Mb MRAM with Clamped-
Reference and Adequate-Reference Schemes,” in ISSCC, 2010.

[104] A. Kawahara, R. Azuma, Y. Ikeda, K. Kawai, Y. Katoh, Y. Hayakawa, K. Tsuji,
S. Yoneda, A. Himeno, K. Shimakawa et al., “An 8Mb Multi-Layered Cross-Point
ReRAM Macro with 443MB/s Write Throughput,” in ISSCC, 2012.

[105] Y. Choi, I. Song, M.-H. Park, H. Chung, S. Chang, B. Cho, J. Kim, Y. Oh, D. Kwon,
J. Sunwoo et al., “A 20nm 1.8V 8Gb PRAM with 40MB/s Program Bandwidth,”
in ISSCC, 2012.

[106] Y. Oh, E. Lee, J. Choi, D. Lee, and S. H. Noh, “Hybrid Solid State Drives for
Improved Performance and Enhanced Lifetime,” in MSST, 2013.

[107] H. G. Lee, “High-Performance NAND and PRAM Hybrid Storage Design for
Consumer Electronics,” in TCE, 2010.

[108] S. Okamoto, C. Sun, S. Hachiya, T. Yamada, Y. Saito, T. O. Iwasaki, and
K. Takeuchi, “Application Driven SCM & NAND Flash Hybrid SSD Design
for Data-Centric Computing System,” in IMW, 2015.

[109] E. Gal and S. Toledo, “Algorithms and Data Structures for Flash Memories,” in
CSUR, 2005.

[110] N. Express, “Everything You Need to Know About the NVMe 2.0 Specifications
and New Technical Proposals,” https://nvmexpress.org/.

[111] S. A. W. Group, “Serial ATA: High Speed Serialized AT Attachment,”
https://web.archive.org/web/20161009182351/http://www.ece.umd.edu/
courses/enee759h.S2003/references/serialata10a.pdf.

[112] Linux Source Code (v5.10.16), https://elixir.bootlin.com/linux/latest/source.
[113] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H.

Loh, “Heterogeneous Memory Architectures: A HW/SW Approach for Mixing
Die-stacked and Off-package Memories,” in HPCA, 2015.

[114] W. Cheong, C. Yoon, S. Woo, K. Han, D. Kim, C. Lee, Y. Choi, S. Kim, D. Kang,
G. Yu, J. Kim, J. Park, K. Song, K. Park, S. Cho, H. Oh, D. D. G. Lee, J. Choi, and
J. Jeong, “A Flash Memory Controller for 15𝜇s Ultra-Low-Latency SSD Using
High-Speed 3D NAND Flash with 3𝜇s Read Time,” in ISSCC, 2018.

[115] Micron, “3D XPoint Technology, https://www.micron.com/products/advanced-
solutions/3d-xpoint-technology.”

[116] F. T. Hady, A. Foong, B. Veal, and D. Williams, “Platform Storage Performance
With 3D XPoint Technology,” in Proc. IEEE, 2017.

[117] Intel, “Intel SSD DC P4610 Series, https://ark.intel.com/content/www/us/en/
ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-
tlc.html.”

[118] C. J. C. H. Watkins, “Learning From Delayed Rewards,” Ph.D. dissertation, 1989.
[119] C. J. Watkins and P. Dayan, “Q-learning,” in ML, 1992.
[120] G. A. Rummery andM. Niranjan,On-line Q-Learning Using Connectionist Systems.

Citeseer, 1994.
[121] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the Game of Go With Deep Neural Networks and Tree Search,” in Nature, 2016.

[122] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the Game of Go Without
Human Knowledge,” in Nature, 2017.

[123] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with Deep Reinforcement Learning,” in NIPS, 2013.

[124] S. Liang and R. Srikant, “Why Deep Neural Networks for Function Approxima-
tion?” in arXiv, 2016.

[125] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy Gradient Methods
for Reinforcement Learning With Function Approximation,” in NIPS, 1999.

[126] L. Baird, “Residual Algorithms: Reinforcement Learning With Function Approx-
imation,” in ML, 1995.

[127] K. Kira and L. A. Rendell, “A Practical Approach to Feature Selection,” in ML,
1992.

[128] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is Enough,” AI, 2021.
[129] Y. Zhong, X. Shen, and C. Ding, “Program Locality Analysis Using Reuse Dis-

tance,” in TOPLAS, 2009.
[130] L. Bottou, “Stochastic Learning,” in Advanced Lectures on Machine Learning,

2003.
[131] M. G. Bellemare, W. Dabney, and R. Munos, “A Distributional Perspective on

Reinforcement Learning,” in arXiv, 2017.
[132] D. J. Harrold, J. Cao, and Z. Fan, “Data-Driven Battery Operation For Energy

Arbitrage Using Rainbow Deep Reinforcement Learning,” in Energy, 2021.
[133] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hass-
abis, “Human-Level Control Through Deep Reinforcement Learning,” in Nature,
2015.

[134] M. Tokic and G. Palm, “Value-Difference Based Exploration: Adaptive Control
between Epsilon-Greedy and Softmax,” in AAAI, 2011.

[135] G. Bebis and M. Georgiopoulos, “Feed-Forward Neural Networks,” in IEEE
Potentials, 1994.

[136] J. De Villiers and E. Barnard, “Backpropagation Neural Nets with One and Two
Hidden Layers,” in IEEE Trans. Neural Netw. Learn. Sys, 1993.

[137] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for Activation Functions,”
in arXiv, 2017.

https://en.wikipedia.org/wiki/Sibyl
http://iotta.snia.org/traces/388
https://github.com/CMU-SAFARI/Sibyl
https://ark.intel.com/content/www/us/en/ark/products/149365/intel-optane-ssd-dc-p4801x-series-100gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/149365/intel-optane-ssd-dc-p4801x-series-100gb-2-5in-pcie-x4-3d-xpoint.html
https://ark.intel.com/content/www/us/en/ark/products/149365/intel-optane-ssd-dc-p4801x-series-100gb-2-5in-pcie-x4-3d-xpoint.html
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Ultra-Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/data-center-ssds/d3-series/d3-s4510-series/d3-s4510-1-92tb-2-5inch-3d2.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/660p-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/660p-series-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/solid-state-drives/consumer-ssds/660p-series-brief.html
https://www.seagate.com/www-content/datasheets/pdfs/3-5-barracuda-3tbDS1900-10-1710US-en_US.pdf
https://www.seagate.com/www-content/datasheets/pdfs/3-5-barracuda-3tbDS1900-10-1710US-en_US.pdf
https://shop.adata.com/adata-ultimate-series-su630-960gb-sata-iii-internal-2-5-solid-state-drive/
https://shop.adata.com/adata-ultimate-series-su630-960gb-sata-iii-internal-2-5-solid-state-drive/
https://nvmexpress.org/
https://web.archive.org/web/20161009182351/http://www.ece.umd.edu/courses/enee759h.S2003/references/serialata10a.pdf
https://web.archive.org/web/20161009182351/http://www.ece.umd.edu/courses/enee759h.S2003/references/serialata10a.pdf
https://elixir.bootlin.com/linux/latest/source
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning ISCA ’22, June 18–22, 2022, New York, NY, USA

[138] A. F. Agarap, “Deep Learning using Rectified Linear Units (ReLU),” in arXiv,
2018.

[139] T. L. Paine, C. Paduraru, A. Michi, C. Gulcehre, K. Zolna, A. Novikov, Z. Wang,
and N. de Freitas, “Hyperparameter Selection For Offline Reinforcement Learn-
ing,” in arXiv, 2020.

[140] G. Singh, J. Gómez-Luna, G. Mariani, G. F. Oliveira, S. Corda, S. Stuijk, O. Mutlu,
and H. Corporaal, “NAPEL: Near-Memory Computing Application Performance
Prediction via Ensemble Learning,” in DAC, 2019.

[141] S. Arlot and A. Celisse, “A Survey of Cross-Validation Procedures for Model
Selection,” SS, 2010.

[142] D. C. Montgomery, “Design and Analysis of Experiments,” 2017.
[143] Linux Mint 20.1 “Ulyssa”, https://linuxmint.com/edition.php?id=284.
[144] S. C. Tweedie et al., “Journaling the Linux ext2fs Filesystem,” in The Fourth

Annual Linux Expo, 1998.
[145] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fishman,

K.Wang, E. Gonina, N.Wu, E. Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók, J. Berent,
C. Harris, V. Vanhoucke, and E. Brevdo, “TF-Agents: A Library for Reinforcement
Learning in TensorFlow, https://github.com/tensorflow/agents,” 2018.

[146] AMD, “AMDRyzen™ 7 PRO 2700 Processor, https://www.amd.com/en/products/
cpu/amd-ryzen-7-2700.”

[147] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmark-
ing Cloud Serving Systems With YCSB,” in SOCC, 2010.

[148] S. Tsukada, H. Takayashiki, M. Sato, K. Komatsu, and H. Kobayashi, “A Metadata
Prefetching Mechanism for Hybrid Memory Architectures,” in COOL CHIPS,
2021.

[149] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Programmatically
Interpretable Reinforcement Learning,” in ICML, 2018.

[150] G. Liu, O. Schulte, W. Zhu, and Q. Li, “Toward Interpretable Deep Reinforcement
Learning With Linear Model u-Trees,” in ECML PKDD, 2018.

[151] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez, “Explainable
Reinforcement Learning via Reward Decomposition,” in IJCAI-ECAI, 2019.

[152] P. Madumal, T. Miller, L. Sonenberg, and F. Vetere, “Explainable Reinforcement
Learning Through a Causal Lens,” in AAAI, 2020.

[153] P. Sequeira and M. Gervasio, “Interestingness Elements For Explainable Rein-
forcement Learning: Understanding Agents’ Capabilities and Limitations,” in
AI, 2020.

[154] E. Puiutta and E. Veith, “Explainable Reinforcement Learning: A Survey,” in
CD-MAKE, 2020.

[155] Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, and O. Mutlu, “Utility-Based Hybrid
Memory Management,” in CLUSTER, 2017.

[156] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler, “Page
Placement Strategies for GPUs Within Heterogeneous Memory Systems,” in
ASPLOS, 2015.

[157] N. Agarwal and T. F. Wenisch, “Thermostat: Application-Transparent Page
Management for Two-Tiered Main Memory,” in ASPLOS, 2017.

[158] B. Goglin, “Exposing the Locality of Heterogeneous Memory Architectures to
HPC Applications,” in MEMSYS, 2016.

[159] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated Control for
Energy-Efficient and Heterogeneous Memory Systems,” in HPCA, 2013.

[160] F. X. Lin and X. Liu, “memif: Towards Programming Heterogeneous Memory
Asynchronously,” in ASPLOS, 2016.

[161] K. T. Malladi, U. Kang, M. Awasthi, and H. Zheng, “DRAMScale: Mechanisms to
Increase DRAM Capacity,” in MEMSYS, 2016.

[162] M. Pavlovic, N. Puzovic, and A. Ramirez, “Data Placement in HPC Architectures
With Heterogeneous Off-Chip Memory,” in ICCD, 2013.

[163] A. J. Pena and P. Balaji, “Toward the Efficient Use of Multiple Explicitly Managed
Memory Subsystems,” in CLUSTER, 2014.

[164] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Performance Main
Memory System Using Phase-Change Memory Technology,” in ISCA, 2009.

[165] H. Yoon, J. Meza, R. Ausavarungnirun, R. A. Harding, and O. Mutlu, “Row Buffer
Locality Aware Caching Policies for Hybrid Memories,” in ICCD, 2012.

[166] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories Using Fine-Granularity DRAM Cache Management,”
in IEEE CAL, 2012.

[167] J. Ren, J. Zhao, S. Khan, J. Choi, Y. Wu, and O. Mutlu, “ThyNVM: Enabling
Software-Transparent Crash Consistency in Persistent Memory Systems,” in

MICRO, 2015.
[168] T. J. Ham, B. K. Chelepalli, N. Xue, and B. C. Lee, “Disintegrated Control for

Energy-Efficient and Heterogeneous Memory Systems,” in HPCA, 2013.
[169] Z. Yang, M. Hoseinzadeh, A. Andrews, C. Mayers, D. T. Evans, R. T. Bolt, J. Bhi-

mani, N. Mi, and S. Swanson, “AutoTiering: Automatic Data Placement Manager
in Multi-Tier All-Flash Datacenter,” in IPCCC, 2017.

[170] C. Chou, A. Jaleel, and M. K. Qureshi, “BATMAN: Maximizing Bandwidth
Utilization of Hybrid Memory Systems.” Citeseer, 2015.

[171] Y. Kim, A. Gupta, B. Urgaonkar, P. Berman, and A. Sivasubramaniam, “Hybrid-
Store: A Cost-Efficient, High-Performance Storage System Combining SSDs and
HDDs,” in MASCOTS, 2011.

[172] C. Wang, H. Cui, T. Cao, J. Zigman, H. Volos, O. Mutlu, F. Lv, X. Feng, and G. H.
Xu, “Panthera: Holistic Memory Management for Big Data Processing over
Hybrid Memories,” in PLDI, 2019.

[173] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement in Hybrid Memory
Systems,” in ICS, 2011.

[174] L. Liu, S. Yang, L. Peng, and X. Li, “Hierarchical Hybrid Memory Management
in OS for Tiered Memory Systems,” in TPDS, 2019.

[175] Y. Luo, P. Jin, and S. Wan, “Optimal Data Placement for Data-Centric Algorithms
on NVM-Based Hybrid Memory,” in DSAA, 2020.

[176] T. D. Doudali, D. Zahka, and A. Gavrilovska, “Cori: Dancing to the Right Beat
of Periodic Data Movements over Hybrid Memory Systems,” in IPDPS, 2021.

[177] M. Shetti, B. Li, and D. Du, “Machine Learning-based Adaptive Migration Algo-
rithm for Hybrid Storage Systems,” in TOS, 2019.

[178] S. Sen and N. Imam, “Machine Learning Based Design Space Exploration for
Hybrid Main-Memory Design,” in MEMSYS, 2019.

[179] K. Liu, J. Peng, J. Wang, B. Yu, Z. Liao, Z. Huang, and J. Pan, “A Learning-Based
Data Placement Framework for Low Latency in Data Center Networks,” in TCC,
2019.

[180] S. Yoo and D. Shin, “Reinforcement Learning-Based SLC Cache Technique for
Enhancing SSD Write Performance,” in USENIX HotStorage, 2020.

[181] H. Wang, H. Shen, Q. Liu, K. Zheng, and J. Xu, “A Reinforcement Learning Based
System for Minimizing Cloud Storage Service Cost,” in ICPP, 2020.

[182] W. Kang, D. Shin, and S. Yoo, “Reinforcement Learning-Assisted Garbage Col-
lection to Mitigate Long-Tail Latency in SSD,” in TECS, 2017.

[183] W. Kang and S. Yoo, “Dynamic Management of Key States for Reinforcement
Learning-assisted Garbage Collection to Reduce Long Tail Latency in SSD,” in
DAC, 2018.

[184] T.-R. Lin, D. Penney, M. Pedram, and L. Chen, “A Deep Reinforcement Learning
Framework for Architectural Exploration: A Routerless NoC Case Study,” in
HPCA, 2020.

[185] E. Liu, M. Hashemi, K. Swersky, P. Ranganathan, and J. Ahn, “An Imitation
Learning Approach for Cache Replacement,” in ICML, 2020.

[186] J. Yin, Y. Eckert, S. Che, M. Oskin, and G. Loh, “Toward More Efficient NoC
Arbitration: A Deep Reinforcement Learning Approach,” in AIDArc, 2018.

[187] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri, “Dynamic Voltage
and Frequency Scaling in NoCs With Supervised and Reinforcement Learning
Techniques,” in TC, 2018.

[188] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, S. Bae et al., “Chip Placement With Deep Reinforcement
Learning,” Nature, 2021.

[189] O. Mutlu, “Intelligent Architectures for Intelligent Computing Systems,” inDATE,
2021.

[190] L. Peled, S. Mannor, U. Weiser, and Y. Etsion, “Semantic Locality and Context-
based Prefetching Using Reinforcement Learning,” in ISCA, 2015.

[191] J. F. Martinez and E. Ipek, “Dynamic Multicore Resource Management: A Ma-
chine Learning Approach,” in IEEE Micro, 2009.

[192] J. Mukundan and J. F. Martinez, “MORSE: Multi-Objective Reconfigurable Self-
Optimizing Memory Scheduler,” in HPCA, 2012.

[193] R. Jain, P. R. Panda, and S. Subramoney, “Machine Learned Machines: Adaptive
Co-optimization of Caches, Cores, and On-chip Network,” in DATE, 2016.

[194] H. Zheng and A. Louri, “Agile: A Learning-Enabled Power And Performance-
Efficient Network-On-Chip Design,” in TETCI, 2020.

[195] S. M. PD, H. Yu, H. Huang, and D. Xu, “A Q-Learning Based Self-Adaptive I/O
Communication for 2.5D Integrated Many-Core Microprocessor and Memory,”
in IEEE TOC, 2015.

https://linuxmint.com/edition.php?id=284
https://github.com/tensorflow/agents
https://www.amd.com/en/products/cpu/amd-ryzen-7-2700
https://www.amd.com/en/products/cpu/amd-ryzen-7-2700

	Abstract
	1 Introduction
	2 Background
	2.1 Hybrid Storage Systems (HSSs)

	3 Motivation
	4 Reinforcement Learning
	4.1 Background
	4.2 Why blackIs RL a Good Fit blackfor Data Placement in blackHybrid Storage Systems?

	5 Sibyl: RL Formulation
	6 Sibyl: Design
	6.1 Sibyl Data Placement Algorithm
	6.2 blackDetailed Design of Sibyl

	7 Evaluation Methodology
	8 Results
	8.1 Performance Analysis
	8.2 Performance on Unseen Workloads
	8.3 Performance on Mixed Workloads
	8.4 Performance with Different Features
	8.5 blackPerformance with Different Hyper-Parameters
	8.6 Sensitivity to Fast Storage Capacity
	8.7 Tri-Hybrid Storage Systems

	9 Explainability Analysis
	10 Overhead Analysis
	10.1 blackInference and Training Latencies
	10.2 Area Overhead

	11 Discussion
	12 Related Work
	13 Conclusion
	Acknowledgments
	References

