
Mapping of Synchronous Dataflow Graphs on MPSoCs
Based on Parallelism EnhancementI

Qi Tanga,∗, Twan Bastenb,c, Marc Geilenb, Sander Stuijkb, Ji-Bo Weia

aDepartment of Electronic Science and Engineering, National University of Defense
Technology, Changsha, China.

bDepartment of Electrical Engineering, Eindhoven University of Technology, Eindhoven,
Netherlands

cEmbedded Systems Innovation, TNO, Eindhoven, Netherlands

Abstract

Multi-processor systems-on-chips are widely adopted in implementing modern
streaming applications to satisfy the ever increasing computation requirements.
To take advantage of this kind of platform, it is necessary to map tasks of
the application properly to different processors, so as to fully exploit the in-
herent task-level parallelism and satisfy the stringent timing requirements. We
propose the Parallelism Graph to capture the task-level parallelism of the ap-
plication and transform the mapping problem to a graph partitioning problem.
The graph partitioning problem is formulated as an Integer Linear Program-
ming problem, which is solved optimally using the ILP solver. To reduce the
complexity, a two-step local search algorithm, i.e., the greedy partition and re-
finement algorithm, is proposed. Since one-shot heuristics cannot guarantee the
solution quality, evolutionary algorithms are widely used to search the solution
space such that better results can be found. We also integrate the idea of para-
llelism enhancement into the genetic algorithm and propose a hybrid genetic
algorithm to improve the performance. Sets of synthesized Synchronous Data
Flow Graphs and some practical applications are used to evaluate the perfor-
mance of the proposed algorithms. Experiment results demonstrate that the
proposed algorithms outperform available algorithms.

Keywords: Synchronous Dataflow Graph, multiprocessor, mapping, graph
partition, genetic algorithm

IThis work was partially supported by China Scholarship Council (CSC).
∗Corresponding author
Email addresses: q.tang.andy@qq.com (Qi Tang), a.a.basten@tue.nl (Twan Basten),

m.c.w.geilen@tue.nl (Marc Geilen), s.stuijk@tue.nl (Sander Stuijk), wjbhw@nudt.edu.cn
(Ji-Bo Wei)

Preprint submitted to Journal of Parallel and Distributed Computing October 21, 2016

1. Introduction

Synchronous Data Flow Graphs (SDFGs) are widely used in modeling mod-
ern streaming applications, including video/audio en/decoding, software defined
radio, etc. To satisfy the quality requirements of the consumer, these appli-
cations are becoming more and more complex and computationally intensive,5

which imposes great challenges on hardware design, especially when it comes to
consumer electronics that are generally battery-powered [1]. Many applications
have stringent timing requirements, e.g., in terms of throughput. To meet the
timing requirements, a straightforward method is to increase the clock speed of
the processor. However, as the clock frequency increases, the energy consump-10

tion grows rapidly, making this method less attractive. What’s more, as the
clock frequency approaches physical limits, we can no longer depend on faster
processors to provide more computation capacity. Therefore, Multi-Processor
Systems-on-Chips (MPSoCs) rather than single-processors with high clock fre-
quency provide another solution. MPSoCs can make a better tradeoff between15

computation capacity and power consumption, therefore, they are pervasively
used in practice. Though MPSoCs can provide powerful computation capaci-
ty, it does not necessarily mean that the application deployed on it can take
full advantage of it. In fact, few benefits can be obtained by using MPSoCs if
the application offers little parallelism. As demonstrated by Amdahl’s law [2],20

the improvements gained by using multiprocessors are limited by the applica-
tion parallelism, i.e., the extent to which the application can be parallelized.
Though many applications, e.g., streaming applications modeled by SDFGs, do
expose a lot of parallelism, it remains a problem as to how to exploit it, which
is the so-called parallel scheduling problem.25

Scheduling consists of mapping, ordering and timing [3]. Mapping deter-
mines the task-to-processor assignment, ordering determines the task execution
order on each processor, and timing determines the time when each task starts
execution. For an optimal schedule, there always exists an optimal mapping,
which makes it necessary to study how to obtain the optimal mapping. This30

paper studies how to map an SDFG onto the MPSoC, specifically, we focus on
duplication-free mapping [4, 5, 6] that does not duplicate a task to multiple
processors for execution and do not consider data-level parallelism [7, 8, 9]. The
throughput is the main concern for many streaming applications. For example,
for the video decoder, it is quite important that the frame can be delivered35

in a specific rate, so as to make the video smooth enough. Therefore, the ob-
jective of this paper is to find the task-to-processor mapping that delivers the
optimal long-term throughput. To achieve this goal, while constructing the
mapping, tasks that are able to execute concurrently should be mapped to dif-
ferent processors so that the final schedule can exploit more parallelism of the40

application. Since the amount of resources, i.e., the number of processors, is
limited, it is not possible to exploit all the parallelism; thus a tradeoff should be
made. Therefore, tasks that contribute more parallelism should be mapped to
different processors with higher priority. Based on the above ideas, we propose
the Parallelism Graph (PG) to quantify and model the task-level parallelism of45

2

the SDFG, and transform the mapping problem to a graph partitioning prob-
lem. We formulate the graph partitioning problem as a pure 0-1 Integer Linear
Programming (ILP) problem and use available ILP solver to solve it. The flaw
of ILP is that it is hard to solve, especially for large-scale problems. Therefore, a
two-step heuristic called Greedy Partition and Refinement Algorithm (GPRA)50

is proposed to solve this problem. Both the ILP-based algorithm and GPRA
are one-shot methods, which are generally incapable at producing the global
optimal solution. Differently, the population-based meta-heuristic algorithms,
e.g., the genetic algorithm (GA), are powerful in searching the solution space
to find better solutions, however, they face problems in convergence speed and55

finding local optima [10]. While GA does not integrate any local search strategy,
we combine GA with the idea of parallelism enhancement and propose a hybrid
genetic algorithm (HGA) for the mapping problem. The proposed algorithms
are implemented in SDF3 [11], and are evaluated by sets of randomly generated
SDFGs and some real applications.60

In the remainder of this paper, we use the following notations. Z, Z+ and
Z+
0 denote the set of integers, positive integers and non-negative integers re-

spectively. We use boldface capitals to denote vectors/sets and corresponding
italic lowercase letters to denote elements in them. For a vector or set, we use
| · | to denote the number of its elements.65

The remainder of the paper is organized as follows. In Section 2, we discuss
the related work. The models and definitions are described in Section 3. In
Section 4 we formalize the problem to be solved. In Section 5 the methods for
constructing the schedule for any given mapping and analyzing the throughput
are introduced. The Parallelism Graph and its construction are presented in70

Section 6 and the pure 0-1 ILP model of the graph partitioning problem is
formulated in Section 7. In Section 8 and 9 we introduce the greedy partition
and refinement algorithm and the hybrid genetic algorithm respectively. In
Section 10 the experiment results are presented. Finally, we conclude the paper
in Section 11.75

2. Related Work

Exploiting the inherent parallelism of streaming applications is critical in
improving schedule performance. [7, 8] take advantage of data, pipeline and
task parallelism to improve the schedule throughput. [7] proposes an ILP for-
mulation to exploit the data parallelism of the application by splitting the work80

load of a task to multiple copies and distributing copies of a task to different pro-
cessors, thus balancing the loads on different processors to a deeper extent and
improving the throughput of the pipeline schedule. While [7] does not consider
task parallelism, [8] combines data, pipeline and task parallelism in the schedule
to improve the performance. Both [7, 8] focus on acyclic dataflow graphs and85

try to exploit data-level parallelism of the application, while this paper focuses
on task-level parallelism of cyclic SDFGs.

For the cyclic dataflow graph, e.g., SDFG, [12] proposes a load balancing
algorithm to map SDFGs to multiprocessors by balancing the computation load,

3

communication bandwidth and memory consumption. Tasks are bound to pro-90

cessors in non-increasing order of the task priority defined as the estimated
maximum cycle mean (MCM) [12] of any execution cycle containing that task.
The key idea behind the load balancing method is balancing the load on each
resource. However, inter-task precedences in the SDFG are not fully exploited
in the algorithm, though the application structure is partly taken into account95

while computing the task priority [12]. Even though the strategy of distribut-
ing computations evenly on different processors works well for applications with
little or no inter-task precedences, for applications with more complicate struc-
tures, more strategies should be adopted. Load balancing is also utilized in [13]
to map SDFGs to multiprocessor. However, the authors focused on reducing100

the energy consumption while meeting the timing requirements. The proposed
method enumerates a lot of mapping solutions to make a good tradeoff between
energy consumption and the timing requirements. Rather than balancing the
load, this paper quantifies task-level parallelism of the application, and opti-
mizes the mapping indirectly by optimizing the exploited parallelism.105

Another method for scheduling the SDFG consists of transforming the SDFG
to an equivalent Directed Acyclic Graph (DAG) [3, 9] that can be derived from
the equivalent homogeneous SDFG (HSDFG) by simply removing all edges with
delay. After the transformation, other DAG scheduling algorithms [14, 15] can
be utilized to solve the scheduling problem. Among these DAG scheduling110

algorithms, list-based algorithms [14, 15] that divide the scheduling to priority
assignment and task scheduling are the most popular. The priority can be com-
puted before or during mapping by taking into account the application structure
statically or dynamically. The critical path based method is utilized the most in
computing priority, since tasks on the critical path intuitively are more impor-115

tant and thus deserve to be scheduled earlier. However, this scheduling strategy
primarily applies to systems consider task duplication and the performance for
the duplication-free problem is not very good. Differently, this paper optimize
the mapping for the duplication-free problem, and use list scheduling and self-
timed scheduling to construct ordering and timing. Since by forcing the task120

to be scheduled onto the same processor, the DAG scheduling algorithm can be
used for the problem in this paper, the famous Heterogeneous Earliest-Finish-
Time (HEFT) scheduling algorithm [15] is used in this paper for comparison.

ILP-based accurate scheduling algorithms are studied a lot [16]. Since the
scheduling problem is a combinatorial optimization problem, using ILP is strai-125

ghtforward. Modeling with the ILP formulation, three aspects of the scheduling,
i.e., mapping, ordering and timing, can be solved as a whole. However, such
kind of ILP model is difficult to solve even for small-scale problems. Differently,
the ILP model proposed in this paper is simpler, since the problem is partly
transformed to the graph partitioning problem.130

Population-based meta-heuristic algorithms, such as genetic algorithm [17,
18], ant colony optimization [19], particle swarm optimization [20] and artifi-
cial bee colony algorithm [21], have been applied to many different scheduling
problems. These algorithms are exploration algorithms, and are proven to out-
perform one-shot heuristic algorithms at the expense of extra computation time.135

4

[17, 18] use the genetic algorithm to model different kinds of scheduling prob-
lems. [17] uses the genetic algorithm to solve the scheduling problem that con-
siders code/data overlay on systems with limited scratchpad memory. However,
it does not optimize the task allocation while solving the task-to-processor map-
ping as our methods do. [18] proposes a hybrid genetic algorithm for scheduling140

DAGs, which integrates the Critical Path Genetic Algorithm into a common
genetic algorithm to improve the performance. Our work is inspired by these
works. Differently, we use parallelism enhancement to improve the performance.

3. Application Model

A lot of literature uses DAGs to model applications. Recently, data flow145

graphs like SDFGs and scenario aware dataflow graphs [22, 23] gained a lot of
research attention due to their powerful combination of expressivity and ana-
lyzability. We also use SDFGs to model streaming applications, e.g., software
defined radio and multimedia applications. SDFGs can well capture the execu-
tion features of such kind of applications, e.g., multi-rate execution, and also150

provide some useful analytical properties, e.g., consistency, deadlock-free, rep-
etition vector, memory requirements and throughput, making it an attractive
computation model.

Definition 1. (SDFG) A synchronous data flow graph is a directed graph and
is denoted by G = (V,E), where V is a finite set of nodes or vertices representing155

tasks or actors of an application, and E is a finite set of directed edges denoting
the communications between tasks. Each node v ∈ V is associated with a cost
c(v) representing the number of clock cycles needed to complete an execution of
the task. Each edge e ∈ E is defined as a tuple (src, p, dst, q, d), where src is
the source task, p is the production rate, dst is the destination task, q is the160

consumption rate, and d is the initial token count on the edge. For a given
edge e, we use the notions src(e), p(e) etc., to denote its elements. A task can
only fire when there are sufficient tokens on the edges where it consumes. When
the source task src(e) finishes its execution, it produces p(e) tokens on the edge
and the destination task dst(e) consumes q(e) tokens from the edge when it is165

invoked. We also refer to edge e as an output edge of task src(e) and an input
edge of task dst(e).

Since the rate at which tokens are produced on an edge may differ from the
rate at which tokens are consumed from the edge in an SDFG, i.e., the SDFG is
multi-rate, tasks in the SDFG may execute with different frequencies and thus170

appear different numbers of times in the schedule. We use the notions of SDFG
iteration and repetition vector to capture these features of SDFGs.

Definition 2. (SDFG iteration) An SDFG iteration is defined as the process
of executing each task the minimum positive number of times so that the token
count on each edge returns to the initial value.175

5

Definition 3. (Repetition vector) The repetition vector R of an SDFG with
n tasks numbered from 0 to n − 1 is a column vector of length n, and the k-th
element of R, i.e., R(vk), represents the number of execution times of task vk
in an iteration.

The repetition vector can be calculated by solving the balance equations180

[24]. For an SDFG, if the balance equations of the graph have non-trial solutions
[24], then R exists and the SDFG is said to be consistent [24]. An incorrectly
constructed SDFG may be dead-lock while executing. This paper only considers
SDFGs that are consistent and deadlock-free. A consistent SDFG can always be
converted to an equivalent HSDFG [3] in which all rates equal to one. However,185

this conversion can result in exponential increase in graph size. In the HSDFG,
each task v in the SDFG is duplicated R(v) times, i.e., there are R(v) copies
or instances of v in the HSDFG. So, the task number of the HSDFG is the
addition of each element of the repetition vector of the corresponding SDFG.
The repetition vector provides information as to how many times each task has190

to be executed in an iteration. Every time the task is started, we say one task
instance has fired. In this paper, we also call R(v) the instance count of task v
in an iteration.

This paper only considers strongly connected SDFGs, in which every task is
connected with any other one directly or indirectly. For practical applications,195

this is a reasonable assumption. Since for practical systems, the maximum
token count on each edge should be finite while executing, thus the system can
be implemented with a finite buffer. The above constraint can be modeled by
adding extra constraining edges to the SDFG. For each edge in the SDFG, an
additional reverse edge can be added to limit the buffer size. Therefore, there is a200

path between each pair of tasks in the connected SDFG, which makes the SDFG
strongly connected [5]. Since we consider duplication-free scheduling, we add
self-edges to stateless tasks of the SDFG. Then, buffer size constraining edges
are added to the SDFG while keeping it rate-optimal [3], i.e., the throughput is
not changed.205

Fig. 1 shows an SDFG with five tasks, i.e. v0, v1, v2, v3 and v4. The pro-
duction and consumption rates are indicated at the ends of each edge. For
simplicity, if the rate is equal to one then it is omitted. The text near the edge
is the edge label and the number in the parentheses beside the edge label rep-
resents the initial token count of this edge. If the initial token count is zero,210

then it is not shown in the figure for simplicity. We assume that each task
v0, v1, v2, v3 and v4 in Fig. 1 has an execution time of 5, 7, 4, 10, and 14 respec-
tively. The repetition vector of the SDFG in Fig. 1 is [2, 2, 3, 1, 1]T , meaning
that in one iteration tasks v0, v1, v2, v3 and v4 have to execute 2, 2, 3, 1 and 1
time respectively.215

4. Problem Statement

For concurrent real-time streaming applications modeled by SDFGs, the
throughput is among the most important performance metrics. The ideal through-

6

3

2

2

v2

v0

v4

v1 e7(1)

e6(1)

2

v3

3

3

e11(2)e0

2

e1

e12(6)

2

e5 e16(4)

e10(1)

e2

2

e13(4)

e4

e15(2)

e9(1)

e3

e14(7)

3

e8(1)

Figure 1: The structure of the example SDFG.

put without resource constraints can be obtained by the self-timed schedule [3].
However, practical systems are limited in resource, thus resource allocation or220

scheduling is necessary. Scheduling contains three aspects, i.e., mapping tasks
onto the platform, ordering the executions of tasks bound to the each processor
and determining the start time of each task [3]. In this paper, we investigate
the first aspect of the scheduling problem, i.e., mapping the streaming applica-
tion modeled by an SDFG onto the processors of an MPSoC with the objective225

of maximizing the long-term throughput. To evaluate the quality of the task-
to-processor mapping, we use available techniques to obtain the ordering and
timing given the mapping and analyze the throughput, as illustrated in the
following section.

As introduced earlier, an SDFG can be converted to an equivalent HSDFG,230

and the nodes in the HSDFG correspond to task instances in the original graph.
Therefore, the SDFG mapping problem can be classified as two categories based
on what kind of nodes are mapped: tasks of the original SDFG or task instances
of the resulting HSDFG. The latter case is referred as task duplication, which
means that different instances of an SDFG task are mapped to different proces-235

sors. We consider the mapping problem without task duplication, which implies
that no more than one processor is allocated to each SDFG task in the mapping.
For duplication-based scheduling, the reader can refer to StreamIT [25]; howev-
er, it is out of the scope of this paper. Duplication-free mapping provides many
advantages, e.g., simplifying data management, reducing memory consumption240

and avoiding graph transformation [4, 5].
The solved problem in this paper can be summarized as follows. Given an

application modeled by an SDFG and a multiprocessor platform, find the task-
to-processor mapping without task duplication and construct the task order and
task timing on each processor, so as to optimize the long-term throughput.245

7

5. Periodic Static-Order Schedule and Throughput Analysis

Since the aim is to find the mapping that delivers the optimal throughput,
it is important to analyze the throughput of the mapping given by the mapping
algorithm such that the algorithm performance can be evaluated. Given a map-
ping, it is still hard to find the optimal schedule in the view of throughput. It250

should be noted that the throughput differs with the execution style. One exe-
cution style is the so-called blocked schedule [3], in which a block is composed
of one or several iterations. The number of iteration number in a block is called
the blocking factor. In the blocked schedule, different blocks cannot overlap,
and the execution of one block should start after the former one has finished.255

In a block, the execution order of multiple iterations is not forced to be sequen-
tial, rather, they can execute in any order if the inherent data precedences are
satisfied, hence improving the performance. For the blocked schedule, finding
a good blocking factor is critical for improving the performance. However, as
the blocking factor increases, the overhead for controlling the system increases.260

As an alternative, we assume that the system executes according to a periodic
static-order schedule [23] that forces tasks to fire one by one in a given order.
Different iterations may overlap, proceeding in pipelining style. We construct
the periodic static-order schedule for each processor by the use of HEFT [15].
We first convert the SDFG to DAG, then the HEFT algorithm is applied to265

the DAG based on the given task-to-processor mapping. Having obtained the
periodic static-order schedule for each processor, the timing of tasks and the
throughput can be determined using available methods.

The state space based throughput analysis method of SDFGs without re-
source constraints is proposed in [26]. In this method, the token distribution270

and task remaining execution time specify the state. The execution time and
the token count are both discrete, so the state space transition system is a dis-
crete system. Since the SDFG is strongly connected, and range of each element
of the state is finite, so the state space is finite. Since no resource contention
occurs while executing the SDFG, the transition system is deterministic. After a275

finite number of transitions, some states will be revisited, hence forming a cycle.
Having obtained the cycle in the state space, the throughput can be calculated
directly. Another method for computing the throughput is to model the self-
timed execution of the SDFG in max-plus algebra [22]. The eigenvalue of the
max-plus matrix equals the reciprocal of the throughput. The above methods do280

not take the mapping and schedule into account, making the result inaccurate.
It’s possible to model the mapping and the valid periodic static-order schedule
in the SDFG [27, 23]. Since the periodic static-order schedule extracted from the
schedule generated by HEFT is valid in terms of data precedence, it is always
possible to model it into the SDFG. After the above step, the throughput of285

the schedule can be analyzed by applying methods introduced in [26, 22] on the
SDFG modeled with resource constraints. In this paper, we model the periodic
static-order schedule into the SDFG using the method proposed in [23] and use
the state space based technique [26] to compute the throughput of the schedule.

It should be noted that the throughput analysis method does not guarantee290

8

the optimality of the throughput. It remains for further research as to how to
obtain the optimal schedule with resource contention, while providing acceptable
time complexity.

6. Parallelism Graph and Its Construction

In this paper, we try to optimize the exploited parallelism while mapping295

the application so as to improve the throughput. Intuitively, if more tasks
can execute in parallel, then its performance in terms of throughput is better.
However, it is an issue as to how to model the inter-task parallelism of the
application. This section introduces the concept of Parallelism Graph (PG) to
quantify and model the inter-task parallelism of the SDFG; besides, a method300

based on the self-timed schedule is proposed to construct the PG. Based on the
PG, the mapping problem is converted to a graph partitioning problem. The
PG is defined as follows.

Definition 4. (Parallelism Graph) The Parallelism Graph of an SDFG G =
(V,E) is a weighted undirected graph that is denoted as a pair PG = (Vpg,Epg),305

in which each vertex corresponds to a task in the SDFG and each edge represents
that the connected tasks can execute in parallel. Each edge is associated with
a positive number, i.e., the edge weight, representing a heuristic metric of the
amount of parallelism between the associated tasks.

The PG can be constructed in various ways. However, PGs constructed310

by different methods differ from each other, and the obtained mappings have
various performances. This paper computes the inter-task parallelism by the
use of self-timed schedule [3] of the SDFG. In the self-timed schedule, tasks are
fired as soon as data is available at all their input edges. The self-timed schedule
is defined as follows.315

Definition 5. (self-timed schedule) The self-timed schedule of an SDFG
G = (V,E) is a mapping s : V × Z+ → Z+

0 . s(vi, k) denotes the start time of
the k-th instance of task vi, where vi ∈ V, k ∈ Z+. The values satisfy Equation
1,

s(vi, k) =

{
0, ¬ ∃ ej,i ∈ E or depij(k) ≤ 0

max
vj∈V,ej,i∈E

{s(vj , depij(k)) + c(vj)}, else (1)

where ej,i denotes the edge from task vj to task vi, and depij(k) is defined as
Equation 2, denoting that the k-th instance of task vi depends on the depij(k)-th
instance of task vj.

depij(k) =

⌈
k ∗ q(ej,i)− d(ej,i)

p(ej,i)

⌉
(2)

As shown in [26], the self-timed schedule can be represented as a state tran-
sition system. At each time, the remaining execution time of each task and the
token count on each edge comprise a state. Since we consider duplication-free

9

scheduling in which at most one copy of a task can be active at a time, the
state can be represented as a vector S. S has |V|+ |E| elements, with the first320

|V|-th elements representing the remaining execution time of each task and the
remaining elements representing the token count on each edge. For a specific
time t, we use St to represent the state at this time, use st(v) to denote the
remaining execution time of task v ∈ V, and use se(t) to denote the token count
of edge e ∈ E. In a state St, if st(vi) > 0, it means that task vi is active at time325

t, i.e., the task is executing. Since the state transition system is discrete and
deterministic, and the value of each element of the state is limited, the state
transition system would reencounter a state that has been encountered as time
elapses, i.e., it is composed of the transient state and the following periodic state.
We execute the SDFG in a specific way, i.e., at each time instance, all tasks that330

are on their due time are finished; then, all tasks that are ready are fired. For
simplicity, not all states are recorded while executing the SDFG; rather, only
the states recording the execution state after starting all the enabled tasks are
recorded. We say the state transition system enters the periodic state at time t
if the system reencounters the state of time t at t+T , with T being the period.335

We define the period of the state transition system in a time-driven style as
follows, in which each time is associated with a state and the state changes as
time advances.

Definition 6. (Period) The period of the state transition system of SDFG
G = (V,E) is a minimal subsequence of the system execution trace, and it can340

be represented as {St|t ∈ [t1, t2]}, where St1 = St2 .

In the self-timed schedule, the periodic state determines the value of the
throughput. Since the periodic state of the state transition system plays a
critical role in determining the throughput, we use it to compute the inter-
task parallelism. Whereas each period in the periodic state may cover more345

than one iteration, this feature does not affect the result no matter whether
the computed value of concurrency is divided by this number or not. Because
of the periodic feature of the periodic state, there is no need to execute the
application indefinitely. To the contrary, the execution can be stopped when a
complete period has been found, i.e., if St1 = St2 , t1 < t2, then the execution350

can stop at t2.
Algorithm 1 outlines the process of constructing the PG based on the period

of the state transition system of the SDFG. The key idea is to extract the parallel
execution time of each pair of tasks in the period, and use the extracted parallel
execution time to quantify the parallelism of the task pair. As stated earlier,355

we consider duplication-free mapping. Since each task is bound to only one
processor, instances of a task cannot fire in parallel. To take it into account,
the SDFG is extended by adding self-edges to forbid auto-concurrency while
constructing the PG. Then, the PG is initialized with the tasks. Each task in
the PG is associated with one task in the SDFG. Subsequently, the SDFG is360

executed according to the self-timed schedule in state transition style. While
executing the SDFG, one period of the state transition system is extracted.
Based on the period, the edges of the PG are added with the edge weight

10

being computed by lines 8-12. As shown in lines 5-18, the edge weight between
each pair of tasks is computed by adding the overlap execution time of the365

corresponding tasks in the period. As lines 9-11 show, if two tasks are both
active at a specific time in the period, i.e., their remaining execution times, as
recorded in the state, are positive, then these two tasks overlap in execution
time and the weight is renewed by adding one. If the weight is non-zero, then
an edge connecting the corresponding tasks is added to the PG, with the edge370

weight being set as this value.

Algorithm 1 Construct PG

Input: application model G(V,E).
Output: Parallelism Graph PG(Vpg,Epg).
1: for each task v in the SDFG, add a self-edge (v, 1, v, 1, 1).
2: add vertices v′0, v

′
1, · · · , v′|V|−1 to Vpg, with v′i corresponding to vi ∈ V.

3: execute the SDFG using self-timed schedule in state transition style.
4: find the period {St|t ∈ [t1, t2]} of the state transition system.
5: for i = 0 to |V| − 2 do
6: for j = i+ 1 to |V| − 1 do
7: initialize w(i, j) = 0.
8: for t = t1 to t2 − 1 do
9: if St(vi) > 0 and St(vj) > 0 then

10: w(i, j) = w(i, j) + 1.
11: end if
12: end for
13: if w(i, j) > 0 then
14: add edge eij to Epg.
15: set the weight of edge eij as w(i, j).
16: end if
17: end for
18: end for

We use the time-driven style, i.e., associating each time with a state, to
describe the state transition system above for clarity and simplicity, however, the
event-driven style can be used in implementation. The event-driven transition
system only records specific states when a specific event happens, i.e., some375

tasks finish and/or start. Using this method, the time between the adjacent
states can be more than one, hence reducing the state number. However, such
an algorithm can be obtained straightforward from Algorithm 1, thus it is not
elaborated in the paper.

Fig. 6 shows the self-timed schedule in terms of event-driven state transition380

system of the example SDFG in Fig. 1. In the figure, each dot denotes a state,
and each edge in the figure denotes a transition, with the number on the edge
representing the time elapsed between the connected states. Beside each state,
the event, i.e., the tasks that are finished and started rightly before entering the
state, is depicted. The cycle in Fig. 6 represents the period of the self-timed385

schedule. The state annotated by red numbers is the state when the execution

11

enters the periodic state, and the numbers represent the remaining execution
time of each task at this state. In the figure, if a task is active at a state, then
it is also active in the time between this state and the following state. For
example, at time 20, the remaining execution time is 4, 6, 3, 0, 14, showing that390

all tasks except task v3 are active. Since the elapsed time from S20 to S23 is
3, as shown on the edge between these two states, all tasks except task v3 are
active in the time interval [20, 23). So, the period time of the schedule in Fig. 6
can be computed by adding the time on all edges of the cycle, with the value
being 43. The period consists three iterations, since each task is started three395

times the number of the corresponding element in the repetition vector, e.g.,
task v0 is fired six times that is thrice of R(v0) = 2.

5 4 1 2

start v0

end v0
start v0, v1, v2

end v2

end v0
start v2,v3

end v1
start v1

end v2
start v0,v2

2 4

end v2

1

end v0,v1
start v0, v1, v2

1

5,7,4,1,0

3

end v2

1

end v0
start v2,v3

2

end v1
start v1

2

4

end v2

1

end v0,v1
start v0, v21

end v3,v4
start v1,v4

3

end v2

1

end v0
start v2,v3

3
end v1
start v1

1

end v2
start v0, v2
4

end v2

11
end v1,v3,v4
start v0, v1, v4

3

end v2

end v0
start v2

end v2
start v0, v2

end v3
start v4

2

2 2 4

1

end v0
start v2,v3

end v1
start v1

end v2
start v0,v2

end v2

end v0,v1,v4
start v0, v1, v2

4,6,3,0,14

time 0 time 19 time 20

time 19+43

Figure 2: The self-timed schedule in terms of state transition of the example SDFG.

Fig. 3 shows the PG of the SDFG in Fig. 1 and the corresponding adja-
cency matrix of the PG based on the period in Fig. 6. To compute the overlap
execution time, each state in the period [19, 19 + 43] should be enumerated for400

each task pair. For example, the edge weight between tasks v0, v1 is initialized
as 0. Since they are active between the time interval [19, 20], [20, 23], so, the
intermediate edge weight of these two tasks is four at time 23. By enumerating
remaining times in the period using similar method, the final edge weight can
be obtained.405

In the PG, the edge dictates that the associated tasks can execute in parallel,
and the edge weight represents to what extent the tasks can execute simulta-
neously, i.e., the value of the parallelism. If more tasks can execute in parallel,
then an iteration can finish in less time, thus improving the throughput. Hence,
the mapping problem with the objective of maximizing the throughput is, to410

some extent, equivalent to maximizing the concurrency. Using the PG, the
inter-task parallelism is quantified, so the mapping problem matches well with
partitioning the PG such that the cut is maximized, with the cut defined as the
sum of the weights of the edges crossing different partitions. By such a method,
the mapping problem is transformed to a graph partitioning problem. In the415

12

v0

v1

v2 v3

v4

22

18

35 33

22

32

2031

31
33

(a)

0 22 18 20 22

22 0 31 33 35

18 0 32 31

20 33 32 0 33

22 35 31 33 0

31

(b)

Figure 3: The PG (a) of the example SDFG and its adjacency matrix (b).

following, we would show how to use the PG to solve the mapping problem.

7. Pure 0-1 Integer Linear Programming Model

In the above section, the PG is introduced to capture the inter-task paralle-
lism of the application, and the mapping problem is transformed to partitioning
the PG such that the cut between partitions is maximized. The above problem420

is a graph partitioning problem that is NP-hard [28]. We formulate it as a pure
0-1 Integer Linear Programming (ILP) model and use LINGO solver [29] to
find the optimal solution. By comparing with other methods, it is shown that
optimizing the parallelism is an alternative way to optimize the throughput.

7.1. Preliminaries425

Before introducing the pure 0-1 ILP model, the relevant notations and a
constraint transformation are presented first. We use the following notations in
our model.

N : Task number in the PG.
M : Processor or partition number.430

adj: Adjacency matrix of the PG.
xi,k: A mapping binary variable. Equals 1 if task i is mapped to processor

k and 0 otherwise.
We use the following proposition to transform If-Then constraints to linear

constraints. A similar transformation can be found in [30].435

Proposition 1 Let x1, x2, · · · , xn be a set of variables. f(x1, x2, · · · , xn)
and g(x1, x2, · · · , xn) are two functions on them. The non-linear constraint
“if f(x1, x2, · · · , xn) > 0 then g(x1, x2, · · · , xn) = 0” can be modeled by the
following linear constraints:

f(x1, x2, · · · , xn) ≤ L ∗ (1− au) (3)

g(x1, x2, · · · , xn) ≥ −L ∗ au (4)

g(x1, x2, · · · , xn) ≤ L ∗ au (5)

au = 0 or 1 (6)

13

where L is a large positive number, chosen large enough so that f ≤ L and
−L ≤ g ≤ L hold for all values of x1, x2, · · · , xn that satisfy other constraints
in Equations 3-6, and au is a binary auxiliary variable.

Proof: If f > 0, then Equation 3 holds only if au = 0. Then Equations 4
and 5 imply g ≥ 0 and g ≤ 0, so g = 0. Thus, if f > 0, then Equations 3-6440

ensure that g = 0. Also, if f > 0 is not satisfied, then Equation 3 allows au = 0
or au = 1. If au = 1, Equations 4 and 5 are satisfied according to the condition
−L ≤ g ≤ L. Thus, if f > 0 is not satisfied, then the values of x1, x2, · · · , xn

are unrestricted and g ̸= 0 is possible.

7.2. The Pure 0-1 ILP Model445

In our problem, the objective is to find the partition that maximizes the cut.
We use binary variable yi,j to denote if task i and j are mapped to different
processors. yi,j equals 1 if task i and j are mapped to different processors and
equals 0 if they are mapped to the same processor. So the optimization objective
can be expressed as follows.

max : cut =

N−2∑
i=0

N−1∑
j=i+1

adji,j ∗ yi,j (7)

Since each task is mapped to only one processor, so the task mapping con-
straint as shown by Equation 8 must be satisfied.

M−1∑
k=0

xi,k = 1 ∀ i (8)

where xi,k indicates whether or not task i is mapped to processor k. xi,k equals
1 if it is mapped to processor k, so the addition of xi,k over all k must equal 1.

In Equation 7, the value of yi,j is unknown and should be modeled by map-
ping variables xi,k, xj,k. According to the definition, if there is any k that makes
xi,k = 1 and xj,k = 1, then yi,j = 0; otherwise yi,j = 1. Since xi,k, xj,k are bina-
ry variables, the statement can be reformulated as: for each k, if xi,k+xj,k = 1,
then yi,j = 1; if xi,k+xj,k = 2, then yi,j = 0; otherwise the value of yi,j is
uncertain. The above constraint can be further reformulated as: for each k, if
xi,k + xj,k > 0, then xi,k + xj,k + yi,j − 2 = 0. This is a If-Then constraint and
can be linearized using Proposition 1. Applying Proposition 1 to this constraint
and set L as 2, we obtain the following constraints:

xi,k + xj,k + 2 ∗ au ≤ 2 (9)

xi,k + xj,k + yi,j + 2 ∗ au ≥ 2 (10)

xi,k + xj,k + yi,j − 2 ∗ au ≤ 2 (11)

xi,k, xj,k, yi,j , au = 0 or 1 (12)

where i, j, k ∈ Z+
0 , i, j ∈ [0, N − 1], k ∈ [0,M − 1]. Equations 9-12 should hold

for all i ̸= j, k.

14

Fig. 4(a) shows the mapping produced by applying the ILP to the PG in450

Fig. 3(a) onto a 2-processor platform. By this method, v1 and v3 are mapped to
one processor and the others to another. Using the graph partitioning method,
the cut and the potentially exploited concurrency is maximized, with the value
being 173. While using the load balancing method, the cut values is 171, as
shown in Fig. 4(b). The throughput of the ILP solution is 0.0233, and that of455

the load balancing solution is 0.02222.

v0

v1

v2 v3

v4

22

18

35 33

22

32

2031

31
33

(a)

v0

v1

v2 v3

v4

22

18

35 33

22

32

2031

31
33

(b)

Figure 4: Mappings produced by the ILP-based method (a), the load balancing method (b).

There are also other methods that are more effective for partitioning the
graph, such as the spectral partition [31]. However, this method is dedicated to
large-scale problems. For small-scale problems, the partitions are much worse
than the optimal solutions, making it unsuitable for our problem. Since the460

ILP-based method is not effective for large-scale problems, as an alternative, we
introduce a two-step heuristic algorithm to solve this problem in the following
section.

8. Greedy Partition and Refinement Algorithm

The ILP-based method introduced in the previous section is only efficient for465

small-scale problems; the variable number in the ILP model increases sharply
as the task number or processor number increases, making the problem hard
to solve. To reduce the time complexity and make the proposed method more
efficient in practice, we propose in this section a heuristic algorithm. Our algori-
thm is a local search algorithm, consisting of two steps. At the first step, an470

initial partition is produced by a greedy partition method; at the second step,
the initial partition is refined by recursively migrating tasks to a better partition
that can improve the cut until no improvement can be gained. The initial ex-
periment show that, to obtain a good solution in terms of throughput, it is not
necessary to find the accurate partition that maximizes the cut as the ILP-based475

algorithm does; rather, a heuristic still performs quite good for most cases.
Algorithm 2 shows procedures of the heuristic algorithm. Given the Paralle-

lism Graph constructed by algorithm 1, the loop in lines 3-13 maps tasks of the
PG one by one using the greedy strategy, thus producing the initial partition;
and the loop in lines 15-22 gradually improves the quality of the initial partition.480

In every iteration in the first loop, each task v in the set of unmapped tasks

15

Algorithm 2 Greedy Partition and Refinement Algorithm (GPRA)

Input: the SDFG G(V,E), the parallelism graph PG(Vpg,Epg) and the set of
processors P.

Output: mapping: V→ P.
1: let U = V, denoting the set of unmapped tasks.
2: let mini = ∅ be the partial mapping.
3: while U ̸= ∅ do
4: for each task v in U do
5: for each processor p in P do
6: mnext = mini + (v, p), representing the new partial mapping.
7: impr(v, p) ← cut(mnext) − cut(mini),representing the cut improve-

ment of mapping v to processor p.
8: end for
9: end for

10: (v′, p′)← arg max
v∈U,p∈P

{impr(v, p)}.

11: map v′ to partition p′, and mini = mini + (v′, p′).
12: remove v′ from U.
13: end while
14: migrate← true.
15: while migrate do
16: migrate← false.
17: v′, p′, impr(v′, p′)←Migration(mini).
18: if impr(v′, p′) > 0 then
19: migrate v′ to p′ in mini.
20: migrate← true.
21: end if
22: end while
23: return mini.

16

Algorithm 3 Migration

Input: the SDFG G(V,E), the parallelism graph PG(Vpg,Epg), the set of
processors P, and the mapping mini : V→ P.

Output: v′, p′ and impr(v′, p′).
1: for each task v in V do
2: for each processor p in P do
3: let mnext = mini, and remove the mapping of task v from mnext.
4: mnext = mnext + (v, p), representing the new mapping.
5: impr(v, p)← cut(mnext)− cut(mini),representing the cut improvement

of migrating v to p.
6: end for
7: end for
8: (v′, p′)← arg max

v∈V,p∈P
{impr(v, p)}.

9: return v′, p′ and impr(v′, p′).

U is tentatively allocated to each partition p, and the improvement of the cut
value by mapping v to p, i.e., impr(v, p), is computed. As line 6 shows, a new
partial mapping mnext is obtained by mapping v to p, and impr(v, p) equals
the cut value of mnext minus that of mini, denoting the cut improvement. The485

computation of the cut of the partial mapping is similar with that of the full
mapping by only considering the tasks that have already been mapped in the
partial mapping and the edges that join them. Then, the task and partition that
can improve the cut value most are picked out, and the associated mapping is
carried out, as lines 10-11 show. This process is repeated until all tasks have490

been mapped and an initial partition has been obtained. Then, this partition is
refined using a migrating strategy, as the loop in lines 15-22 shows. In the loop,
Algorithm 3 is used to compute to what extent the cut value can be improved
by migrating a task to another processor, as line 17 shows. The task and pro-
cessor that make the improvement the largest are found out and the associated495

migration is carried out, as line 19 shows. If no improvement can be gained any
more, the loop terminates. In the loop, the migration is carried out only when
the cut improvement is positive, so, using the refinement, the cut value would
grow gradually.

Algorithm 3 illustrates the process to improve the cut of a mapping. It is500

a single-migration algorithm. In this algorithm, only one task is chosen to be
migrated to another processor. As shown in the algorithm, lines 1-7 compute
the cut improvement by migrating each task to another processor. Then the
best migration strategy is selected and returned, as lines 8-9 show.

It should be noted that the proposed method may end into local optima.505

To jump out of local optima and further improve the quality of the partition,
some other strategies such as swapping can be used. However, according to
the experiment, the proposed algorithm performs well enough without such a
technique.

17

9. Hybrid Genetic Algorithm Based on Parallelism Enhancement510

Evolutionary algorithms (EA) are inspired by natural evolution and they
are powerful in solving large-scale combinatorial optimization problems that
are generally NP-hard. Among the evolutionary algorithms, genetic algorithms
(GAs), which generate solutions to optimization problems using techniques
inspired by natural selection, such as inheritance, mutation, selection, and515

crossover, are widely used in task scheduling problems. While one-shot heuris-
tic algorithms are generally incapable of producing the optimal solution, GAs
provide a mechanism to search the solution space, thus providing better perfor-
mance. However, GAs are not good at finding the local optima though they do
very well in identifying the regions where the optima lie. Therefore, integrating520

a local search heuristic in a genetic algorithm is a good approach to improve
the performance. In this section, we propose a hybrid genetic algorithm (HGA)
by integrating the idea of parallelism enhancement into the genetic algorithm,
with the framework being depicted in Fig. 5(b). We call the GA without para-
llelism enhancement the common GA (CGA), as shown in Fig. 5(a). Comparing525

Fig. 5(a) and Fig. 5(b), we can find that HGA consists some common steps as
CGA, i.e., generating initial solutions, computing fitness value, crossover and
mutation. However, HGA uses an additional step to enhance the parallelism of
initial solutions and offsprings produced by the operation of mutation. In the
following, we illustrate how each step of HGA works.530

Crossver
Fitness

Computing
Mutation

Initial

Solutions

Generating

Terminate? N

TerminateY

(a)

Parallelism

Enhancing
Crossver

Fitness

Computing
Mutation

Initial

Solutions

Generating

Terminate? N

TerminateY

(b)

Figure 5: The framework of the CGA (a) and HGA (b).

9.1. Encoding and Initial Population Generation

Each task-to-processor mapping is encoded by an integer (named gene),
representing the index of the processor where the task is allocated to. All the

18

genes are cascaded, thus forming a string of integers. This string is called the
chromosome and it models a complete mapping.535

As most genetic algorithms do, the chromosomes in the initial population are
randomly generated. The size of the initial population is determined by the user
to find a good compromise between the simulation time and solution quality.
For example, set the population size according to the size of the solution space
so that a fixed percentage of the solution space will be searched.540

9.2. Fitness Function

The fitness function is used to measure the quality of the solutions. While
generating successive populations based on the parent population, the fitness
of each solution in the parent population is used to determine the probability
that the genes of this solution are propagated to the offspring population. In545

our problem, what we are interested is the throughput of the solution. So, we
use the throughput of the mapping modeled by the chromosome as the fitness
value. For each solution, we use techniques introduced in Section 5 to compute
the throughput of the mapping.

9.3. Selection and Crossover Operator550

In the genetic algorithm, the crossover operation is one of the most important
steps. Before crossing two chromosomes, they have to be selected from the
parent population. We use roulette-wheel selection in this paper. For the parent
solution set C = {C0, C1, . . . , C|C|−1}, we use fi to denote the fitness value or
throughput of the i-th solution Ci. The roulette-wheel selection probability of
solution Ci is defined by the following equation,

rwi =
i∑

j=0

fj

/|C|−1∑
k=0

fk (13)

To select a solution, a uniformly distributed random value rand ∈ (0, 1] is
randomly generated. If rwi−1 < rand <= rwi, then Ci is selected (supposing
rw−1 = 0).

Having selected two solutions in this way, the crossover operator is applied to
these two solutions with the crossover probability µc ∈ [0, 1], which is generally555

set between [0.25, 0.75]. If the uniformly distributed random value rand ∈ [0, 1]
is less than µc, the two selected solutions are crossed according to the crossover
operator, else they are put directly into the child population. The standard one-
point crossover operator is used in this paper, which first randomly selects a gene
position in the chromosome and then, for the two selected chromosomes, swaps560

the genes before or after this position. The process of selection and crossover
is repeated until the size of the child population is the same as the size of the
parent population.

19

9.4. Mutation Operator

To avoid plunging into the local optima, the mutation operator is applied in565

the genetic algorithm. For each solution in the child population generated by
the crossover operator, the mutation operator is applied with a mutation prob-
ability µm ∈ [0, 1], which is generally set between [0.01, 0.2]. If the uniformly
distributed random value rand < µm, then the mutation operator is applied to
the solution. The mutation operator operates as follows: firstly a gene is ran-570

domly selected, and then the value is changed randomly to another one. Since
each gene is an integer that encodes the processor index, the mutation opera-
tor reallocates the task associated with the selected gene to another processor
randomly.

9.5. Parallelism Enhancement575

We augment the genetic algorithm by enhancing the parallelism of the map-
pings encoded by the chromosomes in the child population and initial solutions.
Since more tasks can execute in parallel and the performance of the mapping
would increase by improving the parallelism exploited by the mapping, aug-
menting the genetic algorithm with parallelism enhancement improves the per-580

formance in both convergence performance and quality of the final solution.
For each tentative mapping solution produced during executing the HGA, the
parallelism of the mapping is enhanced. Algorithm 4 shows how to enhance the
parallelism of the mappings in the initial and offspring population. This is a
single-migration algorithm that migrates only one task, so that the HGA would585

not trap into local optima quickly. As shown in line 2 of Algorithm 4, for each
solution in the offspring population, the best migration strategy is found using
Algorithm 3. If the best migration does improve the cut, then it is carried out,
as lines 3-5 show.

Algorithm 4 Parallelism Enhancement

Input: the SDFG G(V,E), the parallelism graph PG(Vpg,Epg), the processor
set P and the child population C = {C0, C1, . . . , C|C|−1}.

Output: parallelism-optimized C.
1: for each chromosome Ci in C do
2: v′, p′, impr(v′, p′)←Migration(Ci).
3: if impr(v′, p′) > 0 then
4: migrate v′ to p′.
5: end if
6: end for

10. Experiments and Results590

In this section, we evaluate the proposed algorithms experimentally. All
algorithms are implemented in SDF3 [11]. Since the load balancing method
[12] matches the best with our work, we compare our work with it in this

20

section. Besides, the HEFT algorithm [15] is shown to outperform other list
scheduling algorithms and it can be adapted to the problem in this paper by595

forcing each task to be allocated to only one processor, so we also make a
comparison with it. Finally, the common genetic algorithm [18] that does not
use parallelism enhancement is used to evaluate the performance of HGA to
show the effectiveness of parallelism enhancement.

We use throughput and cut as performance metrics, and the runtime used by
each algorithm is also compared. The throughput denotes the long-term average
number of iterations completed per cycle, and it is computed by techniques
introduced in Section 5. The cut of the mapping is formalized by Equation 14,

Cut =
∑

eij∈Epg,mapping(vi) ̸=mapping(vj)

w(i, j) (14)

where Epg is the set of edges in the parallelism graph, w(i, j) is the edge weight of600

edge eij , and mapping(vi) represents the processor where task vi is mapped to.
Equation 14 means that the mapping divides the PG into multiple partitions,
and the sum of the weights of the edges crossing different partitions defines the
cut. In the experiment, we also extract the mapping from the schedule produced
by HEFT and compute the cut of the mapping to further reveal the relation605

between cut and throughput.
A set of practical applications are used for performance evaluation, including

H.263 encoder [32], samplerate conversion [33], MPEG-4 SP decoder [22], MP3
decoder[22], modem [33], TD-SCDMA [6] and WLAN 802.11a receiver [6]. For
simplicity, we denote these applications as #1-7 in the table when reporting610

the experiment result. According to the task number of the application, these
applications are categorized as two subsets, i.e., the small applications and the
large applications. The former three are classified as small applications, with
the task number being 5, 6 and 5 respectively, and the edge number being 7, 11
and 8. The last four are large applications, with the task number being 14, 16,615

16 and 24 respectively, and the edge number being 21, 35, 25 and 32. Limited
by the variability, these real applications are not enough to cover applications
that may appear in the future. For this reason, we have also used sets of synthe-
sized applications generated by the open source tool SDF3 [11] to evaluate the
effectiveness of the proposed methods. While generating SDFGs using SDF3,620

the sum of all entries of the repetition vector is set to be five times of the task
number. Other parameters of the application are set partly according to that of
real applications, e.g., the in/out-degree and rate. The in-degree and out-degree
are generated randomly with the average value and variation of 2, the minimum
value of 0 and the maximum value of 4. The production and consumption rates625

are generated randomly with the average and variation of 5 and 7, the minimum
value of 1 and the maximum value of 9. For each graph size, 200 SDFGs are
generated. For both real and synthesized applications, the task execution time
is uniformly distributed between 400 and 1000 in the experiment. All experi-
ments are carried out on an Intel Core i5 processor (2.60 GHz and 4 GB RAM)630

running 64 bits Windows 7.

21

10.1. Results of Synthesized Applications

In this subsection, we evaluate the proposed algorithms using sets of synthe-
sized applications. Three kinds of performance metrics are compared, namely,
the throughput (“Thr”), the cut value (“Cut”) of the mapping, and the run-635

time (“Time”) of the algorithm. In the following, all metrics of ILP, GPRA and
HEFT are normalized by that of LB, so metrics of LB all equal one.

In the first experiment, we evaluate these algorithms on sets of small prob-
lems, with the application size ranging from 5 to 15 and the processor number
ranging from 2 to 4. The results are shown in Table 1, where “tN” and “pN”640

denote the task number and processor number respectively.
The last row “Avg” of Table 1 summarizes the average performance. The

average throughput of ILP and GPRA are 1.174 and 1.141, being 18.23% to
14.10% higher than HEFT and LB. The average cut of HEFT and LB are 0.902
and 1, which are 9.2%-21.95% less than that of ILP and GPRA. These results645

demonstrate that optimizing the cut of the mapping performs better than load
balancing and HEFT in obtaining schedules with higher throughput.

The throughput of ILP and GPRA are similar, and their cut value are also
similar; however, the runtime of ILP is about 100 times larger than GPRA,
proving the effectiveness of GPRA and its advantages over ILP. Besides, using650

the cut to optimize the throughput is not an exact method, meaning that small-
er cut can still produce good result. As shown in the table, for the experiment
with 5-task and 4-processor, ILP and GPRA have the same average cut, but
the average throughput is different. However, as demonstrated by the experi-
ment, optimizing the cut provides better performance compared with available655

methods averagely.
The runtime of ILP and GPRA are higher than HEFT and LB. However,

the runtime of GPRA, LB and HEFT are less than several seconds in our ex-
periment, showing that GPRA is of practical usage. Differently, the runtime of
ILP is quite large for large-size problems, e.g., on the 4-processor platform, the660

runtime of ILP is about half minute for 15-task applications, and one hour for
20-task applications.

We have also recorded the probability when ILP and GPRA outperform LB
and HEFT in throughput. Experiment results show that for 73.2% and 66.4%
of the problems, ILP performs better than LB and HEFT, and for 61.3% and665

50.4% of the problems, GPRA performs better than LB and HEFT, which shows
that ILP and GPRA are more effective than LB and HEFT. Besides, it’s shown
that for 67.6% and 56.4% of the problems, ILP outperforms LB and HEFT by
more than 5%; and for 54.3% and 43.5% of the problems, GPRA outperforms
LB and HEFT by more than 5%;670

In the second experiment, we evaluate GPRA, LB and HEFT using sets of
large problems, with the application size ranging from 20 to 30 and the processor
number ranging from 6 to 8. Since ILP is time-consuming for large problems
and GPRA is as effective as ILP in terms of throughput, as demonstrated in
the former experiment, we do not test ILP in this experiment. Table 2 depicts675

the experiment results. As shown in the table, GPRA is also effective for large

22

Table 1: Normalized performance of the ILP-based algorithm, GPRA, HEFT and the load
balancing method on small problems.

tN pN
Thr Cut Time

ILP GPRA HEFT LB ILP GPRA HEFT LB ILP GPRA HEFT LB

5
2 1.066 1.048 0.987 1 1.041 1.028 0.849 1 5.902 4.784 0.905 1
4 1.198 1.208 0.719 1 1.024 1.024 0.641 1 4.057 3.727 0.876 1

10
2 1.120 1.070 1.077 1 1.143 1.132 1.016 1 9.765 8.904 1.109 1
4 1.305 1.218 0.949 1 1.095 1.088 0.845 1 129.6 9.357 0.812 1

15
2 1.092 1.038 1.098 1 1.164 1.156 1.080 1 10.304 6.853 0.738 1
4 1.263 1.262 1.128 1 1.132 1.126 0.978 1 3006 2.000 0.604 1

Avg 1.174 1.141 0.993 1 1.100 1.092 0.902 1 527.6 5.938 0.841 1

problems. By using GPRA, the solution quality in terms of throughput is
increased a lot compared with LB and HEFT. As shown in the last row of the
table, the average normalized throughput of GPRA is 1.161, being 15.06% and
16.10% higher than HEFT and LB. The cut value of GPRA is larger than both680

HEFT and LB, with the improvement being about 8%. It shows that optimizing
the cut value of the mapping leads to better mapping in throughput for large
problems. The runtime of GPRA is averagely 2.088 times of LB and 4.89 times
of HEFT. However, in all these experiments, GPRA only consumes about ten
seconds, and GPRA is even less time-consuming than LB for some problems,685

showing that it is useful for practical usage. Besides, experiment results show
that for 71.3% and 73.8% of the problems, GPRA performs better than LB and
HEFT; and for 63.0% and 61.6% of the problems, GPRA performs better than
LB and HEFT by more than 5%, showing that GPRA is more effective than
LB and HEFT.690

Table 2: Normalized performance of the ILP-based algorithm, GPRA, the list-based algorithm
and the load balancing method on large problems.

tN pN
Thr Cut Time

GPRA HEFT LB GPRA HEFT LB GPRA HEFT LB

20
6 1.189 1.011 1 1.092 0.936 1 3.463 0.558 1
8 1.235 0.912 1 1.071 0.890 1 3.460 0.557 1

25
6 1.117 1.045 1 1.082 0.981 1 1.965 0.443 1
8 1.183 0.983 1 1.071 0.943 1 1.974 0.430 1

30
6 1.099 1.099 1 1.089 0.998 1 0.835 0.292 1
8 1.140 1.003 1 1.074 0.959 1 0.830 0.280 1

Avg 1.161 1.009 1 1.080 0.951 1 2.088 0.427 1

Finally, we test the performance of HGA by comparing it with GPRA and
CGA on sets of large-size problems, with the processor number ranging from 4
to 8 and the application size ranging from 15 to 30. Parameters of both HGA
and CGA are configured the same, with the crossover probability and mutation
probability being 0.7 and 0.1 respectively.695

23

HGA outperforms the one-shot heuristic, i.e., GPRA, with the throughput
being increased by 11-50%, showing that despite the fact that the proposed
heuristic outperforms some available one-shot algorithms, it still can be im-
proved a lot, however, it still needs further research as to how to improve the
performance of the one-shot algorithm. It should be noted that such a compar-700

ison is not so fair, since the GA-based algorithm is time-consuming compared
with the one-shot algorithm. The genetic algorithm searches the solution space
and thus needs more computation time. For the problem solved in this paper,
the time spent on evaluating the solution constitutes the biggest part of the total
runtime, so the runtime of the genetic algorithm is roughly popuSize∗ iterNum705

times of the GPRA, where popuSize is the population size and iterNum is the
iteration number, e.g., for the problem with 20 offsprings and 100 iterations,
the runtime of the HGA is about 2000 times of the one-shot heuristic.

Fig. 6(a)-6(c) show the average performance improvement in terms of through-
put of HGA over CGA in each generation on platforms with different processor710

numbers. It should be noted that the runtime of HGA is only about 0.74% higher
than that of CGA even though it uses parallelism enhancement, since the run-
time of this extra operation is ignorable compared with other operations, which
makes the comparison fair enough. The horizontal axis and the vertical axis
of Fig. 6(a)-6(c) represent the generation number and the average throughput715

improvement respectively, and the number in the legend denotes the application
size in the corresponding experiment. For each problem instance, both HGA
and CGA generate 100 generations and the best solution in each generation is
recorded. Both HGA and CGA are executed three times for each problem in-
stance and the best solution is used to evaluate the performance. The results in720

Fig. 6(a)-6(c) show that HGA can generate better solutions compared to CGA
in terms of throughput, though the performance improvement varies with ap-
plication size and processor number. According to these results, a throughput
improvement of 3%-15% can be gained by using HGA. From these figures we can
also see that the throughput improvement by using HGA has a positive relation725

with the problem size, i.e., the application size and the processor number. As
shown in Fig. 6(b), the improvement for the 15-task applications is about 4% at
the last generation, while that of the 30-task applications is about 14%. Similar
relation can also be found in Fig. 6(c). The only exception exists when the
processor number is 4, as shown in Fig. 6(a), the performance improvements for730

the 15-task and 20-task applications are higher than the other two sets of appli-
cations. As the processor number increases, the performance improvement also
has an increasing trend except for small applications, i.e., the 15-task applica-
tions. For example, for the 25-task applications, the performance improvement
is about 4% in the last generation on the 4-processor platform, while that of735

platforms with 6 and 8 processors are 10% and 12% respectively. Similar trend
can be found for 20-task and 30-task applications, with the smallest applica-
tion being the exception. For platforms with more processors, the parallelism
is highly exploited for small-size applications, so the potential improvement is
limited. It shows that HGA is good at finding better solutions compared to740

CGA, especially for large problems that have a larger solution space. Besides,

24

for 95.4% of the problems, HGA performs better than CGA; and for 51.5% of
the problems, HGA outperforms CGA by more than 5%.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

Generation number

T
hr

ou
gh

pu
t i

m
pr

ov
em

en
t(

%
)

15
20
25
30

(a)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Generation number

T
hr

ou
gh

pu
t i

m
pr

ov
em

en
t(

%
)

15
20
25
30

(b)

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Generation number

T
hr

ou
gh

pu
t i

m
pr

ov
em

en
t(

%
)

15
20
25
30

(c)

Figure 6: Performance improvement of HGA over CGA on a 4-processor platform (a), 6-
processor platform (b) and 8-processor platform (c).

10.2. Results of Practical Applications

This subsection evaluates the performance of the proposed methods using745

real-life applications. Table 3 reports the experiment result of both small and
large applications using ILP, GPRA, LB and HEFT for the mapping problem. It
is demonstrated that ILP and GPRA outperform other two one-shot heuristics in
terms of throughput for real-life applications as they do for synthesized SDFGs.
As summarized in the last row of Table 3, the average normalized throughput of750

ILP and GPRA are 1.219 and 1.202 respectively, both of which are higher than
that of HEFT and LB, i.e., 0.964 and 1, showing that a throughput improvement
of over 20% can be gained using the proposed mapping strategy. Since both
ILP and GPRA optimize directly the cut while mapping the application, the
cut value of ILP and GPRA are higher than that of LB and HEFT, with an755

improvement of over 40%. The runtime of ILP is roughly the same as LB for
small applications, however, for large applications, it is quite high. Differently,
the runtime of GPRA is approximately the same as HEFT and smaller than
LB.

It should be noted that the average cut value of GPRA is 1.439, which is760

roughly the same as that of ILP, i.e., 1.439. Besides, the throughput of GPRA
and ILP are 1.202 and 1.219 respectively, showing that GPRA only slightly
deteriorates the throughput of ILP. However, the runtime of ILP is much higher
than GPRA, while the average runtime of ILP is 31.936, GPRA only takes
0.684. The above results show that GPRA is a good alternative of ILP.765

Noting that for some cases, smaller cut can lead to larger throughput, it
is because the proposed mapping strategy is inherently a heuristic, and maxi-
mizing the cut/parallelism of the mapping does not necessarily lead to optimal
throughput. In fact, enumerating all the solution space of a problem, it can
be found that there are solutions with less cut value and higher throughput770

compared with the solution produced my our methods. However, statistically,
maximizing the cut leads to better solutions, as demonstrated by the results.

25

Table 3: Normalized performance of GPRA, HEFT and the load balancing method on real
applications.

App pN
Thr Cut Time

ILP GPRA HEFT LB ILP GPRA HEFT LB ILP GPRA HEFT LB

#1
2 1.347 1.347 1.190 1 1.742 1.742 1.256 1 0.956 0.969 0.974 1
4 1.135 1.135 1.009 1 1.340 1.340 0.981 1 0.974 0.977 0.977 1

#2
2 1.105 1.069 1.023 1 1.154 1.138 1.055 1 1.017 1.033 1.093 1
4 1.271 1.260 0.951 1 1.105 1.105 0.926 1 1.156 1.142 1.049 1

#3
2 1.229 1.199 0.887 1 2.669 2.669 1.598 1 0.998 0.977 0.874 1
4 1.351 1.351 0.690 1 1.185 1.185 0.532 1 1.166 1.039 0.870 1

#4
2 1.047 1.133 0.968 1 1.152 1.143 0.915 1 1.022 1.034 1.082 1
4 1.323 1.065 1.320 1 1.097 1.093 1.024 1 13.635 1.015 1.210 1

#5
2 1.310 1.213 1.168 1 1.665 1.664 1.263 1 1.860 0.529 0.503 1
4 1.285 1.351 1.106 1 1.296 1.296 0.884 1 21.580 0.633 0.521 1

#6
2 1.152 1.085 1.012 1 1.423 1.422 1.080 1 1.142 0.046 0.034 1
4 1.217 1.215 1.007 1 1.241 1.240 0.983 1 390.066 0.071 0.037 1

#7
2 1.062 1.069 1.107 1 1.587 1.583 1.548 1 0.706 0.045 0.032 1
4 1.238 1.335 1.032 1 1.536 1.536 1.087 1 10.832 0.067 0.035 1

Avg 1.219 1.202 1.034 1 1.442 1.439 1.081 1 31.936 0.684 0.663 1

In the next experiment, we compare HGA with ILP/GPRA and CGA by
mapping large-size real applications onto a four-processor platform. Even though
HGA uses parallelism enhancement to improve the parallelism of each chromo-775

some, the runtime of HGA in the experiment is almost the same as CGA, with
a difference of only 1.53%, therefore, we treat the comparison of HGA and CGA
a fair one and ignore this difference.

In our experiment, using HGA can improve the throughput by 32%-39%
compared with ILP and GPRA for real applications. Similar with synthesized780

applications, this improvement is at the cost of a great deal of runtime. It also
shows that there is great potential to further improve the performance of the
one-shot heuristic; however, it remains further research.

Fig. 7 reports the performance improvement of HGA over CGA of large real
applications at each iteration. In the experiment, both HGA and CGA gradu-785

ally improve the solution and finally converge as iteration number increases. As
shown in the figure, HGA outperforms CGA in terms of throughput. For MP3
decoder, TD-SCDMA and WLAN 802.11a receiver, the throughput improve-
ment achieves 15.5% , 20.1% and 1.5% respectively. However, HGA cannot
further improve the performance compared with CGA for modem, since they790

converge to the same point. It should be noted that HGA converges quickly
than CGA for modem, while HGA converges at the six iteration, CGA con-
verges at the twenty iteration in the experiment. According to Fig. 7, the per-
formance improvement of HGA over CGA is application-dependent. For some
applications, the improvement is remarkable; however, it is minimal for other795

applications. Similar phenomenon also happens for synthesized applications.

26

The reason should depend on the different convergence speed of CGA and HGA
for a specific application. However, HGA outperforms CGA statistically, show-
ing that by searching the solutions with large cut value, better solutions can be
found and the convergence speed can be improved.800

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation number

T
hr

ou
gh

pu
t i

m
pr

ov
em

en
t (

%
)

MP3 decoder
modem
TD−SCDMA
WLAN 802.11a receiver

Figure 7: Performance improvement of HGA over CGA with respect to real applications.

11. Conclusions

This paper studies the duplication-free mapping of streaming applications
modeled by SDFGs onto MPSoCs with the objective of maximizing the long-
term throughput. The idea of maximizing the exploited parallelism in the map-
ping is utilized to solve this problem. A new model called Parallelism Graph,805

together with its construction algorithm, is proposed to model the inter-task
parallelism of the application. Based on the Parallelism Graph, the mapping
problem is transformed to partitioning the Parallelism Graph so as to maximize
the cut. An ILP formulation is introduced for this partitioning problem and the
ILP solver is utilized to solve it optimally. To reduce the complexity, a two-step810

heuristic GPRA is proposed to substitute the ILP-based method. Finally, we
also proposed a hybrid genetic algorithm that integrates the idea of augmenting
the parallelism of the solution. Extensive experiments are carried out on sets
of random applications and some real applications. Experiment results demon-
strate that the ILP-based algorithm and GPRA outperform the load balancing815

method and HEFT in terms of throughput; furthermore, the advantage of op-
timizing the cut in the mapping problem is also demonstrated. Besides, the
hybrid genetic algorithm is also shown to have better performance compared to
the common genetic algorithm that does not use parallelism enhancement.

References820

[1] A. K. Singh, M. Shafique, A. Kumar, J. Henkel, Mapping on multi/many-
core systems: survey of current and emerging trends, in: Proceedings of
the 50th Annual Design Automation Conference, ACM, 2013, pp. 1–10.

27

[2] J. L. Hennessy, D. A. Patterson, Computer architecture: a quantitative
approach, Elsevier, 2012.825

[3] S. Sriram, S. S. Bhattacharyya, Embedded multiprocessors: Scheduling
and synchronization, CRC press, 2012.

[4] G. Bilsen, M. Engels, R. Lauwereins, J. Peperstraete, Static scheduling of
multi-rate and cyclo-static dsp-applications, in: Proceedings of the Inter-
national Workshop on VLSI Signal Processing, IEEE, 1994, pp. 137–146.830

[5] Q. Tang, T. Basten, M. Geilen, S. Stuijk, J.-B. Wei, Task-fifo co-scheduling
of streaming applications on mpsocs with predictable memory hierarchy,
in: Fifteenth International Conference on Application of Concurrency to
System Design, IEEE, 2015, pp. 90–99.

[6] O. Moreira, H. Corporaal, Scheduling Real-Time Streaming Applications835

onto an Embedded Multiprocessor, Springer, 2014.

[7] M. Kudlur, S. Mahlke, Orchestrating the execution of stream programs on
multicore platforms, in: Proceedings of the ACM conference on program-
ming language design and implementation, 2008, pp. 114–124.

[8] M. I. Gordon, W. Thies, S. Amarasinghe, Exploiting coarse-grained task,840

data, and pipeline parallelism in stream programs, in: Symposium on archi-
tectural support for programming languages and operating systems, 2006,
pp. 151–162.

[9] G. F. Zaki, W. Plishker, S. S. Bhattacharyya, F. Fruth, Implementa-
tion, scheduling, and adaptation of partial expansion graphs on multi-845

core platforms, Journal of Signal Processing Systems (2016) 1–19 DOI:
10.1007/s11265-016-1107-8.

[10] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, J. Weglarz, Handbook
on scheduling: from theory to applications, Springer Science & Business
Media, 2007.850

[11] S. Stuijk, M. Geilen, T. Basten, Sdf3: Sdf for free, in: Sixth International
Conference on Application of Concurrency to System Design, Vol. 6, 2006,
pp. 276–278.

[12] S. Stuijk, T. Basten, M. Geilen, H. Corporaal, Multiprocessor resource al-
location for throughput-constrained synchronous dataflow graphs, in: Pro-855

ceedings of the 44th annual Design Automation Conference, ACM, 2007,
pp. 777–782.

[13] J. A. Ambrose, I. Nawinne, S. Parameswaran, Latency-constrained binding
of data flow graphs to energy conscious gals-based mpsocs, in: International
Symposium on Circuits and Systems, IEEE, 2013, pp. 1212–1215.860

28

[14] O. Sinnen, Task scheduling for parallel systems, Vol. 60, John Wiley &
Sons, 2007.

[15] H. Topcuoglu, S. Hariri, M.-Y. Wu, Performance-effective and low-
complexity task scheduling for heterogeneous computing, IEEE Transac-
tions on Parallel and Distributed Systems 13 (3) (2002) 260–274.865

[16] S. Venugopalan, O. Sinnen, Ilp formulations for optimal task scheduling
with communication delays on parallel systems, IEEE Transactions on Par-
allel and Distributed Systems 26 (1) (2015) 142–151.

[17] J. Choi, H. Oh, S. Kim, S. Ha, Executing synchronous dataflow graphs on
a spm-based multicore architecture, in: Proceedings of the 49th Annual870

Design Automation Conference, ACM, 2012, pp. 664–671.

[18] F. A. Omara, M. M. Arafa, Genetic algorithms for task scheduling problem,
Journal of Parallel and Distributed Computing 70 (1) (2010) 13–22.

[19] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, A. Tumeo, Ant colony heuris-
tic for mapping and scheduling tasks and communications on heterogeneous875

embedded systems, IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 29 (6) (2010) 911–924.

[20] D. Sha, H.-H. Lin, A multi-objective pso for job-shop scheduling problems,
Expert Systems with Applications 37 (2) (2010) 1065–1070.

[21] L. Wang, G. Zhou, Y. Xu, S. Wang, M. Liu, An effective artificial bee colony880

algorithm for the flexible job-shop scheduling problem, The International
Journal of Advanced Manufacturing Technology 60 (1-4) (2012) 303–315.

[22] M. Geilen, Synchronous dataflow scenarios, ACM Transactions on Embed-
ded Computing Systems 10 (2) (2010) 16.

[23] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, H. Corporaal,885

Schedule-extended synchronous dataflow graphs, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 32 (10) (2013)
1495–1508.

[24] E. A. Lee, D. G. Messerschmitt, Static scheduling of synchronous data flow
programs for digital signal processing, IEEE Transactions on Computers890

100 (1) (1987) 24–35.

[25] W. Thies, M. Karczmarek, S. Amarasinghe, Streamit: A language for
streaming applications, in: 11th International Symposium on Compiler
Construction, Springer, 2002, pp. 179–196.

[26] A. H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. J.895

Bekooij, B. D. Theelen, M. Mousavi, Throughput analysis of synchronous
data flow graphs, in: Sixth International Conference on Application of
Concurrency to System Design, IEEE, 2006, pp. 25–36.

29

[27] N. Bambha, V. Kianzad, M. Khandelia, S. S. Bhattacharyya, Intermedi-
ate representations for design automation of multiprocessor dsp systems,900

Design Automation for Embedded Systems 7 (4) (2002) 307–323.

[28] M. R. Garey, D. S. Johnson, Computers and intractability: a guide to the
theory of NP-completeness. 1979, San Francisco, LA: Freeman, 1979.

[29] Lindo api version 9.0, lindo systems inc.
URL http://www.lindo.com/905

[30] W. L. Winston, J. B. Goldberg, Operations research: applications and
algorithms, Vol. 3, Duxbury press Boston, 2004.

[31] J. P. Hespanha, An efficient matlab algorithm for graph partitioning, Uni-
versity of California. (2004) 1–8.

[32] H. Oh, S. Ha, Fractional rate dataflow model for efficient code synthe-910

sis, Journal of VLSI signal processing systems for signal, image and video
technology 37 (1) (2004) 41–51.

[33] S. S. Bhattacharyya, P. K. Murthy, E. A. Lee, Synthesis of embedded
software from synchronous dataflow specifications, Journal of VLSI signal
processing systems for signal, image and video technology 21 (2) (1999)915

151–166.

30

