
CA-MPSoC: An Automated Design Flow for Predictable Multi-processor Architectures

for Multiple Applications

A. Shabbir,a,1, A. Kumara,b,1, S. Stuijka,1, B. Mesmana,1, H. Corporaala,1

aEindhoven University of Technology Eindhoven, The Netherlands
bNational University of Singapore, Singapore

Abstract

Future embedded systems demand multi-processor designs to meet real-time deadlines. The large number of applications in these

systems generates an exponential number of use-cases. The key design automation challenges are designing systems for these

use-cases and fast exploration of software and hardware implementation alternatives with accurate performance evaluation of these

use-cases. These challenges cannot be overcome by current design methodologies which are semi-automated, time consuming and

error-prone.

In this paper, we present a fully automated design flow to generate communication assist (CA) based multi-processor systems

(CA-MPSoC). A worst-case performance model of our CA is proposed so that the performance of the CA-based platform can be

analyzed before its implementation. The design flow provides performance estimates and timing guarantees for both hard real-time

and soft real-time applications, provided the task to processor mappings are given by the user. The flow automatically generates a

super-set hardware that can be used in all use-cases of the applications. The software for each of these use-cases is also generated

including the configuration of communication architecture and interfacing with application tasks.

CA-MPSoC has been implemented on Xilinx FPGAs for evaluation. Further, it is made available on-line for the benefit of the

research community and in this paper, it is used for performance analysis of two real life applications, Sobel and JPEG encoder

executing concurrently. The CA-based platform generated by our design flow records a maximum error of 3.4% between analyzed

and measured periods. Our tool can also merge use-cases to generate a superset hardware which accelerates the evaluation of these

use-cases. In a case study with 6 applications, the use-case merging results in a speed up of 18 when compared to the case where

each use-case is evaluated individually.

Key words: Multi-processor, Multiple Applications, Performance Analysis, Automated Design Flow, Communication Assist

1. Introduction

Modern multimedia embedded systems have to support a

large number of independent applications. In the area of

portable consumer systems, such as mobile phones, the num-

ber of applications doubles roughly every two years and the

introduction of new technology solutions is increasingly driven

by applications [18]. Tile-based multi-processor platforms [47,

23, 24, 12, 39] are increasingly being used in modern embed-

ded systems to meet tight timing and high performance require-

ments of these large number of applications and their use-cases.

A use-case is a combination of concurrently executing applica-

tions. The number of such potential use-cases is exponential in

the number of applications that are present in the system.

In general, mapping applications onto tile-based platforms is

considered difficult. However, streaming applications can be

described in a data flow like manner and the computational ker-

nels of this flow can be easily mapped to suitable processing

elements. In essence, these systems trade architectural com-

plexity for communications, spreading work across a number

Email addresses: a.shabbir@tue.nl (A. Shabbir), akash@nus.edu.sg

(A. Kumar), s.stuijk@tue.nl (S. Stuijk), b.mesman@tue.nl (B. Mesman),

h.corporaal@tue.nl (H. Corporaal)

of sparsely connected small tiles rather than among richly con-

nected functional units of a monolithic, wide core. In order to

make use of tile-based platforms easier, inter-tile communica-

tion for these architectures should be predictable, fast and easy

to program.

In [9], a multi-processor platform is introduced that de-

couples the computation and communication of applications

through a hardware communication assist (CA). This decou-

pling off-loads the communication load from the processor,

thereby improving the performance significantly. Further, this

makes it easier to provide tight timing guarantees on the com-

putation and communication tasks that are performed by the

applications running on the platform. Several CA architec-

tures [33, 4, 35, 37] have been presented in the literature. How-

ever, it is very time consuming to map applications on these

platforms due to the unavailability of platform generation tools.

Furthermore, it is very difficult to program them as the user has

to configure the communication infrastructure in addition to the

application functionality.

Manual design efforts are error prone and consume a lot

of time. To worsen matters, most of these devices have very

short product life-cycle; shorter time-to-market for these sys-

tems poses a challenge for the designers. The designers have to

Preprint submitted to Systems Architecture March 16, 2010

verify each use-case. For example, Bluetooth 2.5 has to meet its

specification during each combination of applications. It should

perform while receiving a call or sending text messages or even

taking a picture. So there is a need for automated tools which

can reduce the design generation and verification time.

There are some multi-processor design tools [20, 31, 37, 44],

but most of them lack support for multiple applications let alone

multiple use-cases, and require manual steps. There is a tool

described in [26] that supports platform generation for multi-

ple applications and their use-cases but it does not support CA-

based platforms. Automated platform generation reduces errors

in the design and thus saves time for design iterations.

Automatic platform generation is very helpful for the design-

ers but often they are also interested in knowing about the ex-

pected performance of the applications before the actual syn-

thesis of the platform. This allows the designers to choose the

design which meets their requirements. There are some perfor-

mance evaluation tools [22, 29, 46, 48], but most of them are

for single application. There is a tool [28] for performance anal-

ysis for multiple applications but it does not take into account

the communication architecture details.

In this paper, we present a design flow (CA-MPSoC) that

takes models of multiple applications and their task to proces-

sor mappings, as input and gives expected performance of the

applications. Synchronous Data Flow graphs [30] (SDFGs) are

used to model the applications. These application models are

refined with the details of the communication architecture and

actor-to-processor mappings. The refined graphs are used to

predict the performance of multiple applications. If the de-

signer is satisfied with the performance estimates, he/she can

generate CA-based platform by using our CA-MPSoC. As far

as we know, this is the first design flow which can generate a

CA-based platform. Following are the key contributions of the

paper.

Performance analysis: The flow provides the expected perfor-

mance of applications on the platform, given the fact that

the mappings of the tasks on the processors is already pro-

vided. The applications are presented as SDFGs and archi-

tecture details are added to these graphs. An SDF model of

CA has been introduced and it is used to generate architec-

ture aware SDFGs. The tool provides both the worst case

and average case performance results from these graphs.

Worst case results can be used for hard real-time applica-

tions whereas the average case can be used for soft real-

time applications.

Automatic CA-based multi-processor generation: An auto-

mated design flow that generates multi-processor systems,

directly from the architecture aware application graphs.

The flow also generates the communication infrastructure

so that the designer does not worry about it. It generates a

super-set hardware which can be used for all the use-cases.

The software for each use-case is generated individually.

This reduces the verification time of all the use-cases of

the applications. The designer can verify that their appli-

cations will meet the required performance in all possible

combinations of applications.

SDF Task Interface: Another contribution of this work is def-

inition of an interface for the tasks such that the semantics

of SDF behaviour are maintained during execution. So

when an application specification includes high-level lan-

guage code corresponding to tasks in the application, the

source code is automatically added to the desired proces-

sor.

Software generation: The software for all the processors is

automatically generated in the flow. Further, the required

communication APIs are also generated. This includes

configuration of communication channels, setting up con-

nections, and management of memory used for communi-

cation. The programmer does not bother about these con-

figurations and can concentrate on the functionality of the

applications.

The above contributions are essential to further research in de-

sign automation community since the embedded devices are in-

creasingly becoming multi-featured. Our flow allows designers

to evaluate the performance of applications on the architecture

before actually synthesizing it. It also allows the designers to

generate the platform for either hard real-time or soft real-time

systems with given sets of actor to processor mappings. CA-

MPSoC is evaluated on two real life applications Sobel and

JPEG Encoder. The maximum error between estimated and

measured periods of these applications is about 3.4% for soft

real-time analysis. Furthermore, platform generation for mul-

tiple uses-cases is evaluated with a mobile phone case study

consisting of 6 applications. The merging of use-cases gives a

platform which supports all the use-cases. This merging results

in a speed up of 18 as compared to the case where the use-cases

are evaluated individually. The tool is made available on line [7]

for the benefit of the research community.

The rest of the paper is organized as follows. Section 2 re-

views the related work for existing CA architectures, perfor-

mance analysis and automatic platform generation tool flows.

In Section 3 we describe our architecture template. Section 4

introduces SDFGs. Section 5 presents SDF model of our CA.

In Section 6, we show how the SDF model of CA can be in-

corporated in the application model and how performance of

applications can be predicted. Section 7 gives details of the

steps performed in our design flow to generate the platform.

Section 8 describes details of tool implementation. Section 9

presents results of the experiments performed to evaluate our

design flow. Section 10 concludes the paper and gives direc-

tions for future work.

2. Related Work

2.1. Communication Assist

The communication controller presented in [37] implements

FIFO based communication between tasks. Writes to the FI-

FOs are always local to a processor whereas reads are always

remote (from the FIFO memory of a producer). The program-

ming model is based on Kahn Process Network [21] (KPN).

2

Due to FIFO based communication, out-of-order access, re-

reading, and skipping is only possible after storing the data lo-

cally in the consuming task. In our CA-based platform, all the

reads/writes to the memory are local to the producer/consumer

resulting in saving of the memory space.

In [32], the authors have presented SystemC model of a CA,

but there are some key differences with our CA. They propose

separate communication and computation memories whereas

in our case, the data memory is also used as communication

memory. In [13], the authors have presented a synchronization

scheme for embedded shared memory systems. They propose

channel controllers for synchronization of data between tasks.

They have channel controllers per channel; our implementation

has one controller for all the channels, resulting in area effi-

cient implementation. Authors in [6] describe communication

between Nested Loop Programs (NLP) in multi-processor sys-

tems. The algorithm is implemented in software and can handle

out-of-order access to the buffer. Both producer and consumer

have their respective write and read windows for mutually ex-

clusive access. However, the algorithm is limited to single as-

signment codes. Our CA does not impose such restrictions.

A KPN is derived from NLP in [49]. In KPN communication

between the tasks is arranged via FIFO buffers. When the con-

suming task has to read a location multiple times, the consumer

stores the array in an additional buffer. Instead of FIFO buffers,

we use circular buffers and also there is no need to copy values

in an additional buffer. The work by [17] is quite similar to [49]

and uses a read and write window.

CELL BBE [15] implements communication between pro-

cessing elements (SPEs) and the external memory through

DMA controllers called Memory Flow controller (MFC). The

key difference between MFC and our CA is the fact that in MFC

the synchronization between the memories has to be performed

explicitly by the SPEs. In case of CA the synchronization is

taken care of by the CA itself and the processor is freed from

the synchronization overhead.

In the KPN model of computation, processes communicate

with each other by sending data to each other over edges. A

process may write to an edge whenever it wants. When it tries

to read from an edge which is empty, it blocks and must wait till

the data is available. The amount of data read from an edge may

be data-dependent. This allows modeling of any continuous

function from the inputs of the KPN to the outputs of the KPN.

It has been proved in literature that it is not possible to an-

alyze properties like the throughput or buffer requirements of

a KPN at design time [14]. On the other hand, SDF is a more

restrictive model. A task can only execute if it has input data

and space available at the output. The size of input and out data

is also fixed so throughput analysis and buffer capacity analysis

of SDF graphs is possible statically, which makes SDF more

attractive than the KPN.

Note that others in fact impose restrictions on the KPN

graphs that are accepted by their tools. These constraints turn

these graphs into cyclo-static dataflow graphs. Such a cyclo-

static dataflow graph can always be coverted into an SDF and

mapped using our flow. Hence it may seem that others use a

more flexible model, but in fact their restrictions imply that use

the same model as we do.

2.2. Design Flows for Platform Generation

The problem of mapping an application to an architecture

has been widely studied in literature. One of the recent works

most related to our research is ESPAM [37]. This uses Kahn

process networks (KPNs) [21] for application specification. In

our approach, we use SDFGs for application specification in-

stead. Further, our approach supports mapping of multiple ap-

plications, while ESPAM is limited to single application. This

difference is imperative for developing modern embedded sys-

tems which support more than tens of applications on a single

MPSoC. The same difference can be seen between our approach

and the one proposed in [20], where an exploration framework

to build efficient FPGA multi-processors is proposed.

The Compaan/Laura design flow presented in [44] also uses

KPN specification for mapping applications to FPGAs. How-

ever, their approach is limited to a processor and coprocessor.

Our approach aims at synthesizing complete MPSoC designs

supporting multiple processors. Another approach for gen-

erating application-specific MPSoC architectures is presented

in [31]. However, most of the steps in their approach are done

manually. Exploring multiple design iterations is therefore not

feasible. In our flow, the entire flow is automated, including

the generation of the final bit-file that runs on the FPGA. Yet

another flow for generating MPSoCs for FPGAs has been pre-

sented in [27]. However, that flow focuses on generic MPSoCs

and not on application-specific architectures. There is also a

tool described in [26] that supports platform generation for mul-

tiple use-cases but it does not support CA-based platforms.

Xilinx provides a tool-chain as well to generate designs with

multiple processors and peripherals [50]. However, most of

the features are limited to designs with a bus-based processor-

coprocessor pair with shared memory. It is very time consum-

ing and error prone to generate an MPSoC architecture and

the corresponding software projects to run on the system. In

our flow, an MPSoC architecture is automatically generated to-

gether with the respective software projects for each core.

Finally, none of the above flows support a CA-based plat-

form. In fact our flow is the first to generate CA-based multi-

processor platforms. Communication plays an important role

in the parallelization of applications. The communication to

computation ratio determines the justification of splitting task

between the processors. Our CA in turn exposes more paral-

lelism in the applications.

In [8], the authors present a design flow that generates a

multi-core system for multimedia applications. Their work is

quite similar to ours. However, there are some key differences.

Firstly they use mesh network for interconnection whereas we

use point-to-point networks. Secondly, they use profiling to di-

mension their system. We, on the other hand use static analysis

techniques. Profiling based techniques are significantly slower

than analysis based techniques. Also their synthesis flow gener-

ates platforms for average case performance whereas our flow

can generate platforms for both worst case and average case

performance. Lastly, our flow supports multiple applications

3

CA

PE

CA

network

PE

T
0

T
1

NI FIFOs NI FIFOs

1

2

3

4

5

DMDM

Figure 1: Proposed CA-based platform.

concurrently executing on the platform while [8] is for single

application.

2.3. Performance Analysis

In [34], the authors propose to analyze the performance of a

single application modeled as an SDFG by decomposing it into

a homogeneous SDF graph (HSDFG) [43]. The throughput is

calculated based on analysis of each cycle in the resulting HS-

DFG [10]. However, this can result in an exponential number

of vertices [38]. Thus, algorithms that have a polynomial com-

plexity for HSDFGs have an exponential complexity for SD-

FGs. This approach is not practical for multiple applications.

For multiple applications, an approach that models resource

contention by computing worst-case-response-time (WCRT)

for TDMA scheduling (requires preemption) has been analyzed

in [3]. A similar worst-case analysis approach for round-robin

is presented in [16], which also considers non-preemptive sys-

tems, but suffers from the same problem of lack of scalabil-

ity. Real-time calculus has also been used to provide worst-case

bounds for multiple applications [22, 48, 29]. The analysis is

very intensive and requires a very large design-time effort. On

the other the worst-case-waiting-time analysis used in our tool

is very fast and simple.

A common way to use probabilities for modeling dynamism

in application is using stochastic task execution times [1, 41,

42]. The probabilistic approach [25] used by us uses probabil-

ities to model the resource contention and provides estimates

for the throughput of applications. This approach is orthogo-

nal to the approach of using stochastic task execution times.

To the best of our knowledge, there is no efficient approach

of analyzing multiple applications on a non-preemptive hetero-

geneous multi-processor platform. A technique has been pre-

sented in [28] to also model and analyze contention, but the ap-

proach used in this paper is much better. The technique in [28]

looks at all possible combinations of actors blocking another

actor. Since the number of combinations is exponential in the

number of actors mapped on a resource, the analysis has an

exponential complexity. The approach used in this paper has

linear complexity in number of actors.

3. Architecture Template

The architecture template used in our platform is depicted in

Figure 1. It consists of a processing element (PE), a communi-

cation assist (CA), Data memory (DM) and Network interface

FIFOs (NI FIFO). The CA transfers data between the DM and

the NI FIFO. The NI FIFOs are connected through a partial

point-to-point network. The structure of the network is out of

the scope of this paper.

Scalability of partial point-to-point networks has been an is-

sue as they require storage to deal with bursts. FSL buses from

Xilinx is one example. However, the point-to-point networks

used in our template do not require storage. This means that

cost of a connection is not very high. The CAs can transfer the

data directly from the data memory of sending tile to the data

memory of the receiving tile, i.e. they do not require storage in

the point-to-point network itself.

3.1. Processing Element

The processing elements used in our template are simple

RISC based processors. RISC processors are the processing

element of choice for tile-based platforms [47]. No caches are

attached to the processor to have predictable execution trace.

The PE has local instruction and data memories. The instruc-

tion memory is connected to the PE through a bus whereas the

access to the data memory is through the communication assist.

Note that we chose microblaze processors from Xilinx whereas

there is work [2] where picoblaze processors are used. Our syn-

thesis flow is not restricted to any one processor type so choice

of processor is not important.

The PE is non-preemptive and can execute only single thread.

This simplifies the architecture of the PE. Preemption requires

extra hardware and is costly in terms of area. Furthermore, non-

preemptive scheduling algorithms are easier to implement as

compared to their preemptive counter parts and have dramat-

ically lower overhead at runtime [19]. In high performance

embedded processors (like SPEs in Cell Broad Band Engine

and graphics processors), non-preemptive systems are preferred

over preemptive systems.

3.2. Memories

We use a single port instruction memory, which is directly

connected to the PE. The data memory (DM) used in our tem-

plate is a dual ported memory as depicted in Figure 1. The

CA has exclusive access to one port of this memory. The sec-

ond port is connected to the PE through the CA. The choice of

dual ported memory may seem expensive, however we use it to

make the access of the memory to CA and PE as fast as possi-

ble. The other option could be an arbiter to resolve the access

between the two but for predictable performance, we preferred

dual ported memory over a combination of an arbiter and a sin-

gle ported memory. Single ported memory can introduce stall

cycles for the processor which inturn makes the execution time

of the task executing on the processor, unpredictable. Further,

it is very difficult to model an unpredictable arbiter so we de-

cided to use dual ported DM. Next subsection will clarify this

configuration.

4

Addr_tr
CA

cntrl FSM
Pointer
Store

NI FIFOs

DM

P

Figure 2: CA architecture.

3.3. Communication Assist

Figure 2 shows the global view of our CA (more details about

the architecture can be found in [40]). It performs the following

basic functions

1. It configures NI FIFO channels and their corresponding

buffers in DM.

2. It accepts data transfer requests from the attached PE

and splits them into local memory requests and remote

requests (to other tiles). The address translation unit

“Addr tr” shown in Figure 2 performs this task.

3. Local memory requests are simply bypassed to the data

memory.

4. Remote memory requests are handled through a round

robin arbiter. Every two cycles, a 32 bit word is trans-

ferred from the buffer in the memory to NI FIFO channels

and vice versa.

5. The buffers implemented in the memory are circular

buffers. The pointers needed for circular buffer manage-

ment are updated and stored in the CA. The number of NI

FIFO channels can be greater than or equal to number of

buffers in the data memory.

Our communication assist acts as an interface that provides a

link between the NoC and the sub systems (PE and memory).

It also acts as memory management unit that helps a processor

keep track of its data structures. As a result, it decouples com-

munication from computation and relieves the processor from

data transfer functions. Our programmable CA uses a shared

data and buffer memory. This leads to lower memory require-

ment for the overall system and to a lower communication la-

tency.

Figure 1 shows two CA-based multi-processor tiles and

demonstrates the steps involved during data transactions be-

tween the tiles. Assume tile T0 is executing a producer task

and tile T1 is executing a consumer task. The primitives used

for communication are known as the C-HEAP [36] protocol.

The producer task executing on tile T0 requests space. The CA

returns a pointer to the buffer in the memory (step 1 in Fig-

ure 1). The PE processes the data as local memory access. It

then requests the CA that it wants to release the space. The CA

transfers the data to the designated NI FIFO (step2). The data

is transported through the network (step 3). The CA of the con-

sumer task executing in tile T1 receives the data and places that

in the memory (step 4). The consumer task requests the CA

about the availability of the data. The CA sends the pointer to

this data and the PE can access it like a local memory request

(step 4). The consumer task processes the data and releases the

space so that the CA can use this space for future data recep-

tions (step 5).

Figure 2 depicts the hardware components of our CA. The

pointers used for circular buffer management are stored in a

pointer store unit “Pointer Store”. Every clock cycle, the CA

checks whether there is data to be transferred between the DM

and the NI FIFOs. The monitoring of the NI FIFOs is round

robin, which makes the architecture predictable. This pre-

dictability allows us to give tight bounds on the reported per-

formance of the platform.

Before we can demonstrate how the communication between

the tiles and the timing behaviour of task execution can be an-

alyzed in terms of timing, first we need to introduce SDFGs in

the next section.

4. SDF Graphs

Synchronous data flow graphs are often used for modeling

modern DSP applications [43] and for designing concurrent

multimedia applications implemented on multi-processor plat-

forms. Both pipelined streaming and cyclic dependencies be-

tween tasks can be easily modeled in SDFGs. Tasks are mod-

eled by the vertices of an SDFG, which are called actors. SD-

FGs allow analysis of a system in terms of throughput and

other performance properties, such as latency and buffer re-

quirements [45].

B
10

4
3

3A

1 5

1
1

C

1

4

7
4 2

D

6

Figure 3: Example of an SDF graph.

Figure 3 shows an example of an SDFG. There are four ac-

tors in this graph. As in a typical data-flow graph, a directed

edge represents the dependency between tasks. Tasks also need

some input data (or control information) before they can start

and usually also produce some output data; such terms of infor-

mation are referred to as tokens. Actor execution is also called

firing. An actor is called ready when it has sufficient input to-

kens on all its input edges and sufficient buffer space on all its

output channels; an actor can only fire when it is ready.

The edges may also contain initial tokens, indicated by bul-

lets on the edges, as seen on the edge from actor C to actor A

in Figure 3. Buffer sizes may be modeled as a back-edge with

initial tokens. In such cases, the number of tokens on this edge

indicates the buffer size available. When an actor writes data

to such channels, the available size reduces; when the receiving

actor consumes this data, the available buffer increases, mod-

eled by an increase in the number of tokens.

5

One of the most interesting properties of SDFGs relevant to

this paper is throughput. Throughput is defined as the inverse of

the long term period, i.e. the average time needed for one itera-

tion of the application. An iteration is defined as the minimum

non-zero execution such that the original state of the graph is

obtained. This is the performance parameter we use in this pa-

per.

One of the methods to find the throughput of an SDFG is to

convert it into HSDF graph and then find the throughput of the

resulting graph. An HSDF graph is a special kind of SDFG

in which execution of an actor results in consumption of one

token from every incoming edge of the actor and production of

one token on every outgoing edge of the actor. The throughput

is calculated based on the analysis of each cycle in the resulting

HSDFG. The maximum period of these cycles is the inverse of

throughput and is called MCM, given by

MCM(G) = maxc∈GCM(c) (1)

CM(c) =
∑

v on c

WCET (v)/tokens(c) (2)

here WCET is worst case execution time of each actor v, c is

one of the cycles in the graph and tokens are the number of

initial tokens in the cycle.

The CA is also modeled as an SDF actor so that methods

like MCM can be used to measure the performance of these

combined graphs of applications and architectural components.

In the next section, we present SDF model of our CA.

5. SDF Model of CA

CA

11

1

ca
t 1

11

1

B
b

Bc

Figure 4: SDF model of CA.

A predictable system allows the derivation of a conservative

lower bound on the throughput and a conservative upper bound

on the end-to-end latency. To achieve this goal, accurate an-

alytical models of applications and architectural components

are necessary so that performance estimates can be made be-

fore synthesis of the platform. In multimedia applications, tasks

can be modeled as actors of SDFG. Tasks like Descrete cosine

transform (DCT), Color Conversion (CC) are some of the ex-

amples. The synchronization between these actors takes place

on token granularity. A token can be a pixel, a macro-block or

a frame.

The application SDF model can be refined to include the

mapping decisions, buffer sizes and the timing impact of archi-

tectural components. This results into a combined SDFG of the

application and the architecture with a predictable behaviour.

We call it an architecture aware SDFG. Our CA can be mod-

eled as an actor with a self edge (see Figure 4). The self edge

is given one initial token such that the next execution of the ac-

tor can not start before the previous execution has finished. As

described earlier, the CA polls the NI FIFO channels in a round

robin fashion. Every channel requires two cycles. During the

first cycle the CA checks whether there is a word to be trans-

ferred from the output buffer to the channel or from channel to

the input buffer. The second cycle is required for the transfer.

As the number of channels per CA increases, the response time

of the CA gets larger. The execution time of CA actor tca can

be calculated using equation 3:

tca = 2 × NC (3)

where NC are the number of NI FIFO channels the CA has to

manage. Each channel takes 2 cycles so we multiply it with

number of channels.

In CA-based platform, the CA lies between NI FIFO chan-

nels and data memory of the processor. The CA transfers data

between NI FIFO channels and buffers in the memory. Simi-

larly, in SDF model, each CA actor is connected with task actor

while the other side of CA actor is connected with the NI FIFO

channels. The depth of the NI FIFOs is modeled with the ini-

tial tokens Bc as shown in Figure 4. The rate at this edge is one

word as each execution of the CA actor transfers one word from

buffer to the NI FIFO or vice verse. Note that the direction of

this edge will reverse in case of an input buffer. Similarly Bb

models the buffer space claimed by the processor for reading or

writing. The rate at this edge is also one as one word space is

released with each execution of CA.

The application model is transformed into an architecture

aware SDF model. The architecture aware SDF model enables

us to predict the performance of applications before actually

implementing them in hardware. Now that we have the SDF

models in place, we demonstrate the design time timing analy-

sis of these models.

6. Performance Analysis

The transformation of an SDFG into HSDFG can result in

an exponential number of vertices in the resultant graph. Each

actor in HSDFG consumes and produces one token during each

execution. If an actor in SDFG consumes n number of tokens,

then the resulting HSDFG will model this with n actors, each

consuming one token. Thus algorithms (for finding the through-

put) that have polynomial complexity for HSDFGs will have

exponential complexity for SDFGs. The situation gets worse

when mapping and other architectural details are added to the

graphs. When modeling communication, CA actors are added

and for modeling resource dependencies extra edges are added.

For multiple applications, the graphs become very complex and

MCM based methods cannot work. A technique has been pro-

posed in [45] to compute throughput directly on SDFGs. For

real life application graphs, this technique is faster than the

MCM based methods.

We will use JPEG encoder as a running example through-

out this paper, to show the transformation into our architecture

6

13220

209505420
64

4446

get_MB

VLC

CC

DCT

768 128 64

6464

DCT

CC

VLC

ca_3bca_4a

ca_3a

ca_2aca_1a ca_2b

4

64

1024

4
get_MB

1024

464

44

4

4

4

768
4

4

44 4

4

768

64

2

2 4 4

128

4 4
13220
+36

4446
+72

20950

+72

5420
+36

44 64

6464
4

4

4

4 4

128 64 4

64 4

4

4

4
64

6464
4

64

Figure 5: SDF graph of JPEG encoder and its transformation into CA-based

platform.

aware SDFG and to show how we estimate the performance of

these graphs using the analysis techniques.

The upper part of Figure 5 shows SDF model of JPEG en-

coder. It is split into four actors. Each actor is mapped on

one processor of the platform. The four actors are macro-

block sampling (get MB), color conversion (CC), discrete co-

sine transform (DCT) and variable length coding (VLC). The

first actor get MB parses the input BMP file and sends macro-

blocks to the CC actor. Each macro-block is 16×16 pixels and

3 such macro-blocks are sent to the CC (one each for R, G and

B pixels). This equates to 768 pixels. The CC actor converts

the RGB format into 4 luminance Y, and two Cr, Cb chromi-

nance macro-blocks. These 8×8 macro-blocks (384 pixels) are

fed to the DCT actor which is the most compute intensive task

of JPEG encoder. The DCT actor sends these 6 macro-blocks

one by one (64 pixels each time) to the VLC actor where each

of these macro-blocks is variable length encoded. The worst-

case-execution times of the actors (in number of clock cycles)

are obtained through profiling and are also shown in the graph.

Note that this graph does not model communication delay and

only the execution times of the actors are modeled here.

To analyze this application when mapped on our CA-based

platform, the graph is transformed into the one shown on the

bottom of Figure 5. Every channel in the upper graph has been

mapped to an independent CA actor. The execution time of

each CA actor is calculated by equation 3. For example, the

CC actor sends 64 pixels to the DCT actor. The CA attached to

CC actor has two channels (ca 2a and ca 2b). So the execution

time of each CA actor is 4 cycles. Every 4 cycles, 4 pixels (1

word=4 pixels) are transferred as shown in Figure 5.

After this graph transformation, we can use either average

case analysis for soft real-time systems or use the worst-case-

waiting time analysis for the hard real-time systems.

6.1. Average-case Analysis

In [25], the author presents a technique for performance anal-

ysis of multiple applications executing concurrently on a multi-

processor platform. The technique named Iterative Probabilis-

tic Performance Prediction (IP3) is particularly suitable for

non-preemptive PEs and is based on a probabilistic model of the

contention on the shared resources. When actors from different

or same applications share a processor, they are executed in an

orderly fashion depending upon the scheduling policy. Each ac-

tor has to wait for its turn before it can execute. The time spent

by an actor in contention is added to its execution time, and the

total gives its response time:

tresp = texec + twait (4)

The twait is the time that is spent in contention when waiting

for a processor resource to become free. (This time may be

different for different arrivals of a repetitive task.) The response

time, tresp indicates how long it takes to process an actor after

it arrives at a PE. When there is no contention, the response

time is simply equal to the execution time. The authors of [25]

use probabilities to predict the waiting times of the actors on

the PEs and provide quite accurate results. However, use of

probabilistic model means that they can not give guarantees on

their performance estimates.

Actor

Continue
iterating?

Processor

level prob

analysis

Updated
Waiting
Time

Yes

No

Exec. time
Exec prob
Wait prob

Results
Ready

Compute throughput and
blocking Probabilities

App1.c App2.c

Application Profiling

processor
Actor to

Mapping

Actor execution times

App0.c

Application Graphs

Architecture Aware Application

Graphs

Figure 6: Performance evaluation using iterative probability method. Waiting

times and throughput are updated until needed.

We use the IP3 to predict the performance of applications

mapped on our CA-based platform. Figure 6 shows our per-

formance evaluation methodology. Application code is profiled

and xml files containing the actor execution times are obtained.

These files are updated with mapping information and architec-

ture aware SDFGs are obtained. Additional actors are added to

model the communication. The architecture aware SDF model

is input to the tool. The CA is modeled as an independent ac-

tor so the CA actors are not shared in the IP3. The execution

7

times of the actors in the applications are replaced with the re-

sponse times calculated with the iterative probabilistic predic-

tion. These application models are then fed to SDF3 [46] tool

to compute the throughput of the individual graph. The updated

actor execution times, execution probabilities and waiting prob-

abilities are used to find the new processor level probabilities.

Waiting times are updated and the loop continues until the num-

ber of iterations are finished.

As stated earlier, this technique is based on probabilistic

waiting times so it can not provide guarantees on its timing re-

sults. It is however quite fast and can also be used for run-time

analysis.

6.2. Worst-case Analysis

Besides the iterative technique, the worst-case-waiting-time

approach [16] is also used to give guarantees on the perfor-

mance. The worst-case-waiting-times for non-preemptive sys-

tems for FCFS as mentioned in [16] are computed by using the

following formula

twait =

n∑

i=1

texec(ai) (5)

where actors ai for i = 1, 2, 3, ...n are mapped on the same re-

source (i.e processor). The waiting times are added to the exe-

cution times of the application actors in the architecture aware

application graphs. The execution times of the CA actors are

left unchanged because the CA actors are not shared. These

updated architecture aware graphs are then used to find the

throughput using SDF3. It is intuitive to judge that this method

will give pessimistic results for large number of applications.

However, the results can be used for hard real-time applications.

7. Design Flow

<sdf name="jpeg" type="G">

<actor name="CC" type="A0">

<port name="in0" type="in" rate="128" datatype="char"/>

<port name="out0" type="out" rate="64" datatype="char"/>

<executionTime time="4446"/>

<processor type="proc_0" default="true">

<functionName funcname="CC"/>

</actor>

<actor name="DCT" type="A1">

<port name="in0" type="in" rate="64" datatype="char"/>

<port name="out0" type="out" rate="64"datatype="short"/>

<executionTime time="20950"/>

<processor type="proc_1" default="true">

<functionName funcname="DCT"/>

</actor>

...

<channel name="ch0" srcActor="CC" srcPort="out0"

dstActor="DCT" dstPort="in0"/>

...

Figure 8: Snippet of JPEG application specification.

Once the user is satisfied with the performance analysis re-

sults, he/she can generate the complete CA-based platform us-

ing our design flow. We present CA-MPSoC, a design flow that

takes in application(s) specifications and generates the entire

CA-based MPSoC, specific to the input application(s) together

with corresponding software projects for automated synthesis.

This allows the design to be directly implemented on the tar-

get architecture. Figure 7 depicts our system design method-

ology. The application-descriptions are specified in the form

of SDFGs, which are used to generate the hardware topology.

Figure 8 shows an example of application description. It forms

an important part of the flow. While the specification shown in

Figure 8 is obtained through application profiling, it is also pos-

sible to use tools to obtain the SDF description for an applica-

tion from its code directly. Compaan [44] is one such example

that converts sequential description of an application into con-

current tasks. These can be then converted into SDFGs easily.

The application-descriptions, mapping information (actor-to-

processor) and source code of each application are input to our

tool. The source code is already partitioned and each actor is in

the form of a function call with arguments being the input and

output to the actor.

7.1. H/W Generation

During hardware generation, the IP cores of the processor,

CA, and memories are connected according to the mapping in-

formation. A CA is connected with each processor to take care

of the communication between the processors. The number of

NI FIFO channels and the number of buffers (the CA has to

manage) are also generated according to edges in the architec-

ture aware SDF graphs.

As the generated hardware supports multiple use-cases, so

we employ the use-case merging technique [26] and modify

certain parts to incorporate CA buffers. Each use-case requires

a certain hardware topology to be generated. In addition to that,

software is generated for each processor. Figure 9 shows an ex-

ample of two use-cases that are merged. The figure shows two

use-cases A and B, with different hardware requirements that

are merged to generate the design with minimal hardware re-

quirements to support both. The combined hardware design is a

super-set of all the required resources such that all the use-cases

can be supported. The reason to use a super-set hardware is the

fact that while multiple applications are active concurrently in

a given use-case, different use-cases are active exclusively.

The algorithm to obtain the minimal hardware to support all

use-cases is described in Algorithm 1. The algorithm iterates

over all use-cases to compute their individual resource require-

ments. This is, in turn, computed by using the estimates from

the application requirements. While the number of processors

and CA buffers needed is updated with a max operation (line

10 and line 11 in Algorithm 1), the number of CA channels

is added for each application (indicated by line 13 in Algo-

rithm 1). The total CA channel requirement of each applica-

tion is computed by iterating over all the buffers and adding a

unique edge in the communication matrix for them. The com-

munication matrix for the respective use-cases is also shown in

Figure 9.

While there are in total three CA channels between CA 0 and

CA 1, only two are used (at most) at the same time. There-

fore, in the final design only two CA channels are produced

8

Program code
for processors

H/W Description
for IP Cores

1

1

b1

a1

2

A0

A1

1

b0

1
a0

1

2

d0

proc 0

a0 a1 CA

CAproc 3

d0

CA

CA proc 2

c0 c1

b0 b1

proc 1

2
1

c0 c1
2

2

2

1

1

a0

b0

c0

a12

2

c1
2 2 b1

1

1

CA

P

CA
P

P
CA

Performance Analysis

IP cores
Library

Performance
estimates

CA based Platform Generation

Specification of Applications Application code
(Task Level)

Mapping

Commercial Synthesis tool

Figure 7: Design flow.

between them. The number of CA buffers required are maxi-

mum needed for all the use-cases. For example, CA 2 requires

2 buffers for use-case A and one in use-case B however, in the

super-set hardware two buffers are reserved for CA 2. Note that

the CA can use the same buffer as input or output. The con-

figuration of CA binds a buffer in the memory with a NI FIFO

channel. There are limits to the number of use-cases that can be

mapped to hardware and to avoid these limits certain heuristics

have been proposed in [26].

7.2. S/W Generation

// Functional definition of an SDF-actor

void <functionName>(datatype *in0, datatype *in1,

....., datatype *inN,datatype *out0,

datatype *out1,....., datatype *outM){

...

...

}

Figure 10: The interface for specifying functional description of SDF-actors.

Software generation includes configuration of buffers be-

tween the actors, data type declarations of the ports of the actors

and code needed for SDF actor execution. The software project

for each core is produced and the task files are copied into the

project folder. The xml file also specifies the processor on which

the actor has been mapped.

If an application specification also includes high-level lan-

guage code corresponding to actors in the application, this

source code can be automatically added to to the desired pro-

cessor. To realize this, we have defined an interface such that

the SDF behaviour is maintained during execution. The number

Algorithm 1 Generate communication matrix for CA channels

and number of CA buffers.
1: {// Let Xi j denote the number of CA channels needed for processor Pi to

P j overall}

2: Xi j = 0 {//Initialize the communication matrix to 0}

3: Nproc = 0 {//Initialize number of processors 0}

4: Nca−bu f f ers = 0 {//Initialize number of CA buffers 0}

5: for all Use-cases Uk do

6: Yi j {//Yi j stores the number of CA channels needed for Uk }

7: Nproc,UseCase = 0 {//Initialize processor count for use-case to 0}

8: Nca−bu f f ers,UseCase = 0 {//Initialize CA buffers for use-case to 0}

9: for all Applications Al do

10: Nproc,UseCase = max(Nproc,UseCase ,Nproc,Al) {//Update processor count

for Uk}

11: Nca−bu f f ers,UseCase =max(Nca−bu f f ers,UseCase ,Nca−bu f f ers,Al){//Update

CA buffers count for Uk}

12: for all Channels c in Al do

13: Ycsrccdst = Ycsrccdst + 1 {//increment CA channel count}

14: end for

15: end for

16: Nproc = max(Nproc,Nproc,UseCase {//Update overall processor count}

17: Nca−bu f f ers = max(Nca−bu f f ers ,N,UseCase {//Update overall CA buffer

count}

18: for all i and j do

19: Xi j = max(Xi j,Yi j)

20: end for

21: end for

{//Nproc is now the total number of processors needed}

{//Xi j is now the total number of CA channels needed}

{//Nca−bu f f ers is now the total number of CA buffers needed}

9

0 1 2

0
1
2

0 1 2

0
0 0

0 0
1
01

3

3

0
1

2 0 0
0
0

0

CA0 CA1

CA2

Proc 1Proc 0

Proc 2

0 1 2

0
1
2

0 1 2

0
0 0

0 01
1

2 0

33 2

Use−case A

CA0 CA1

CA2

Proc 1Proc 0

Proc 2

Merged Design

Proc 3

CA3

CA0 CA1

CA2

Proc 1Proc 0

Proc 2

Use−case B

Proc 3

CA3

No of CA buffers
No of CA buffers

No of CA buffers

3 3

CA0 CA1 CA2 CA3

3
CA0 CA1 CA2

1

23 3

CA0 CA1 CA2 CA3

0 1 2

0
1
2

0 1 2

0
0 0

0 0
1
02

3

3

0
1

2 0 0
0
0

1

3

Figure 9: An example of showing how the combined hardware for different use-cases is generated. The corresponding communication matrix and no. of buffers are

also shown for each hardware design.

of input parameters of an actor function is equal to the number

of incoming edges and the number of output parameters is equal

to the number of output edges. The interface is shown in Fig-

ure 10. The array ∗ini is for input tokens consumed from i-th

incoming edge. where the array length is equal to the size of

buffer associated with the edge. Similarly, ∗outi is an array of

output tokens that are written during one execution of the an

actor. The application xml file indicates the function name that

corresponds to application actor.

Figure 8 shows an example for the DCT actor of JPEG en-

coder application. The function has an input channel from the

CC module and the data produced during execution is written to

the output channel to VLC module. Therefore the function defi-

nition of this actor only has one input and one output parameter

as shown in Figure 11.

Figure 11 shows the c-code generated automatically from our

tool. Both actors are executing on different processors. The data

types specified in the xml file are used to determine the buffer

space needed for the particular buffer. Buffers are configured

for each channel. The size for each buffer inside the data mem-

ory is determined by multiplying the data type and rate asso-

ciate with the port. For example, the size of output buffer in CC

task is 64 bytes (64 × 1bytes). Configuration of buffer also in-

cludes the direction of the buffer, the NI FIFO ID number and

the physical address of the buffer inside the memory.

The claimwritespace command looks for available space in

the output buffer. Similarly the claimreadspace checks whether

the required number of tokens are available for processing. The

buffers are identified by their ids. The reason to check the avail-

ability of output space before the input space is because our

SDF model of execution is conservative. Both commands are

non-blocking. So an actor might not be able to execute if any of

its incoming buffers does not have sufficient tokens. The same

holds when the output buffers of an actors are full. While this

does not cause any problem when only one actor is mapped on

the processor, in the case of multiple actors, the other possi-

bly ready actors might not be able to execute while processor

sits idle. To avoid this, claimreadspace and claimwritespace

commands have been implemented as non-blocking so that if

any of claimspace commands is unsuccessful, the processor is

not blocked. Note that the command overhead is fixed and is

added to the execution time of the actors. It is implementation

dependent and we explain more about it in Section 9.

After the function processing, the releasewritespace com-

mand indicates the CA to transfer the data to the next actor. The

release commands update the read/write buffers so that they can

be used for further receive/send operations.

8. Tool Implementation

In this section, we describe the tool we developed based on

our flow to target Xilinx FPGA architecture. The processors

in the CA-MPSoC are mapped to Microblaze processors [50].

The communication links are mapped onto fast simplex links

(FSL). These are unidirectional point-to-point communication

channels used to perform fast communication. The FSL depth

is set to one as this is the minimum depth available for these

buses. As explained earlier, we do not require any storage in

the point-to-point networks in our proposed design. However,

it is not possible to have FSL links with zero storage so it is an

implementation dependent restriction.

Example architecture for the JPEG application platform is

shown in Figure 12 according to the specification in Figure 8.

This consists of several Microblazes with each actor mapped to

10

//Code generated for Color conversion task

char* in0;int size_out=rate_out*sizeof(char);

char* out0;int size_in=rate_in*sizeof(char);

Config(buffer_id0,base_addr_out,size_out,out,ni_fifo_id_out);

Config(buffer_id1,base_addr_in,size_in,in,ni_fifo_id_in);

out0=claimwritespace(buffer_id_0,size_out);

in0=claimreadspace(buffer_id_1,size_in);

CC(in0,out0);

releasewritespace(buffer_id0);

releasereadspace(buffer_id1);

//Code generated for DCT task

char* out0;int size_out=rate_out*sizeof(short);

char* in0;int size_in=rate_in*sizeof(char);

Config(buffer_id0,base_addr_out,size_out,out,ni_fifo_id_out);

Config(buffer_id1,base_addr_in,size_in,in,ni_fifo_id_in);

out0=claimwritespace(buffer_id0,size_out);

in0=claimreadspace(buffer_id1,size_in);

DCT(in0,out0);

releasewritespace(buffer_id0);

releasereadspace(buffer_id1);

Figure 11: Snippet of c-code generated from architecture aware SDFG of JPEG

encoder.

MB0 MB2MB1 MB3
DCT VLCCCget_MB

DDR

RAM
SysACE

CF Card

UART Timer

CA_1 CA_2CA_0 CA_3

OPB

Figure 12: Generated hardware from the example xml file.

a unique processor, with additional peripherals such as Timer,

UART, SysACE, and DDR RAM. While the UART is useful for

debugging the system, the SysACE compact flash card allows

for convenient performance evaluation for multiple use-cases

by running continuously without external user interaction. The

timer module and DDR RAM are used for profiling the appli-

cation and for external memory access, respectively.

In our tool, in addition to the hardware topology, the corre-

sponding software for each processing core is also generated

automatically. Routines for measuring performance, as well as

sending results to the serial port and CF card on-board are also

generated for MB0.

Our software generation ensures that the tokens are read from

(and written to) the appropriate FSL link in order to maintain

progress and to ensure correct functionality. Writing data to

the wrong link can easily throw the system in deadlock. XPS

project files are also automatically generated to provide the nec-

essary interface between hardware and software components.

9. Experiments and Results

In first part of this section, we evaluate our tool flow with

two real life applications. A CA-based platform is generated to

run these applications concurrently. The period of these appli-

cations is compared with the period computed through analy-

sis techniques described earlier. In the second part, we evaluate

our tool with a mobile phone case study consisting of 6 applica-

tions. In each use-case we enable a subset of these applications.

We also show how our tool generates a super-set hardware that

supports large number of use-cases. The software for each use-

case is generated at run-time, and enables us to verify these

use-cases in very short time.

9.1. Real Life Applications

We have implemented two real life applications (JPEG en-

coder, Sobel) to evaluate our tool. A CA-based platform con-

sisting of 4 microblaze processors and 4 CAs is generated. Both

JPEG encoder and the Sobel models are based on pixel level

granularity. Details about the JPEG encoder have been given in

previous sections. Now we briefly describe the Sobel filer.

320

77

77

GX

ABS

GY

6

6

6

6

1

1

get_pixels

123

1

1

320
+72

get_pixels
6

1

1 1 6

1 6 1 1 1 1 1

1

1

77
+72

77
+72

123
+72

4

4

ca_0a ca_1a GX ca_1b ca_3a

ca_2a

11 1 1

1 1

1

6

1 1 1

1

1
11

ca_0b GY ca_2b ca_3b

ABS

11

1

1

1

111116

6

1 6

8

611 1 1 1 1

4

4

4

4 4

4

1

1 1

1

1
1

8
8

8

Figure 13: SDFG of Sobel and its transformation into CA-based platform.

Sobel is extensively used in image processing, particularly

within edge detection algorithms. Technically it is a discrete

differentiation operator and computes the approximation of the

gradient of the image. The reference implementation of Sobel is

mapped on a 4 microblaze platform. Figure 13 shows the SDF

model of Sobel. The first actor (get pixels) opens the input file

stored in the CF card and loads it into the data memory. It then

forwards 6 pixels each to the connected actors. These actors

(GX,GY) find the gradient of the image in x and y direction

respectively. Finally the fourth actor (ABS) finds the absolute

value of the gradients computed by the preceding actors.

Both applications are concurrently executed on the platform.

The application graphs along with mapping decisions, buffer

sizes and communication actors for JPEG encoder and Sobel

are shown in Figure 5 and Figure 13 respectively. Worst-case-

task-execution times (WCET in clock cycles) of the actors are

specified inside the circles in the graphs. Self edges are re-

moved for more visibility in the Figures. The response time of

each CA is calculated using equation 3.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

JPEG
Encoder

Sobel

P
e

ri
o

d
 o

f
A

p
p

lic
a

ti
o

n
s
 (

N
o

rm
a

liz
e

d
 t

o
 F

P
G

A
 p

e
ri
o

d
)

Applications

Comparison of Period: Computed vs measured
JPEG Encoder and Sobel executing concurrently

FPGA
Iterative Analysis

Worst-case-waiting-time Analysis

1
2

3
6

1
0

1
2

6
8

1
0

1
4

0
3

9
2

2
0

4
4

0

2
1

1
3

5

2
3

5
4

7

Figure 14: The period of concurrently executing Sobel and JPEG encoder ap-

plications as measured and analyzed.

As described earlier, the CA manages the buffer memory

for the tasks. The processor asks for pointers to these buffers

through commands (claimreadspace or claimwritespace). It

takes certain time for the CA to update the pointers and send

them to the processor. This overhead is implementation depen-

dent. A command overhead of 36 cycles has been added to the

execution time of the actors. This overhead is multiplied with 2

for CAs having two channels.

The period (in clock cycles) of these applications for one

iteration is calculated using the IP3 and worst-case-waiting-

time techniques. In one iteration, the JPEG encoder encodes

3 macro-blocks (R,G,B) and Sobel filters one pixel. The mea-

sured period (in clock cycles) from FPGA implementation is

also shown in Figure 14 (at 50 MhZ clock frequency, this

equates to the encoding of 4 QCIF frames/second). We can

increase the clock frequency of microblaze to support low res-

olution video also.

The predicted periods are normalized with the measured pe-

riod from the FPGA implementation. Our predicted period us-

ing IP3 is very close to the measured one whereas worst-case-

waiting-time technique is about 15% higher than the measured

period. We define error as the difference between predicted

and measured periods. For JPEG and Sobel applications the

maximum error between the corresponding predicted and mea-

sured periods for IP3 is 3.4%. In this particular example, the

difference between predicted and measured periods for worst-

case-waiting technique is quite low. This means that the same

hardware can be used for both average case and worst case per-

formance.

We implemented our CA-based platform on an XUP Virtex II

Pro Development Board with an xc2vp30 FPGA. Xilinx EDK

8.2i and ISE 8.2i were used for synthesis and implementation.

All tools run on a dual core 2.0 GHz with 1GB of RAM. Ta-

ble 1 shows the resources claimed by a four channel CA. The

CA takes only 5% of the resources of this medium sized FPGA.

The synthesized frequency of CA is 108 MHz. The area con-

Table 1: FPGA resources for a four channel CA.

Proposed design used resources

of xc2vp30

No. of Slices 624 5%

No. of Slice flip flops 452 1%

No. of 4 input LUTs 1846 6%

Figure 15: JPEG encoded image. Figure 16: Output of Sobel Filter.

sumed by the CA-based platform is shown in Table 2. The plat-

form consists of 4 microblaze processors and four CAs. Fig-

ures 15, 16 show the output of the JPEG encoder and Sobel

filter respectively.

Table 2: Area overhead for CA-based platform executing Sobel and JPEG en-

coder applications on Xilinx FPGA (xc2vp30)

Architecture Slices Bram LUT Used FPGA

resources

CA-based 6,779 56 11,212 49%

9.2. Support for Multiple Use-cases & use-case merging

In this case study we consider 6 applications - video encoding

(H.263) [16], video decoding [45], JPEG decoding [11], mp3

decoding [45], modem [5] and regular call. We first constructed

all possible use-cases giving 63 use-cases in total. However,

some of these use-cases are not realistic. For example, JPEG

decoding is unlikely to run simultaneously with video encoding

or decoding, because when a user is recording or viewing video,

it is not possible to browse through pictures. Similarly it is

also not possible to listen to mp3 songs while talking to some

body on phone. This gives us 23 realistic usecases as shown in

Table 3. Each active application in a use-case is represent with

a “1” at its position.

In this experiment, our tool generates a platform that can sup-

port all of these 23 realistic use-cases. The platform consists

of 5 microblaze processors and 5 communication assists. The

platform occupied 97% of the available FPGA resources.

Our approach is very fast and is further optimized by modi-

fying only the relevant software and keeping the same hardware

design for different use-cases. The software synthesis includes

configuration of all CA channels, buffer sizes, and incorpora-

tion of appropriate task calls. Since software synthesis step

takes only about 25 sec in our experiment, the entire experi-

ment for 23 design points takes only about 9 minutes.

Manual design effort will involve separate hardware genera-

tion and software configuration for each use-case. In contrast,

12

Table 3: Realistic use-cases for mobile phone case study.

usecase H263 H263 JPEG modem Phone mp3

number decoder encoder decoder call decoder

1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 1 1 0 0 0 0

4 0 0 1 0 0 0

5 0 0 0 1 0 0

6 1 0 0 1 0 0

7 0 1 0 1 0 0

8 1 1 0 1 0 0

9 0 0 1 1 0 0

10 0 0 0 0 1 0

11 1 0 0 0 1 0

12 0 1 0 0 1 0

13 1 1 0 0 1 0

14 0 0 1 0 1 0

15 0 0 0 1 1 0

16 1 0 0 1 1 0

17 0 1 0 1 1 0

18 1 1 0 1 1 0

19 0 0 1 1 1 0

20 0 0 0 0 0 1

21 0 0 1 0 0 1

22 0 0 0 1 0 1

23 0 0 1 1 0 1

our tool takes a mere 100 ms to generate the complete design.

The Xilinx tool takes about 36 minute to generate the bit file

together with the appropriate instruction and data memories for

each core in the design. The time spent on the exploration is an

important aspect when estimating the performance of big de-

signs. The 6 application system is also designed by hand to

estimate the time gained by using our tool. The hardware and

software development took about 4 days in total to obtain an

operational system.

Table 4: Time taken for platform generation in the experiment with ten appli-

cations.

Manual Design Generating Complete

Single Design Experiment

Hardware Generation 2 days 40ms 40ms

Software Generation 2 days 60ms 60ms

Hardware Synthesis 36:00 36:00 36:00

Software Synthesis 0:25 0:25 09:34

Total Time 4 days 36:25 45:34

Iterations 1 1 23

Average Time 4 days 36:25 1:59

Speedup - 1 18.36

This hardware/software co-design approach results in a

speed-up of about 18 when compared to generating a new hard-

ware for each iteration. As the number of design points are

increased, the cost of generating the hardware becomes neg-

ligible and each iteration takes only about 25 seconds. This

study shows the usefulness of our use-case merging approach

for problems like DSE for multi-processor systems.

10. Conclusion

In this paper, we present a design flow to generate multi-

processor platforms for multiple applications. We also provide

analysis techniques to predict the performance of the applica-

tions before the genration of the platform. The design flow can

cater for both hard and soft real time applications, given the

fact that the mappings of actors to processors are provided by

the user. CA-MPSoC allows performance exploration of the ap-

plications and their use-cases. It is fully automated and requires

minimal manual effort. It also generates the configuration soft-

ware for the communication infrastructure.

The design flow is evaluated on two real life applications

Sobel and JPEG Encoder. The maximum error between es-

timated and measured periods of these applications is about

3.4%. Furthermore, platform generation for multiple uses-cases

is evaluated with 6 applications from a mobile phone case study.

The platform generation takes milliseconds in contrast to days

needed for manual platform genration. The use-case merging

evaluates all the 23 realistic use-cases of the case-study by us-

ing a single hardware platform. This results in a speed up of 18

when compared to the case where hardware for each use-case

is generated individually and then evaluated. The tool is made

available on line [7] for the use by the research community.

One of the limitations of the design flow is that it does not in-

clude Network-on-chip (NoC) based designs. It is worth men-

tioning that our CA can easily be integrated in a NoC. In the

future, we intend to include an NoC also in our design flow. We

also want to extend the design flow with automated mapping

decisions, so that mapping of the actors to the processors can

also be optimized.

References

[1] Abeni, L., Buttazzo, G., Superiore, S., Anna, S., 1999. Qos guarantee

using probabilistic deadlines. In: In Proceedings of the 11th Euromicro

Conference of Real-Time Systems. pp. 242–249.

[2] Astarloa, A., Zuloaga, A., Bidarte, U., Martı́n, J. L., Lázaro, J., Jimenez,

J., 2007. Tornado: A self-reconfiguration control system for core-based

multiprocessor csopcs. Journal of Systems Architecture 53 (9), 629–643.

[3] Bekooij, M., Hoes, R., Moreira, O., Poplavko, P., Pastrnak, M., Mes-

man, B., Mol, J. D., Stuijk, S., Gheorghita, V., van Meerbergen, J., 2005.

Dataflow analysis for real-time embedded multiprocessor system design.

Dynamic and Robust Streaming in and between Connected Consumer-

Electronic Devices, pp. 91–108.

[4] Bekooij, M., Moreira, O., Poplavko, P., Mesman, B., Pastrnak, M., van

Meerbergen, J., 2004. Predictable embedded multiprocessor system de-

sign. In: Proc. of SCOPES, LNCS. Vol. 3199. Springer, pp. 77–91.

[5] Bhattacharyya, S. S., Murthy, P. K., Lee, E. A., 1999. Synthesis of embed-

ded software from synchronous dataflow specifications. J. VLSI Signal

Process. Syst. 21 (2), 151–166.

[6] Bijlsma, T., Bekooij, M., jansen, P., Smit, G., 2008. Communication be-

tween nested loop programs via cicular buffers in an embedded multipro-

cessor system. In: Proc. of 11th SCOPES. Vol. 296. pp. 33–42.

[7] CA-MPSoC, 2009. Please email at a.kumar@tue.nl for username and

password.

URL http://www.ics.ele.tue.nl/˜akash

[8] Cho, M. H., Cheng, C.-C., Kinsy, M., Suh, G. E., Devadas, S., 2008. Di-

astolic arrays: throughput-driven reconfigurable computing. In: ICCAD

’08: Proceedings of the 2008 IEEE/ACM International Conference on

Computer-Aided Design. IEEE Press, Piscataway, NJ, USA, pp. 457–464.

[9] Culler, D., Singh, J., Gupta, A., 1999. In: Parallel Computer Architecture:

a hardware/software approach. Morgan Kaufmann Publishers, Inc.

13

[10] Dasdan, A., 2004. Experimental analysis of the fastest optimum cycle

ratio and mean algorithms. ACM Trans. Des. Autom. Electron. Syst. 9 (4),

385–418.

[11] de Kock, E. A., 2002. Multiprocessor mapping of process networks: a

jpeg decoding case study. In: ISSS ’02: Proceedings of the 15th interna-

tional symposium on System Synthesis. ACM, New York, NY, USA, pp.

68–73.

[12] Ferrari, A., Sangiovanni-Vincentelli, A., 1999. System design: Tradi-

tional concepts and new paradigms. In: Proc. of ICCD. pp. 2–12.

[13] Ganwal, O. P., Niewland, A., Lippens, P., 2001. A scalable and flexible

data synchronization scheme for embedded HW-SW shared memory sys-

tems. In: Proc. of ISSS. pp. 1–6.

[14] Geilen, M., Basten, T., 2003. Requirements on the execution of kahn pro-

cess networks. In: Proc. of the 12th European Symposium on Program-

ming, ESOP 2003. Springer Verlag, pp. 319–334.

[15] Gswind, M., 2006. Chip multi-processing and the cell broad band engine.

In: Proc. of CCF. pp. 1–8.

[16] Hoes, R., 2005. Predictable dynamic behaviour in noc-based multiproces-

sor system-on-chip. Master’s thesis, Eindhoven University of Technology,

Eindhoven (The Netherlands).

[17] Huang, K., D.Grunert, Thiele, L., 2007. Windowed FIFOs for FPGA-

based multiprocessor systems. In: Proc. of IEEE 7th ASAP. pp. 36–41.

[18] ITRS, 2007. International techniology reoad map for semiconductors

2007. system drivers.

[19] Jeffay, K., Stanat, D. F., Martel, C. U., 1991. On non-preemptive schedul-

ing of periodic and sporadic tasks. pp. 129–139.

[20] Jin, Y., Satish, N., K. Ravindran, K. K., 2005. An automated exploration

frame work for fpga based soft multiprocessor systems. In: Proc. of 3rd

CODES+ISSS CA, USA. Vol. 3199. pp. 273–278.

[21] Kahn, G., 1974. The semantics of a simple language for parallel pro-

gramming. In: Proc. of IFIP Congress. North-Holland Publishing Co.,

pp. 471–475.

[22] Kai, R., Marek, J., Rolf, E., 2003. A formal approach to mpsoc perfor-

mance verification. Computer 36 (4), 60–67.

[23] Karthikeyan, S., Ramadass, N., Haiming, L., Changkyu, K., Jaehyuk, H.,

Doug, B., W., K. S., R., M. C., 2003. Exploiting ilp, tlp, and dlp with

the polymorphous trips architecture. SIGARCH Comput. Archit. News

31 (2), 422–433.

[24] Ken, M., Tim, P., Nuwan, J., Ron, H., J., D. W., Mark, H., 2000. Smart

memories: a modular reconfigurable architecture. SIGARCH Comput.

Archit. News 28 (2), 161–171.

[25] Kumar, A., 2009. Analysis, design and management of multimedia mul-

tiprocessor systems. Ph.D. thesis, Eindhoven University of Technology,

Eindhoven (The Netherlands).

[26] Kumar, A., Fernando, S., Ha, Y., Mesman, B., Corporaal, H., 2008. Mul-

tiprocessor systems synthesis for multiple use-cases of multiple applica-

tions on fpga. ACM Trans. Des. Autom. Electron. Syst. 13 (3), 1–27.

[27] Kumar, A., Hansson, A., Huisken, J., Corporaal, H., 2007. An fpga design

flow for reconfigurable network-based multi-processor systems on chip.

In: Proc. of Design Automation and Test in Europe. Los Alamitos, CA.

IEEE Computer Society, p. 117122.

[28] Kumar, A., Mesman, B., Corporaal, H., Theelen, B., Ha, Y., 2007. A

probabilistic approach to model resource contention for performance es-

timation of multi-featured media devices. In: DAC ’07: Proceedings of

the 44th annual Design Automation Conference. ACM, New York, NY,

USA, pp. 726–731.

[29] Kunzli, S., Poletti, F., Benini, L., Thiele, L., 2006. Combining simulation

and formal methods for system-level performance analysis. In: DATE

’06: Proceedings of the conference on Design, automation and test in Eu-

rope. European Design and Automation Association, 3001 Leuven, Bel-

gium, Belgium, pp. 236–241.

[30] Lee, E., Messerschmitt, D. G., jan 1987. Static scheduling of synchronous

dataflow programs for digital signal processing. In: Proc. of IEEE Trans-

actions on Computers. Vol. 36. IEEE, pp. 24–35.

[31] Lyonnard, D., Yoo, S., Baghdadi, A., Jerraya, A., 2001. Automatic gener-

ation of application-specific architectures for heterogeneous multiproces-

sor system-on-chip. In: Proc. of Design Automation and Test in Europe.

ACM Press, New York, p. 518523.

[32] Moonen, A., Bekooij, M., van den Berg, R., van Meerbergen, J., 2007.

Decoupling of computation and communication with a communication

assist. In: Proc. of DSD. pp. 63–68.

[33] Moonen, A., Berg, R. V., Bekooij, M., Bhullar, H., van Meerbergen, J.,

2005. A multi-core architecture for in-car digital entertainment. In: Proc.

of GSPx Conference.

[34] Neal, B., Vida, K., Mukul, K., Shuvra, B. S., 2003. Intermediate rep-

resentations for design automation of multiprocessor dsp systems 7 (4),

307–323.

[35] Niewland, A., Brockmeyer, E., Corporaal, H., 2007. The impact of higher

communication layers on NOC supported MP-SoCs. In: Proc. of NOCS.

IEEE, pp. 107–116.

[36] Niewland, A., Kang, J., Gangwal, O., Sethuraman, R., Busa, N., Goosens,

K., Llopis, R. P., Lippens, P., 2002. C-HEAP: A heterogeneous multi-

processor architecture template and scalable and flexible protocol for the

design of embedded signal processing systems. In: Proc. of DAC. pp.

233–270.

[37] Nikolov, H., Stefanov, T., Deprettere, E., 2006. Multi-processor system

design with ESPAM. In: Proc. of CODES+ISSS. pp. 211–216.

[38] Pino, J. L., Lee, E. A., 1995. Hierarchical static scheduling of dataflow

graphs onto multiple processors. In: IEEE International Conference on

Acoustics, Speech, and Signal Processing. pp. 2643–2646.

[39] Sangiovanni-Vincentelli, A., Martin, G., Nov/Dec 2001. Platform-based

design and software design methodology for embedded systems. In: IEEE

Design and Test of Computers. pp. 23–33.

[40] Shabbir, A., Stuijk, S., Kumar, A., Theelen, B., Mesman, B., Corporaal,

H., may 2010. A predictable communication assist. In: Accepted for pub-

lication in ACM International Confence on Computing Frontiers. ACM.

[41] Shaoxiong, H., Gang, Q., S., B. S., 2007. Probabilistic design of multi-

media embedded systems. ACM Trans. Embed. Comput. Syst. 6 (3), 15.

[42] Sorin, M., Petru, E., Zebo, P., 2004. Schedulability analysis of applica-

tions with stochastic task execution times. ACM Trans. Embed. Comput.

Syst. 3 (4), 706–735.

[43] Sriram, S., Bhattacharyya, S., 2000. Embedded multiprocessors; schedul-

ing and synchronization. marcel dekker, new york, usa.

[44] Stefanov, T., Zissulescu, C., Turjan, A., Kienhuis, B., Deprette, E., 2004.

System design using kahn process networks: The compan/laura approach.

In: Proc. of Design Automation and Test in Europe. pp. 340–345.

[45] Stuijk, S., Geilen, M., Basten, T., 2006. Exploring trade-offs in buffer re-

quirements and throughput constraints for synchronous data flow graphs.

In: Proc. of Design Automation Conference. Vol. 3199. ACM press, New

York, USA, pp. 899–904.

[46] Stuijk, S., Geilen, M., Basten, T., 2006. S DF3 : SDF for free. In: Appli-

cation of Concurrency to System Design, ACSD 06, Proceedings. IEEE.

pp. 276–278.

[47] Taylor, M. B., Kim, J. S., Miller, J. E., Wentzlaff, D., Ghodrat, F., Green-

wald, B., Hoffmann, H., Johnson, P., Lee, J.-W., Lee, W., Ma, A., Saraf,

A., Seneski, M., Shnidman, N., Strumpen, V., Frank, M., Amarasinghe,

S. P., Agarwal, A., 2002. The raw microprocessor: A computational fabric

for software circuits and general-purpose programs. IEEE Micro 22 (2),

25–35.

[48] Thiele, L., Chakraborty, S., Naedele, M., 2000. Real-time calculus for

scheduling hard real-time systems. In: in ISCAS. pp. 101–104.

[49] Turjan, A., Kienhuis, B., Deprettere, E., 2004. An integer linear program-

ming approach to classify the communication in process networks. In:

Proc. of SCOPES. pp. 62–76.

[50] Xilinx, 2007. Resource pages[online].

URL Available from: http://www.xilinx.com

14

