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Abstract

We present a concurrency model that allows reasoning
about concurrency in executable specifications of streaming
applications. It provides measures for five different concur-
rency properties. The aim of the model is to provide in-
sight into concurrency bottlenecks in an application and to
provide global direction when performing implementation-
independent concurrency optimization. The model focuses
on task-level concurrency. A concurrency optimization
method and a prototype implementation of a supporting
analysis tool have been developed. We use the model and
tool to optimize the concurrency in a number of multime-
dia applications. The results show that the concurrency
model allows target-architecture-independent concurrency
optimization.

Keywords. streaming, task-level concurrency, multi-processing,
concurrency measures, system-on-chip design

1 Introduction

The consumer-electronics market is characterized by
rapid developments in embedded multimedia systems. In
recent years, we have for instance seen successful mar-
ket introductions of portable MP3 players, digital cameras
and set-top boxes. The pace at which new products are
introduced on the market is ever increasing. Consumer-
product manufacturers try to cope with this trend by de-
creasing their time-to-market. On the other hand, the com-
plexity of embedded multimedia systems is growing, as
users have high expectation about the functionality and
quality delivered by new products. To deal with these ad-
verse trends, the electronic-design community expects that
future electronic systems re-use platforms that integrate
many IP-blocks. Software can be executed concurrently
on the IP-blocks in these multi-processor systems-on-chip.
Novel programming techniques are required to use these
systems. These techniques must exploit the concurrency
that is present in the hardware architecture and meet with
the timing-, energy-, performance-, and cost-constraints. A

coarse overview of the multi-processor system-on-chip pro-
gramming trajectory is shown in Figure 1. The figure shows
a subdivision of the programming problem into two subse-
quent steps (mapping and binding). The programming of
the hardware level is done from an intermediate level, called
the implementation level. This step binds one (or a few)
compute tasks onto one processor. In this way, we can relay
on traditional compiler technology and minimize the over-
head of a run-time system. The step from the specification
level to the implementation level is responsible for subdi-
viding the (executable) specification in such a way that the
resulting tasks can efficiently be programmed on the hard-
ware platform. This so-called multi-processor mapping step
must consider aspects like concurrency, energy and timing.
To do this, it will need information about the underlying
hardware platform. This information is gradually added
during the mapping trajectory.

The programming trajectory covers a system-level de-
sign methodology from the early design stages till the ac-
tual system-on-chip solution. We focus on (data-intensive)
streaming applications, as we are targeting multimedia ap-
plications. Many design flows for embedded multimedia
systems are based on some kind of task graph [1, 2, 22, 24,
31]. All such flows could benefit from a good initial task
graph as their input. In current design practice, the program-
ming trajectory for such applications typically starts with an
executable specification of the application written by an ap-
plication designer. The specification is usually given as a
sequential program that describes the logical functions used
in the application and it is written in a language like C or
C++. Target platforms usually allow for concurrent execu-
tion of the application. For this reason, part of the mapping
flow deals with the extraction of the concurrency from the
application. Concurrency has a large impact on the sys-
tem, which means that the extraction should be performed
early in the programming flow. Concurrency analysis is to
some extent independent of the (precise) architecture tar-
geted. In other words, some transformations performed
to extract concurrency from the application are valid for a
large class of architectures. This enables efficient re-use of
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Figure 1. Multi-processor system-on-chip programming

trajectory.

optimizations performed on the specification if changes are
made to the hardware platform. In this paper, we propose
a technique to analyze the concurrency that is available in
an application independent of the exact target architecture.
The result of the proposed design-space exploration is a so-
called task graph, that makes data transformations and the
underlying data streams explicit. It is our aim to provide a
specification of the application which forms a good starting
point for mapping it onto many different systems-on-chip
platforms. In other words, we try to answer the question of
how to come to a good initial task graph.

The next section introduces an abstract model for par-
allel (streaming) computations. The concurrency model is
discussed in Section 3. A prototype concurrency-analysis
tool implementing the concurrency measures is presented
in Section 4. In Section 5, a supporting concurrency opti-
mization method is presented. The concurrency model is
used in a number of case studies to optimize the concur-
rency of a JPEG decoder, an H.263 video-conferencing de-
coder and a 3D recursive search algorithm. Methods to take
aspects of the target-architecture-platform into account dur-
ing the concurrency analysis are discussed in Section 7. An
overview of related work on multi-processor programming
and concurrency analysis is given in Section 8. Section 9
concludes.

2. Model of Computation

The model of computation introduced in this section cap-
tures the core of parallel (streaming) applications. It only
specifies those aspects that are necessary for concurrency
analysis. This allows for many instantiations of the model.
It is, for example, sufficiently abstract to comprise a num-
ber of data-flow models like Kahn process network [12, 13],
Synchronous dataflow [18] and a subclass of Petri nets,
called marked graphs [3]. Our concurrency analysis can be
applied to (executable) specifications in all these models.

2.1. Computational networks

We assume that a parallel computation is organized as a
collection of autonomous compute nodes that are connected
to each other by point-to-point connections. Compute nodes
exchange information through these connections. These
connections are the only way of communication. A given
node computes on data coming along its input connections
to produce output on some or all of its output connections.
This informal definition of a parallel computation is the ba-
sis of the computational-network model. A compute node
has a set of input ports and a set of output ports for con-
nections to its environment. Input and output data is mod-
eled using strings of data-elements, which is a good abstract
model of data streams. The execution of a compute node
implies the reading of input strings from its input ports and
writing the appropriate output strings to its output ports.
This is done following the transformation that describes the
behavior of the node.

Definition 2.1 (Compute node) A compute node is a tuple
(I, O, t) where

• I is a set of input ports;

• O is a set (disjoint of I) of output ports;

• t is a transformation, for example, a function describ-
ing how a compute node computes a (tuple of) output
strings using a (tuple of) input strings.

Note that we are not interested in the exact form of a
transformation and that we do not define the types of data
received and sent over ports. We also do not require a spec-
ification of aspects like the number of input ports read, the
amount of data elements read on each port, etc. For our
purposes, these details are irrelevant, and including them in
the definition of compute nodes would unnecessarily restrict
and complicate matters. The only requirement is that trans-
formations allow an operational implementation resulting
in an event diagram, as further explained in the next sub-
section. The definition of a compute node enables us to de-
fine a computational network. It contains a set of compute
nodes that are connected to each other using point-to-point
connections that transfer data streams in order (fifo com-
munication). We abstract from the exact capacity of con-
nections. Some ports of compute nodes may remain uncon-
nected. These ports allow connections to the environment.

Definition 2.2 (Computational network) A computa-
tional network CN is a tuple (N, C, I, O) where

• N is a set of compute nodes;

• C is a set of connections;
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• every connection in C connects an output port of a
compute node to an input port of a compute node;

• every port of every compute node is connected to at
most one connection;

• I is the set of input ports of the computational network,
being defined as those input ports of the nodes in N not
connected to a connection in C;

• O is the set of output ports of the computational net-
work, being the unconnected output ports of the com-
pute nodes in N .

An example of a computational network is shown in Fig-
ure 2. The network contains five compute nodes. The input
port of node a is unconnected. So, this port is an input port
of the network and node a is therefore called an input node
of the network. Nodes d and e provide output ports to the
environment and are therefore called output nodes of the
network.

2.2. Executions

In this sub-section, we give an abstract notion of ex-
ecutions of computational networks, which forms the ba-
sis for our concurrency model. A computational network
consists of a set of compute nodes which together perform
a computation. The nodes communicate with each other
through connections. Each node performs a sequence of ac-
tions (e.g. C/C++ statements in an executable specification)
which are modeled as a totally ordered sequence of events.
These events are classified into the following three types:

1. write event Such an event models a write operation in
which a compute node writes to one of its output ports.

2. read event Such an event models a read operation
from an input port.

3. internal event Such an event models the execution of
an action or a sequence of actions not including read
or write operations.

Lamport [17] has shown that the events in such an event
model form a partial order. This partial order is called the
causality relation or happened before relation and is de-
noted by ≺. Lamport’s logical clocks can be used to create
an ordering that is consistent with causality for all events
that occur during a computation. Lamport’s system of log-
ical clocks assumes one logical clock per compute node.
This logical clock assigns to every event a time-stamp that
is the logical clock value at the moment the event occurred.
Every event is performed within a period corresponding to
a single logical clock value. The clock of a node is in-
cremented once between two events. Furthermore, since
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Figure 2. An example of a computational network.

communication imposes a causality relation that must be re-
spected by the logical clocks, the clock of a reading node is
updated using the time-stamp of the received event: the lo-
cal clock is set to the maximum of the received time-stamp
and the current clock value.

To reason accurately about timing aspects without refer-
ring to concrete implementations, we use Lamport’s clocks
but we associate a duration with the events that take place
in the compute nodes and with the communication over the
connections. Of course, these durations must be in some
way reasonable for actual system implementations. They
should be abstract but realistic. The duration for a con-
nection can for instance be based on the amount of data
communicated and the propagation delay of the on-chip in-
terconnect. The latter is an architecture-dependent property
that can easily be taken into account in the duration assign-
ment. We introduce two duration functions de and dc that
map a set of events E of an execution plus the set of con-
nections C of a computational network to the set of natural
numbers, N. Formally, de : E → N and dc : C → N.
Lamport’s original system of logical clocks can be modeled
by assigning a duration of one to every event and a delay of
zero to every connection.

Our time-stamping mechanism based on Lamport’s log-
ical clocks essentially is a time-stamping function t that
maps the set of events E to the totally ordered set N, for-
mally, t : E → N. This mapping is such that e ≺ e′ implies
t(e) < t(e′). The timestamps can be computed via a set
of counters, the local logical clocks. Each compute node
in the computational network maintains a different counter,
all initially set to 0. Let ti denote the counter maintained
by compute node ni. When a compute node ni executes an
event, it updates first its local clock ti and then time-stamps
the event. Thus this time-stamp is the value of the local log-
ical clock after the event is executed. The protocol used to
update the clock ti of ni is the following:

1. When ni executes an internal or write event e, the
clock value ti is updated to ti := ti + de(e).

2. When ni executes a read event e, where y is the time-
stamp of the corresponding write event and c is the
connection over which the event was received, the
clock is updated to ti := max(ti, y + dc(c)) + de(e).
Note that the maximum operation synchronizes the
logical clocks of the sender and receiver, taking into
account the delay caused by the communication.
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Figure 3. An event diagram.

An execution of a computational network is the set of
events that occur in all compute nodes when they trans-
form a set of strings on the input ports of the computational
network. The execution can be displayed graphically in an
event diagram, such as the one shown in Figure 3. This fig-
ure shows in black an ordering of all events that take place
during an execution in the network of Figure 2 for a given
input, assuming the string on the input port of the network
has a finite length. As we are targeting streaming applica-
tions, we have in practice often unbounded input strings.
These unbounded strings can often be abstracted appropri-
ately into an indefinite number of repetitions of the same
finite input. This leads to an unbounded repetition of the
same execution pattern. The gray nodes in Figure 3 repre-
sent the repetition of this execution pattern. In practice, one
must make sure to get a representative execution pattern as
a basis for concurrency analysis.

Let’s consider the details of the execution in Figure 3.
Node a starts with reading input from the environment. At
the end, d and e produce values for the environment. The
connection between nodes a and e has a duration of one
logical clock value, all other connections have a duration of
zero logical clock values. Node e executes one event that
takes two logical clock values; all other events require one
logical clock value. Note that this diagram is kept simple
for illustrative purposes. The annotations in the diagram are
explained below.

Our time-stamping mechanism can be used to analyze
the ordering and abstract timing of events that take place in
a computation. We define a number of measures, illustrated
in Figure 3. Note that all the measures introduced here and
also most measures of the next section are defined with re-
spect to a single execution. We do not explicitly mention
this execution in all formulas because that would compro-
mise readability. Let CN = (N, C, I, O) be a computa-
tional network, E the set of events that occur during the
execution of CN and En ⊆ E the set of all events which
occur in compute node n ∈ N .

Definition 2.3 (Processing time) The processing time,
Tp(n), of a compute node n ∈ N is defined as follows:

Tp(n) =
∑

e∈En

de(e)

Definition 2.4 (Execution time) The execution time,
TE(CN ), of CN is defined as:

TE(CN) = max
e∈E

t(e)

Definition 2.5 (Computation time) The computation time,
Tc(n), of a compute node n in which the set of internal
events In ⊆ En occurs, is defined as follows:

Tc(n) =
∑

e∈In

de(e)

The term ‘computation’ is mainly used in this paper for
the transformations performed on the strings of data in the
network and not the communication of the strings of data.
The combination of computation and communication is re-
ferred to with the term ‘processing’. The terms ‘execution’
and ‘run-time’ are used if also idle time is taken into ac-
count.

Definition 2.6 (Communication idle time) The communi-
cation idle time, Tci(n), of a compute node n is defined as:

Tci(n) = (max
e∈En

t(e) − min
e∈En

t(e)) − Tp(n)

We explained that we are aiming at streaming applica-
tions. The execution of a network can therefore be seen as
a repetition of a single execution pattern. This repetition is
shown with the gray nodes in the event diagram of Figure 3.
Idle times at the beginning of nodes, such as b, c, d and e, in
Figure 3, and the end of nodes, such as a, b, c, can be used
for operations on other inputs. This motivates Definition
2.6, as well as the following definition.

Definition 2.7 (Run time) The run-time TR(CN ) of CN

and Tr(n) of node n is:

Tr(n) = max
e∈En

t(e) − min
e∈En

t(e); TR(CN ) = max
n∈N

Tr(n)

Definition 2.8 (Sequential execution time) The sequential
time of an execution, TSE (CN ), is defined to be the sum of
the processing times of all compute nodes in the computa-
tional network:

TSE (CN ) =
∑

n∈N

Tp(n)

The sequential execution time approximates the execu-
tion time of a sequential version of the computation. This
approximation is in general not entirely accurate because
communication in a parallel execution is in general replaced
by memory accesses plus extra control statements in a se-
quential execution, but we have to make a trade off between
accuracy and abstractness. The introduced error is accept-
able as long as the measures defined above and in the re-
mainder provide a good basis for concurrency analysis. Our
experiments confirm that the accuracy is sufficient.
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3. Concurrency model

A computational network that realizes a computation has
certain concurrency properties. The goal of the concur-
rency model is to quantify the presence of the different
concurrency properties in a computational network. Con-
currency is influenced by many things. It is for instance
influenced by the way the computation is divided over the
different compute nodes in the computational network and
by the communication within the network. It can also be
influenced by the compute platform or the used (run-time)
scheduler. This (run-time) scheduler assigns the nodes to
processors on which they execute. We are interested in the
concurrency properties that are determined by the compu-
tational network itself and not its implementation environ-
ment, because we want to have a computational network
that has good concurrency properties for many environ-
ments in which it may operate. Only in a later design phase,
we propose to consider the environment and fine tune the
concurrency in the computational network to this environ-
ment. However, this phase is not considered in the core part
of this paper. Section 7 briefly returns to this aspect. To
leave out the effects caused by the implementation environ-
ment, we assume that a compute node can execute as soon
as the required data becomes available and furthermore that
nodes do not have to wait for data on the input ports of the
computational network. Using logical time, these assump-
tions can easily be realized.

An important goal of the concurrency measures is that
they provide a global direction when optimizing the con-
currency. To realize this, all measures are normalized to
the range [0, 1], in which a value of 1 means that the mea-
sured concurrency property is optimal and a value close to 0
means that it is very bad. The measures should besides the
global direction also provide enough detail to find the con-
currency bottlenecks. For this reason, a detailed measure
per node is defined. We next introduce all five concurrency
measures and motivate their applicability. The use of all
measures in a design-space exploration strategy is discussed
in Section 5.

Computation load. In a parallel execution, we want
to minimize the overhead of communicating data between
nodes. The nodes should spend as much time as possible on
computation and not on communication. The time spent by
a node on the computation is expressed in the computation
time. The time that a node spends on both the computa-
tion and the communication is expressed in the processing
time. The ratio between computation time and processing
time should be as high as possible for every node, as com-
putation, i.e., data transformation, is the main goal of every
computational network. These observations lead to the first
concurrency measure, the computation load.

Definition 3.1 (Computation load) The computation load

of computational network CN and a compute node n ∈ N
are defined as follows:

CompLd(CN ) =

∑

n∈N

CompLd(n)

|N |

CompLd(n) =
Tc(n)

Tp(n)

The computation load of the network serves as the global
measure; the computation loads of the nodes serve as the
detailed measure. The nodes with low computation loads
may point to concurrency bottlenecks.

Example 3.1 We calculate the computation load of the
computational network of Figure 2 with the event diagram
of Figure 3. Let ECN denote the network. The compu-
tation time and processing time of the different nodes are
found using Definitions 2.5 and 2.3 and the event diagram
of the computation.

CompLd(ECN ) =
1

5
·

(

1

4
+

2

6
+

1

3
+

2

4
+

8

10

)

=
133

300
≈ 0.44

Thus 44% of the total processing time is spent on mean-
ingful computation. Node a has the lowest computation
load, namely 1/4. To improve this, the node should be as-
signed a larger computation task, or it can be merged with
another node. �

Processing load. A compute node is during an execution
either busy, performing events, or it is idle. It can be idle be-
cause it is waiting for data or it has finished its processing
but other nodes have not finished executing. To get a bal-
anced workload over nodes, we must balance the processing
and run-times of the different nodes. This is important to
optimize streaming behavior. To get a notion of the work-
load balance, we consider the ratio between the processing
time and the run-time. The second concurrency measure,
processing load, looks at this aspect.

Definition 3.2 (Processing load) The processing load of
computational network CN and of a compute node n ∈ N
are defined as follows:

ProcLd(CN ) =

∑

n∈N

Tp(n)

|N | · TR(CN )
; ProcLd(n) =

Tp(n)

Tr(n)

For individual nodes, the processing load computes the
ratio of the processing time and run-time. In other words, it
calculates the ratio between the time that a node is busy and
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the time that a node is either busy or waiting before it can
continue processing. For the network, we assume (ideal)
streaming behavior and we only consider the event diagram
of a (small) part of the actual execution, typically the events
caused by one or a few inputs to the network. Each node can
start operating on a next input to the network with a rate that
is determined by the node with the longest run-time. There-
fore, the processing load measure of a network must not
consider the ratio of the processing time and run-time per
node, but compare the processing time of the nodes to the
run-time of the network. The bottlenecks in obtaining a bet-
ter processing load are the nodes with the lowest processing
load and the node with the longest run-time.

Example 3.2 We continue with our running example. To
calculate the processing load of computational network
ECN , we need the maximum run-time of the nodes in the
network. Node e requires 10 logical clock values from the
logical clock value at which it starts processing. The other
nodes require fewer logical clock values. The processing
load is then equal to:

ProcLd(ECN ) =
4 + 6 + 3 + 4 + 10

5 · 10
=

27

50
≈ 0.54

The processing load for the individual nodes is 1 for nodes
a, c, d and e, and 6

9
= 2

3
for node b. The processing load of

the network indicates that the nodes in the network are on
average 54% of their time busy with computation or com-
munication and 46% of their time idle. Potential points for
improvement are nodes b (lowest processing load) and e
(longest run-time). The fact that almost all nodes have a
processing load of 1 whereas the overall processing load is
only 0.54 indicates that the workload balance over the nodes
is bad and that e is the most serious bottleneck, which brings
us immediately to the next measure. �

Restart interval. The compute node with the longest
run-time is determining the rate at which new computa-
tions can be started in the computational network. This
node plays an important role in the throughput of the com-
putational network. The throughput is an important prop-
erty when a system designer is designing a streaming ap-
plication. To get a notion of it, we introduce the restart
measure through Definition 3.3. In general, the closer the
restart measure comes to one, the higher the throughput re-
alized by the computational network. However, note that
the best restart does not guarantee the best network. Gen-
erally, good values for the restart can be obtained through
very fine-grained compute nodes. However, this gives com-
munication overhead (and possibly scheduling overhead).
The restart measure should therefore be balanced with other
measures. Restart is an abstract notion of throughput; it is
not equal to it.

Definition 3.3 (Restart) The restart of computational net-
work CN and a compute node n ∈ N are defined as fol-
lows:

Restart(CN ) =
1

TR(CN )
; Restart(n) =

1

Tr(n)

The restart measure partly overlaps with the processing
load, as they both point to the node with the longest run
time. However, the restart measure is more fine-grained as
it may point to a set of nodes which have a long run-time.
The processing load points only to the node with the longest
run-time, ignoring other nodes with a long run-time that are
also potential throughput bottlenecks.

Example 3.3 The restart value for our example network
ECN is 1/10 with node e being the bottleneck node with
the lowest restart value. One issue needs explanation. Con-
sider two networks CN1 and CN2 that realize the same
computation. The maximum run-time of the nodes in CN1

is 1000 and 100 in CN2 . The restart for CN1 is 0.001 and
for CN2 0.01. Looking at the absolute values, it is diffi-
cult to see that CN2 is much faster than CN1 . This rela-
tive difference in restart interval must be made visible when
comparing different solutions for the same application. This
can be done by normalizing the values of the restart measure
over a set of designs with the largest value. The disadvan-
tage of this approach is that the 1 value for the best network
(CN1 in the example) may suggest that the restart value is
optimal whereas this is obviously not always the case. Nev-
ertheless, we choose this solution in our design optimiza-
tion method, discussed later in this paper, in order to make
relative differences visible. �

Synchronization. A parallel computation will in most
cases be faster than a sequential implementation of that
computation. This is often in the literature referred to as
speed-up [21]. The realized speed-up depends on the syn-
chronization that is required between the different nodes
in the network, the introduced communication overhead,
and how well the computation is balanced over the differ-
ent nodes. The second and third aspect are covered by the
computation load and processing load respectively. The in-
fluence of synchronization is not yet fully captured in the
measures so far, although a poor synchronization does af-
fect the processing load. Synchronization is important when
considering concurrency, because synchronization is limit-
ing the execution of compute nodes and with that the num-
ber of compute nodes that can run in parallel. Synchroniza-
tion constraints may impose the restriction that two com-
pute nodes can only execute one after another. Synchro-
nization determines in this way the time that a computation
will take in a computational network (see Definition 2.4).

Our concurrency measure, synchronization, is related to
the speed-up. The measure is based on the inverse value of
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the speed-up achieved by the computational network com-
pared to a sequential solution (using Definitions 2.4 and
2.8). This value is subtracted from 1 to meet our objec-
tive that a value of 1 for a measure indicates a good solu-
tion from the concurrency point of view. Synchronization
measures for nodes are not really meaningful. Due to com-
munication overhead, individual nodes are usually slower
in a parallel execution than in a sequential execution. For
diagnosing synchronization bottlenecks, we can use event
diagrams instead. In Figure 3, for example, the synchro-
nization pattern between the nodes b and c causes idle time
that may be removable.

Definition 3.4 (Synchronization) The synchronization of
CN is:

Sync(CN ) = 1 −
TE(CN )

TSE (CN )

Assuming that an execution performs at least one event,
the range of values for this measure is in (−∞, 1) where a
value close to 1 indicates a good solution and 0 a solution
that is as fast as the sequential execution. Negative values
indicate that the execution is slower than a sequential ex-
ecution. The fact that negative values are possible is not
really a problem with respect to our goal that values should
be in the range [0, 1]. Negative values will be rare and can
easily be removed by taking the maximum with 0; it is more
important that the optimum value is close to 1.

Example 3.4 To compute the value for the synchronization
measure of computational network ECN of Example 3.1,
we need the execution time of the computational network
and the sequential execution time. Figure 3 shows that the
execution time equals 15 logical clock values. The sequen-
tial execution time is found using Definition 2.8 and is equal
to 27. The synchronization is then:

Sync(ECN ) = 1 −
15

27
=

12

27
≈ 0.44

We can conclude that the parallel execution performs the
computation approximately 44% faster than a sequential
implementation of the computation. �

Structure. The previous measures consider the event di-
agram of an execution of a computational network with a
given input. The structure of the network plays only an im-
plicit role. The structure itself can already provide insight
in the synchronization constraints and potential bottlenecks
in the network. It reveals the chains of compute nodes that
belong to the different parts of the computation taking place
in the network. In other words, it reveals the different data-
streams that are processed in the network. If many different
data-streams go through one node, then this node may be a
synchronization bottleneck for those data-streams. A mea-
sure is needed to quantify this concurrency property. Many

parallel data-streams can be a sign of good utilization of
data parallelism.

A data path through a network is a sequence of nodes
from a network input to a network output. In the presence
of cycles (feedback loops), there are infinitely many such
paths. Therefore, we restrict our paths to go through at most
one feedback loop. This prevents grouping of paths with
different feedback loops, which are in fact different data-
streams, in one path. A path p1 is called a sub-path of p2 if
the nodes on path p1 are a subset of the nodes on path p2.
Path p2 is in that case called a super-path of p1. The paths
that are present in a computational network can be grouped
into computational paths.

Definition 3.5 (Computational path) A computational
path is defined as the tuple (u, u′, P ) with u and u′ re-
spectively an input node of the network and an output
node of the network and P a set of paths. For every path
〈v0, v1, v2, . . . , vk〉 ∈ P , it holds that v0 = u and vk = u′.
For the set of paths P , the following must hold:

1. For each p1, p2 ∈ P , p1 is a sub-path of p2 or p2 is
a sub-path of p1 (i.e., P is totally ordered using the
sub-path relation);

2. P is maximal, i.e., there is no path p not in P that can
be added to P such that P is still totally ordered.

Note that requirement 1 in the above definition excludes
the possibility that two feedback loops are part of one com-
putational path; requirement 2 implies among others that it
is not allowed to skip feedback loops.

The computational paths in a computational network
represent the different data flows that go through the net-
work. Exploiting parallelism implies that it is tried to max-
imize the number of different data flows. They must share
as little compute nodes as possible to avoid synchronization
bottlenecks. This observation leads to the definition of the
structure measure. The measure is zero if all computational
paths go through all nodes, which implies that there is no
structural parallelism in the structure. This is for example
the case for a pipeline structure. A value close to one indi-
cates that the structure of the computational network is very
parallel. The bottleneck for the structure are thus the nodes
through which the most computational paths go.

Definition 3.6 (Structure) The structure of computational
network CN and a compute node n ∈ N are defined as
follows:

Struct(CN ) =

∑

n∈N

Struct(n)

|N |

Struct(n) = 1 −
|comp. paths through n|

|comp. paths in CN |

7



(a) Main window of CAST.

(b) Analyze details of nodes. (c) Event diagram.

(d) Compare solutions.

Figure 4. Screen-shots of CAST.

Example 3.5 We continue with our running example. The
network ECN contains three paths: p1 = 〈a, b, d〉, p2 =
〈a, b, c, b, d〉, p3 = 〈a, e〉. These paths can be grouped in
the computational paths cp1 = (a, d, {p1, p2}) and cp2 =
(a, e, {p3}). Two computational paths go through node a,
whereas all other nodes belong to one computational path.
Thus node a is a potential bottleneck. The structure for the
overall network is then:

Struct(ECN ) = 1 −
2 + 1 + 1 + 1 + 1

2
·
1

5

= 1 −
6

2 · 5
= 0.4

So, on average a node performs transformations to 60% of
the data-streams in the computational network. �

The different concurrency measures analyze different
concurrency properties. Omitting one measure may result
in a non-optimal solution. Consider, for example, the situ-
ation in which we would ignore the computation load. As-
sume now that the nodes in the network are split into a set
of nodes in which each node contains only a single internal
event and the required read and write events. The solution
would have a very good restart measure and synchroniza-
tion measure. Depending on the data-dependencies in the
application it will also have a good structure measure. Typ-
ically most internal events have almost the same duration
- i.e. the processing load of the network will also be good.
So, these measures all indicate that this is a good solution.
However, this solution is not good as there is an enormous
communication overhead. This overhead is indicated by the
computation load. Similar cases can be constructed for all
other measures. So, none of the five measures can be omit-
ted from the model without introducing the risk that a con-
currency optimization process ends in some local optimum,
focusing too much on one or a few concurrency aspects.

4. Prototype implementation

4.1. Time-stamping mechanism

Section 2.2 defines the execution of a computational net-
work using a time-stamping mechanism based on Lamport’s
logical clocks. To implement this time-stamping mecha-
nism, we need duration functions that associate a duration
with the communication of data over a connection and with
each event that occurs in the compute nodes. The duration
functions are implemented in three parts:

Internal events. The time-stamping mechanism should
allow reasoning about causality and some timing aspects
on a relatively high level of abstraction without referring
to implementations/physical time. Therefore, in our imple-
mentation, we define the duration of internal events (C++
statements) as the number of assembler instructions needed
to execute these events on a processor using a standard com-
piler. We assume that the influence of a specific instruction
set does not have too much influence on the results. Our
experiments show that the proposed notion of time is both
accurate and abstract enough to perform optimization inde-
pendent of the exact processor chosen from a class of pro-
cessors. As an alternative, we allow to do statistical anal-
ysis over a number of compilers/instruction sets taking for
example the average number of instructions as the duration.

Read/write events. The duration function for read/write
events must assign a duration to each read or write event that
represents in some way the time required to communicate
the data to the connection. In other words, it represents the
actual time needed to call the read or write function and to
transfer the data to the connection interface. This duration
can be approximated using a linear function ax + b with x
the number of data elements communicated. The constant
b approximates the time needed to call the communication
primitives; the constant a approximates the time needed to
read/write one data element.

Connections. The duration function for connections is

8



implemented as a linear function cy + d with y the size of
the data elements going through a connection. The con-
stant d approximates the access time of the communication
medium; the constant c approximates the time needed to
transport one data-element. This linear function models all
relevant aspects of communicating data over a connection.
One may only say that sharing of communication resources
is not taken into account. However, this does not need to
be taken into account if we have reserved connections, e.g.,
independent virtual connections multiplexed over one phys-
ical connection. Alternatively, at the targeted abstraction
level, one can take the average penalty introduced by shar-
ing into account through the constants of the linear function.

4.2. CAST

The previous section introduced a concurrency model
that allows analysis of five different concurrency properties
of a computational network. The concurrency model uses
the structure of the computational network and the event di-
agrams that can be obtained by executing the network. To
construct an event diagram, a list of all events that occur in
all nodes during an execution with a given input is needed.
The definition of a compute node leaves the possibility open
that the behavior of a node is data-dependent. This implies
that there need not to be a single, unique event diagram
for a computational network. So, to construct an event di-
agram, the computational network must be executed (i.e.
simulated) with an input. Simulating the network does not
contradict with our desire for abstraction. To allow abstrac-
tion from a single input, we can use multiple simulations
and perform statistical analysis on them.

The software tool CAST can be used to compute the con-
currency measures of a computational network. It can cre-
ate and analyze an event diagram of a network which is sim-
ulated with a given input. The tool can also perform statis-
tical analysis on the results of multiple simulations. CAST
takes as input a set of C++ files which describe the compu-
tational network as a Kahn process network in YAPI [5]. It
starts with annotating the original source code of the com-
putational network with the functions for tracing all events
during a simulation. It also maps each internal event onto a
duration as described in Section 4.1. Next, CAST simulates
the annotated computational network with the supplied in-
put to trace all events which occur in the network. An event
diagram is constructed from the traced events. After that,
CAST has enough information to compute the values of
the different concurrency measures. The concurrency mea-
sures can be visualized through the graphical user-interface
of CAST, via bar charts and coloring and sizing of nodes.
CAST provides a direct coupling between the events in the
event diagram and the corresponding source code. Figure 4
shows a few screen-shots of CAST (operating on a JPEG
decoder). The user-interface helps the designer to iden-

data splitting
(structure)

communication granularity
(computation load)

merging
(processing load / synchronization)

task splitting
(restart)

optimized computational network

computational network

Figure 5. Exploration method.

tify and resolve concurrency bottlenecks and to compare the
impact of different design decisions. It supports a design-
space exploration method, as explained in the next section.

5. Design-space exploration

A prototype concurrency-analysis tool should not only
implement the computational-network model and the con-
currency measures, but it should also provide support for
design-space exploration, i.e., it should support the designer
in finding a computational network with optimal (good)
concurrency properties. This section presents a generally
applicable design-space exploration method consisting of
four steps which uses the concurrency model to realize this
goal. Each step optimizes one or two concurrency mea-
sures. Figure 5 shows an overview of the design-space ex-
ploration method and the measures optimized in each step.
The different steps of the method are explained by deriving
in a structured way an implementation of a JPEG decoder
[9] that has a balanced workload and good communication
behavior. The basic idea of the design-space exploration
method is to first identify and extract all the available con-
currency in an application and then design a network that
optimally exploits this concurrency. The concurrency mea-
sures are used in the design-space exploration method to
identify concurrency bottlenecks. A designer must resolve
these bottlenecks by modifying the computational network,
i.e., a designer is responsible for the extraction of the con-
currency from the computational network. The (partial) au-
tomation of concurrency extraction is left for future work.

The five concurrency measures provide a global direc-
tion when optimizing the concurrency. They also provide
insight in the concurrency bottlenecks of the network. In ad-
dition to those five measures, we use a global concurrency
measure to steer the design-space exploration. It consid-
ers all concurrency measures of the computational network

9



front
end

sof

dmx

sos

vld iq izz up
scale

idct
row

idct
col

trans
pose

down
scale

vs
Cr

vs
Y

vs
Cb

hs
Cb

hs
Cr

hs
Y

color
matrix

back
end
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CN that is obtained after i steps of the design-space explo-
ration. The measure is defined as follows:

Conc(CN , i) =

∑

measures optimized till step i

5
(1)

The design-space exploration remains in the same step
as long as new transformations to the network are possible
that improve the global concurrency measure. When such
transformations are no longer possible, the design-space ex-
ploration advances to the next step. The exploration ends
when the global concurrency measure does not provide any
further improvement in the final step of the method.

Starting point. An experienced designer of Philips
research optimized the JPEG decoder for a given multi-
processor architecture [4]. We started with the same com-
putational network as this designer used as a starting point.
Using the same starting point gives us a fair comparison be-
tween the end results. The computational network of this
JPEG decoder is shown in Figure 6 and is referred to as de-
sign 0. The frontend and backend nodes model the environ-
ment of the network we want to optimize. These nodes are
not taken into account in the analysis. The details of JPEG
are not relevant for the remainder. Concurrency measures
for this design are calculated using the statistical option of
CAST and a set of five different images. Figure 7 shows the
results for design 0 of the JPEG decoder, as well as for some
other designs discussed further-on. It also shows the devel-
opment of the global concurrency measure. For the starting
point, this measure is, by definition, 0.

Task splitting. The design-space exploration method
starts with task splitting. The goal of this step is to extract
the available task-parallelism from the application by split-
ting compute nodes as far as possible. The step must opti-
mize the restart measure. The candidates for improvement
are the compute nodes with a low restart. For the JPEG
case, we selected and modified the four nodes with the low-
est restart in design 0. This modification consists of identi-
fying sub-tasks in each node that can be split-off from the
node into new nodes. For example, the idct col and idct
row nodes can both be split into a sequence of four nodes
which all perform part of the IDCT conversion. This in-
creases the pipelining of data in the network. The design
resulting from the modification of all four nodes is labeled
design 1. Figure 7 shows the result of the transformation

on the concurrency measures. It shows that the restart has
indeed improved. Observe that the absolute restart values
computed during the exploration are all very low. Figure 7
shows normalized values as explained in Example 3.3. The
global concurrency measure for this design is also shown in
Figure 7. Note that we only show the global concurrency
measure at the end of each step of the exploration method.
However, also if transformations in one step are done indi-
vidually in sequence, the measure increases monotonically.

Data splitting. The data-splitting step aims at extract-
ing coarse-grained data-parallelism in the application. The
amount of data-parallelism in the network is visible in the
structure measure; this step should improve this measure.
Nodes that are a bottleneck according to the structure mea-
sure are considered in this step. Figure 6 shows that the data
is processed in three parallel streams (i.e., three color com-
ponents) between the downscale and color matrix nodes.
It is possible to create these parallel streams already after
the vld node. This will increase the data-parallelism. The
vld node has to process the bitstream sequentially. Hence,
it contains no data-parallelism. In the JPEG decoder of
design 1, we created separate computational paths for the
three color components (design 2). The concurrency mea-
sures (see Figure 7) show that the goal of this step is real-
ized as both the value of the structure measure and the value
of the global concurrency measure have increased. The in-
crease of the global measure indicates that the increase of
the structure measure outweighs the negative effect on the
restart measure.

Extraction of data-parallelism requires typically duplica-
tion of nodes in the network. By performing data splitting
after task splitting, the network is kept relatively small in
the first step of the exploration method. This helps the de-
signer in keeping an overview of the network and it avoids
that changes have to be made to several copies of the same
node.

Communication granularity. The cost of communica-
tion is ignored during the extraction of concurrency from
an application. However, this cost will play an important
role in the granularity of communication used in the final
implementation. We observe that calling a function that im-
plements the communication primitives is more expensive
than a normal memory operation that is part of a normal
internal event. To respect this observation, we assigned a
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constant delay of 30 logical clock values to each read/write
event. Note that the exact costs are not important; they must
only respect the above observation. The statistical analysis
function of CAST has been used to verify the concurrent
behavior for different cost functions, showing that a delay
of 30 is reasonable. Other values, possibly depending on
the size of events, do not really affect the relative values of
the measures.

The communication granularity step adjusts the size at
which data is communicated between the nodes in the net-
work. The objective is that nodes can execute in parallel, but
do not spend too much time on communication. This step
tries to optimize the computation load measure. The nodes
in design 2 communicate single pixel values. In design 3,
which is the end result of this design-space-explorationstep,
the nodes communicate blocks of pixels at once. Figure 7
shows that this transformation improved the computation
load of the network. It also impacts the other concurrency
measures. Despite the decrease in their value, the global
concurrency measure indicates that this transformation is
good, as its value increases from 0.26 to 0.35.

A trade-off between the communication granularity and
the concurrency in the network can only be made after the
concurrency has been made explicit in the network. So, the
communication granularity step should be performed after
the concurrency extraction (first two steps of the method).

Merging. Some of the available parallelism is removed
in the merging step with the objective to obtain a more bal-
anced workload. This is done by merging nodes in the net-
work and removing synchronization bottlenecks. It should
result in a processing load close to one. The objective of
this step is to optimize the processing load and synchroniza-
tion measure simultaneously. To allow a good workload
balance, this step should be performed after all task-level
parallelism has been made explicit in the network and the
communication granularity has been decided.

There are three solutions possible to realize a balanced
workload for the JPEG decoder. They differ in the amount
of data-parallelism that is preserved in the final solution.
First, we can remove all data-parallelism and then remove
some of the task-parallelism (solution 1). This results in

the computational network shown topmost in Figure 8 (de-
sign 4). Another solution is to preserve all data-parallelism
and remove only the functional task parallelism, design 5,
shown at the bottom in Figure 8. The third solution would
be to remove some of the data-parallelism, but not all. This
third solution is not further explored in this case study;
we focus on the two extreme solutions. Figure 7 shows
that both designs 4 and 5 meet the goal of the merging
step, namely a high processing load. The structure measure
shows that design 5 still contains data-parallelism, while de-
sign 4 does not. Both designs have similar values for syn-
chronization and computation load. Synchronization does
not play an important role in this case study because of
the regular communication patterns. Figure 7 shows that
all seven designs give a similar result when compared to
a purely sequential version. However, this does not mean
that they are all equally good. The synchronization measure
can be interpreted as the speed-up which can be achieved if
maximal parallelism can be exploited, for example by using
one processor per compute node. So, designs 4 and 5 are
equally fast when compared to the sequential solution, but
5 may need more resources. The latter is also visible in the
lower processing load for design 5. Note that the precise re-
source usage and throughput in an implementation depend
on mapping and scheduling decisions. As we will see in the
next section, designs 4 and 5 perform equally well when
dynamically scheduled on a homogeneous multiprocessor.
The nodes in design 4 have less idle-time during the exe-
cution than the nodes in design 5. Design 5 has however
a higher restart measure. This implies that it may have a
higher throughput than design 4 in an implementation.

6. Case studies

In this section, we present three case studies in which
CAST and the design-space exploration method are used
to derive in a structured way a computational network with
optimal (good) concurrency properties.

6.1. JPEG decoder

The actual design-space exploration of the JPEG decoder
was performed in the previous section. The concurrency
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measures of the resulting solutions, shown in Figure 7, in-
dicate that designs 4 and 5 are good solutions. To verify
this, we mapped these solutions and a reference solution
from [4] on the same multi-processor system [30] as used
in [4]. This system consists of a set of MIPS processors and
a set of memories that communicate through a snooping in-
terconnection network. All processors in the system operate
on a single queue of runable tasks. A small operating sys-
tem dynamically assigns tasks to processors.

To compare the performance of designs 4 and 5 and
the reference design of [4], we simulated these designs
for different numbers of MIPS processors. The results of
these simulations are shown in Figure 9. The figure shows
that the solutions derived in our case study have the same
performance characteristics as the reference design, which
is a good result considering that our analysis and design-
space exploration has been done independent of the multi-
processor architecture. Our designs are slightly faster when
one or two processors are used. The reference design has
the best performance when 3 processors are used. How-
ever, the difference is not really significant. Designs 4 and
5 have similar performance for three or more processors.

6.2. 3D recursive search

This section presents a second case study that demon-
strates the effectiveness of the concurrency model; it also
shows the need for a higher level of abstraction than cycle-
accurate simulations. The case study implements a parallel
version of a sub-pixel accurate motion estimator using a 3D
recursive search algorithm (3DRS). This case study started
from an implementation of the 3DRS algorithm written in
C. The first step involved separating the actual algorithm
from the code that is needed to simulate the environment
(e.g., read and write files to disk). This resulted in the
computational network shown in Figure 10(a). The whole
3DRS algorithm is implemented as sequential code in a sin-
gle compute node. A designer then parallelized the algo-
rithm by hand. This resulted in the computational network
shown in Figure 10(b), which was considered optimal by
the designer. Analysis of the concurrency properties using
CAST showed that the motion estimator, node estimate, is
a bottleneck. A study of this node revealed that the mo-
tion estimator has to compute five sums-of-absolute differ-
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mentations.

ences (SADs) on the same data-set. These computations
can be performed in parallel. The CAST analysis showed
also that the dmx and motion block nodes should be inte-
grated with the estimate node after extraction of the SADs.
These changes were implemented by the designer and led
to the design shown in Figure 10(c). The concurrency mea-
sures for the three different solutions are shown in Figure
11. The measures indicate that the largest gain is achieved
in the change from the manual solution to the solution found
using CAST.

It is not possible to evaluate the three designs using the
same multi-processor architecture as used for the JPEG de-
coder case-study. Simulation of a small movie sequence
consisting of 6 frames takes 4 hours to complete for a single
design using a 1GHz P3 with 4GB of memory. The cycle
counters used in the cycle-accurate simulator overflow dur-
ing this simulation. They are too small to hold the actual
cycle count. This makes it impossible to obtain, in this way,
performance measures for our designs.

A notion of the speed-up of the design can be obtained
from CAST. It computes the execution time of the compu-
tational network (see Definition 2.4). This time is equal to
the time needed to execute the computational network on a
multi-processor system if each node is mapped onto a dif-
ferent processor. This can be used as an estimate of how
long the computational network will run on a system that
contains as many processors as there are nodes. Since the
times computed by CAST are based on instruction counts,
they are quite accurate. We can also calculate the time that
the system will need when it is executed on a single pro-
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Figure 13. H.263 decoder.

cessor; this time is equal to the sequential execution time
(see Definition 2.8). An estimate of the required execution
time for a system that contains more than one processor,
but less than the number of nodes in the network can also
be made. For this estimate, we use the most optimal map-
ping and scheduling of the nodes on the processors. The
schedule determines which nodes can execute in parallel
and which nodes have to execute in sequence due to their
data-dependencies. Combining the schedule with the exe-
cution times of the individual nodes, as computed by CAST,
the total execution time of each mapping is estimated. To
obtain all required time measures, we simulated the designs
with the movie sequence and analyzed the execution us-
ing CAST. This required approximately 5 minutes for each
design. The resulting performance numbers are shown in
Figure 12. These results are normalized with respect to
the execution time for the sequential design (Figure 10.a).
The results show that both parallel implementations have a
speed-up when they are executed on a multi-processor sys-
tem. They show also that the design found using our con-
currency model has a considerably higher speed-up than the
design found by the designer.

This case study shows that our concurrency model helps
in finding task-level concurrency in an application that can
be extracted by a designer. The case study shows also that
CAST is useful in getting fast and still accurate performance
estimates at a relatively high-level of abstraction.

6.3. H.263 decoder

H.263 is a standard video-conferencing codec optimized
for low data rates and relatively low motion [10]. The
codec was used as a starting point for the development of
the MPEG-II codec which is optimized for higher data-
rates. The structure of an H.263 decoder is shown in Figure
13. The H.263 decoder supports three types of frames: I-
frames, P-frames and PB-frames. To decode a PB-type of
frame, the reconstruct uses the previous and next decoded
frame and the decoded blocks. For a P-type frame, the re-
construct uses the previous decoded frame and the decoded
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blocks. For an I-frame, only the decoded blocks are used as
it has no dependencies with data from other frames.

A designer, with no background in video coding, was
asked to extract the available concurrency from a given se-
quential C specification of the H.263 decoder. First, the
designer split the decoder into the tasks shown in the block
diagram of Figure 13. The designer analyzed this computa-
tional network with CAST to identify potential concurrency
bottlenecks. This led to a number of transformations on
the network, which were analyzed using CAST. This pro-
cess was repeated until two final solutions were found. The
first solution implements the decoder as a pipeline of nodes
(see Figure 14(a)). The second solution exploits the option
that I-frames can be processed independent of P- and PB-
frames (see Figure 14(b)). The concurrency measures for
both solutions are shown in Figure 15. The synchroniza-
tion measure shows that both solutions are estimated to be
about twice as fast as the original sequential solution. The
synchronization measure can be interpreted as the speed-up
which can be achieved if maximal parallelism can be ex-
ploited, i.e., usually one processor per compute node. So,
solution 1 and 2 are both twice as fast, but 2 needs more
resources which is visible in the lower processing load. The
solutions differ on the estimated throughput, measured by
the restart measure. The reason for this is that the merging
of the two data streams in the reconstruct node of the sec-
ond solution adds additional complexity to this bottleneck,
making it only slower.

Unfortunately, it is impossible to benchmark these so-
lutions using a cycle-accurate simulator as it has problems
with the required simulation length. It is also not possible

13



to calculate the speed-up in a similar manner as done in the
previous case study. The reason for this is that it is practi-
cally impossible to find out when which nodes can execute
in parallel. However, the case study does show that a de-
signer with no background in the application domain is able
to quickly identify different sources of concurrency using
our concurrency model and CAST.

7. Architectural properties

The computational-network model and the concurrency
measures neglect most architecture properties. It is impor-
tant to observe that the essential part of the model under-
lying our approach is the event diagram. Any architecture
aspect that can be taken into account in the event diagram
can be handled by our approach without any modifications.
This includes aspects like scheduling strategies, heteroge-
neous processing elements, buffer sizes, etc. In this section,
we discuss two examples of how to take architecture prop-
erties into account in the concurrency analysis.

Heterogeneous architecture. The assignment of a du-
ration to an internal event (see Section 4.1) assumes im-
plicitly that a homogeneous platform is used as it uses the
same compiler for all nodes to relate their internal events
to a duration. In practice, the used multi-processor system
may be a heterogeneous system. We see two different solu-
tions to take this heterogeneity into account in our concur-
rency measures. The first solution assumes that a mapping
of nodes to processor types is made. In that case a differ-
ent compiler for the different node mappings can be used.
So, for each node the mapping of an internal event onto a
duration is based on the compiler that comes with the pro-
cessor to which this node is mapped. The second solution
would be to use scaling factors for the durations of the in-
ternal events of the different nodes. For example, assume
that a node a is mapped onto a processor which is twice as
fast as the processor to which a node b is mapped. Then
the duration of each internal event in b should be multi-
plied with two to take this difference in speed into account.
The second approach can also be used to model the effect
of hardware accelerators, i.e., when a node is not mapped
onto a programmable processor but directly implemented
in hardware.

Buffer sizes. The computational-network model as-
sumes implicitly that the connections used between the
nodes have infinite capacity. This implies that the execu-
tion of a compute node can never be blocked on a full con-
nection. In practice, a connection will be assigned a buffer
of finite size to store data as the amount of available mem-
ory in a system is limited. As a result, a node which pro-
duces data may have to wait until there is enough space in
the connection buffer. In other words, the producing node
must wait until the consuming node has read enough data
elements from the connection. This dependency between
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Figure 16. Buffer size requirements

the producing and consuming node will affect the event di-
agram and thus the concurrency measures. If a separate
buffer with fixed size is assigned to each connection, then
we can analyze this impact in the following way. During
the construction of the event diagram the used buffer size of
each connection is counted over time. If insufficient space
is available, a node stalls the execution of a write event (i.e.
it inserts idle time) till there is enough space on the connec-
tion to write the data elements. The resulting event diagram
can then be analyzed in the normal way and the impact of
the buffer size on the concurrency measures becomes visi-
ble. Note that this allows a fast exploration of the effect of
buffer sizes on the concurrency properties of a design, with-
out the need for re-executing the application.

It may also be interesting to study the number of data ele-
ments that are stored over time in the buffer and to take this
information into account in the concurrency optimization.
For example, the dotted line in Figure 16 shows the num-
ber of data elements stored in the connection between two
of the compute nodes in a JPEG decoder design over time.
Typically only 64 or 128 data elements are stored in the con-
nection at the same time. However, there are a few points
at which many more data elements need to be stored. Fur-
thermore, it is clear that the node which produces the data
elements does this at a more or less constant rate. So, the
consuming node causes the large buffer requirement. Anal-
ysis of the source code of this node revealed that each time
after it had received a certain amount of data a transforma-
tion was applied on it. While this transformation was exe-
cuting, the producing node continued filling the connection.
This transformation, however, could also be performed after
a small amount of data was received - i.e. the transformation
could be distributed more evenly over the execution time of
the consuming node. Applying this transformation to the
source code of the consuming node led to the buffer size
requirements shown in Figure 16 as the ‘adapted’ version.
The required buffer size is reduced with a factor three while
the concurrency properties of the design are preserved.
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8. Related work

Multi-processor systems inherently contain concurrency.
This concurrency must be exploited in the programming tra-
jectory. This requires a model of computation which allows
the specification of concurrency in an application and the
application should fit easily in it. Furthermore, the descrip-
tion of the application should be at the correct abstraction
level to perform the required analysis [14]. A comprehen-
sive survey of models for parallel computations used in dif-
ferent application domains and at different abstraction lev-
els is given in [28]. The most interesting models for our
application domain, streaming multimedia systems, are the
dataflow models. Examples of these are Kahn process net-
works [12, 13] and Synchronous dataflow [18]. In [19], a
framework is presented to compare the notions of concur-
rency, communication, and time between different dataflow
models. Based on the desired notions, a designer can pick
a model of computation that fits best with the application
domain to describe the software and hardware behavior of
a system component. For an entire system, these system
components might be described in different models of com-
putation. Interaction of different models of computation is
captured by the Ptolemy framework [2]. It enables analysis
of a system composed out of components that are described
in different models of computation. Our model of compu-
tation is an abstraction that generalizes all commonly used
models, thus enabling system-level concurrency analysis.

Concurrency optimization is studied in the field of
systems-on-chip design as part of the problem of multi-
processor programming. Typically, concurrency analysis
is (an implicit) part of a design flow that maps an applica-
tion onto a multi-processor system. An extensive overview
of the different design-flow approaches and a classifica-
tion according to the used optimization criteria and ab-
straction level can be found in [7]. Artemis [24] is one
of the projects mentioned in this paper. It is based on a
Kahn process network description of the application and in-
corporates the ideas from SPADE [20], i.e., system-level
co-simulation is performed by using symbolic instruction
traces generated and interpreted at run-time through manu-
ally defined abstract performance models. In [6] a technique
to perform a multi-objective design-space exploration with
Artemis is presented. Our approach provides an automatic
way to derive performance numbers simplifying the anal-
ysis. We also provide a design-space exploration method
to which helps in extracting concurrency from an appli-
cation. Other design-space exploration methods are Mi-
lan [23], Mescal [22] and Metropolis [1]. Milan combines
tools for design-space pruning with simulations at differ-
ent levels of abstraction. Simulators include trace-driven,
task-level evaluation tools as well as cycle-accurate third-
party simulators. Mescal provides a correct-by-construction
mapping flow targeting heterogeneous, application-specific,

programmable (multi-) processors. Applications can be
specified in any combination of models of computation that
is natural for the application. The Metropolis framework
allows the description and refinement of a design at vari-
ous levels of abstraction. Applications are modeled as a
set of communicating processes. The performance numbers
generated by the simulations tools of Metropolis are based
on user-specified annotations. All three approaches focus
on performing a design-space exploration. None of them
aims explicitly at analyzing concurrency from an applica-
tion and identifying concurrency bottlenecks in the applica-
tion, while this is the explicit goal of our work. Our work is
complementary to these design-space exploration tools and
it can be integrated into their flow.

A number of approaches exist in the field of system-on-
chip design that explicitly aim at concurrency analysis and
extraction. A good example of this is the Compaan tool
[15]. It automatically transforms nested loop programs into
a process network which makes the concurrency explicit.
The tool finds all possible concurrency contained in the ap-
plication. Abstraction of the functional behavior of an ap-
plication is often required as Compaan expects that an ap-
plication is described as a looped structure. Compaan re-
quires a designer to make this abstraction without support
from the tool. Our concurrency analysis technique requires
the same abstraction of the application. However, the re-
quired abstraction can be obtained by simulating the appli-
cation in our tool with a set of representative inputs. No
changes have to be made to the description of the applica-
tion. Also, the most concurrent program is not always the
best program, e.g., due to communication overhead. Our
work defines a concurrency model and exploration method
that takes all relevant concurrency aspects into account. An-
other approach to concurrency analysis is found in [29]. The
authors present a technique to identify task-level concur-
rency independent of the target architecture. The approach
is defined on JAVA program constructs and lacks a more
formal underlying model. Our work defines such a model.
One concurrency measure that considers the longest path in
a task graph is defined. This measure is similar to our syn-
chronization measure, but we show that more measures are
needed to avoid optimization of one single aspect.

Analysis and extraction of concurrency from applica-
tions has also been studied extensively in the field of dis-
tributed computing. Most techniques analyze the data-
dependencies between different parts of the application.
These data-dependencies are expressed with a partial order
[25] or a message sequence chart [8]. Ravindran et al. de-
scribe in [26] the different sources of concurrency that can
be identified by looking at the causality relations between
events that occur in an application. A message sequence
chart is used to express these causality relations and to de-
fine a concurrency measure. This measure considers the
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ratio between the number of orders in which messages can
be communicated in the graph (all possible ways to inter-
leave the messages while obeying the precedence relations)
and the number of orders in which messages can be com-
municated in the graph if there are no precedence relations.
Raynal [27] developed another concurrency measure, that is
closely related to our processing load. The difference is that
the processing load takes all communication idle-time into
account and not only the idle-time caused by the causality
relations as done by Raynal’s measure. A second important
difference between the two approaches is that the model of
computation used by Raynal neglects the time needed to
communicate data between tasks. This is not a valid as-
sumption in the domain of streaming multimedia applica-
tions. In these applications, large amounts of data are com-
municated between tasks. Different mappings of the tasks
onto the platform result in a different timing behavior of the
application as these mappings may require different use of
the on-chip interconnect. For this reason, communication
time is taken into account in our concurrency model. One
of the important goals of Raynal’s paper and our work de-
scribed in this paper is to provide analysis techniques inde-
pendent of real time effects, such as system load and proces-
sor speed (i.e., independent of the hardware architecture).
This is different from most other concurrency optimization
techniques in the field of distributed computing. Typically,
concurrency optimization is performed for a given system
architecture [21]. A good example of this is the research
to performance analysis and design optimization for sys-
tolic processors [11, 16]. Commonly considered optimiza-
tion criteria are the latency, throughput and the number of
processors. The synchronization and restart measure in our
concurrency model focus on the first two aspects. The third
aspect is not considered as we assume that dimensioning of
the platform is done in a later stage of the design-flow. An
important contribution of our work compared to all the dis-
cussed approaches is that we provide a model that covers
- at the targeted abstraction level - all relevant concurrency
aspects for streaming applications, and not only a subset of
these aspects as all other approaches, and that we provide a
supporting design-space exploration method.

9. Conclusion

In this paper, we presented a concurrency model with a
supporting design-space exploration method and an analy-
sis tool that allow reasoning about concurrency in stream-
ing applications at the executable-specification level. The
model consists of a set of five system-level measures that
provide guidance when optimizing the concurrency, a set
of detailed measures that provide insight in concurrency
bottlenecks and one overall global measure that takes into
account the steps in the design-space exploration methods
and that steers the exploration. The presented examples

and case studies show that these measures are meaningful,
do not (fully) overlap, allow reasoning about concurrency
and are sufficient for obtaining good results. Our method
still gives results with analysis times in the order of min-
utes when cycle-accurate simulations are no longer feasi-
ble due to long simulation times and extremely high cycle
counts. The JPEG decoder case study furthermore shows
also that the concurrency model and accompanying design-
exploration method allow concurrency optimization inde-
pendent of the exact target architecture; when the end result
is implemented on a homogeneous system of MIPS proces-
sors, the performance is similar to an optimized design im-
plemented on that architecture by an experienced designer.
The 3D recursive search case study illustrates that our con-
currency model can be useful in getting fast and accurate
performance estimates at a relatively high-level of abstrac-
tion. The H.263 decoder case study shows that also for in-
experienced designers it is possible to quickly identify dif-
ferent sources of concurrency using our concurrency model
and CAST.

Future work includes more experiments with different
applications and architectures to verify the assumptions
made in the concurrency model and to fine-tune the model.
We also plan to extend the concurrency model to take ar-
chitecture information into account for the architecture-
dependent step of the design process. Costs of commu-
nication may have a large impact on system performance,
meaning they must be estimated accurately. We want to
study the modeling of these costs in more detail to get a
model that provides abstract but accurate information about
these costs. Another direction of future work is tool support
for the automatic extraction of concurrency from a compu-
tational network.
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