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Abstract. Network-on-chip-based multiprocessor systems-on-
chip are considered as future embedded systems platforms. One
of the steps in mapping an application onto such a parallel plat-
form involves scheduling the communication on the network-on-
chip. This paper presents different scheduling strategies that min-
imize resource usage by exploiting all scheduling freedom offered
by networks-on-chip. It also introduces a technique to take the
dynamism in applications into account when scheduling the com-
munication of an application on the network-on-chip while mini-
mizing the resource usage. Our experiments show that resource-
utilization is improved when compared to existing techniques.

1. Introduction

Increasing computational demands from multimedia ap-
plications have led to the development of multi-processor
systems-on-chip (MP-SoC) which integrate many process-
ing cores and memories. With the growing number of cores
integrated into a chip, communication becomes a bottleneck
as traditional communication architectures are inherently
non-scalable [3]. Networks-on-Chip (NoC) are emerging
as a communication architecture which solves this issue as
it provides a better structure and modularity [3, 5, 25]. Fur-
thermore, it can provide guarantees on the timing behav-
ior of the communication. This enables the development of
systems with a predictable timing behavior which is key for
modern multimedia systems [7].

Current NoCs like Æthereal [25] and Nostrum [18]
use circuit-switching to create connections through the
NoC which offer timing guarantees. Today’s routing and
scheduling solutions however (a) often do not use all rout-
ing flexibility of NoCs and (b) make bandwidth reservations
for connections with throughput/latency guarantees that are
unnecessarily conservative. To illustrate the first point, for
example, the scheduling strategies presented in [12, 16] re-
strict themselves to minimal length routes. Modern NoCs
allow the use of other, more flexible, routing schemes. As
an illustration of the second point, consider a simple NoC

∗This work was supported by the Dutch Science Foundation NWO,
project 612.064.206, PROMES.

l1

bw

t l2

bw

t l3,trad

bw

t l3,new t

bw

Figure 1. Motivating example.

with three links l1, l2 and l3. The data streams sent over l1
and l2, shown in Fig. 1, are both sent over l3. Traditional
NoC scheduling strategies [12, 14] reserve two guaranteed
throughput connections on the link (l3,trad). However, given
the timing of the data streams on l1 and l2, it is possible
to combine both streams and preserve bandwidth (l3,new).
The essential idea is not to reserve bandwidth for guaran-
teed throughput connections permanently during the entire
life time of an active data stream but only during certain in-
tervals, typically per communicated message. The use of
non-minimal routes and the intelligent reservation of NoC
bandwidth leads to a better resource utilization in the NoC.

Modern multimedia applications more and more exhibit
dynamism that causes the application to have a number
of different communication patterns, called communication
scenarios. An extension to the techniques of [12, 14] to
handle this type of dynamism is presented in [19], which
presents a technique to allocate resources for each scenario
while guaranteeing that sufficient resources are available
when switching between scenarios. It ignores that often in-
formation is available on the time needed to switch between
the scenarios. This is similar to the situation illustrated in
Fig. 1. Using this information, it is possible to minimize the
resource usage when switching between scenarios.

This paper explores and compares several new routing
and scheduling strategies for data streams that exploit all
scheduling freedom offered by modern NoCs and minimize
resource usage. It is furthermore shown how communica-
tion scenario transitions can be taken into account. Schedul-
ing strategies which minimize resource usage will be able
to schedule problems with tighter latency constraints and/or
larger bandwidth requirements.

The strategies presented in this paper were first intro-
duced in [27]. This paper present new experimental results



for other topologies than meshes showing the versatility of
the approach. The routing and scheduling strategies are im-
proved leading to a better resource utilization of the NoC.
Furthermore, this paper formally shows that the routing and
scheduling problem is NP-complete. The technique to deal
with the dynamism in applications through the use of sce-
narios is also new in this paper. It is furthermore shown how
this technique can be used to schedule the communication
patterns resulting from an application specified as a Syn-
chronous Dataflow Graph (SDFG, [17]), which is a com-
monly used model for multimedia applications.

The remainder of this paper is organized as follows. The
next section discusses related work. Sec. 3 presents the ap-
plication model used for programming NoC-based MP-SoC
architectures. The architecture itself is discussed in Sec. 4.
The time-constrained scheduling problem is formalized in
Sec. 5. An NP-completeness proof of the problem is also
provided in this section. Several different scheduling strate-
gies are presented in Sec. 6. The benchmark used to evalu-
ate these strategies is presented in Sec. 7. The experimental
results on this benchmark are discussed in Sec. 8. In Sec.
9, a technique is presented to extract multiple communica-
tion scenarios from an application described as an SDFG.
This technique is used in Sec. 10 to schedule the communi-
cation of a realistic multimedia application on a NoC using
our scheduling strategies.

2. Related Work

This paper considers scheduling streaming communica-
tion on a NoC within given timing constraints while mini-
mizing resource usage. We restrict ourself to communica-
tion with timing constraints. In practice, some communica-
tion streams in an application may have no timing require-
ments. Scheduling techniques for these streams are studied
in e.g. [24]. Those techniques can be used together with our
approach to schedule both the communication without and
with timing constraints.

In [16], a state-of-the-art technique is presented to sched-
ule time-constrained communications on a NoC when as-
suming acyclic, non-streaming communication. That is,
tasks communicate at most once with each other. Our ap-
plication model, presented in Sec. 3, allows modeling of
communication streams in which tasks periodically, i.e., re-
peatedly, communicate with each other.

Scheduling streaming communication with timing guar-
antees is also studied in [12, 14, 25]. They apply a greedy
heuristic and reserve bandwidth for streams, whereas we
propose to reserve bandwidth per message and present sev-
eral different heuristics. Our results show a clear im-
provement in resource usage. In [19], an extension to
[14, 25] is presented to schedule multiple communication
patterns onto a single network-on-chip. It assumes that the
streams of different communication patterns are indepen-

dent of each other and no timing relation between them is
known. As a result, streams from different patterns cannot
share bandwidth. In this paper, we present a technique to
share bandwidth between multiple communication scenar-
ios when a timing relation between the scenarios is known.

Many NoCs like Nostrum [18], SPIN [13], Dally and
Towles [5] use regular NoC architectures like a mesh, torus
or fat-tree. The regular structure of these NoCs fits well
with simple routing schemes like XY-routing. These archi-
tectures assume that the computational elements connected
to the NoC are all of similar size. In practice, existing IP-
blocks do not always meet this requirement. Furthermore,
applications with irregular communication requirements do
not fit well with the regular NoCs. For these reasons, irreg-
ular NoC topologies and there accompanying routing and
scheduling techniques are studied [15, 20, 21]. In [15]
a NoC architecture is studied in which some links from
a mesh are removed. A technique to design application-
specific NoCs is studied in [20]. [21] studies a mesh-
topology with added links that reduce the the long latencies
between nodes in the mesh. The routing and scheduling
technique presented in this paper can be used in combina-
tion with any arbitrary (regular or irregular) NoC topology.

3. Application Modeling

Multimedia applications, for instance an MP3 decoder,
operate on streams of data. These applications can be de-
scribed by an application task graph in which the tasks
are executed repeatedly. Whenever a task executes, it ex-
changes messages with other tasks via (data) streams. Dy-
namism in the application can cause differences in the time
at which tasks consume and produce messages. When the
timing difference is small or occurs infrequently, it can be
considered as jitter on the communication pattern. To pro-
vide timing guarantees, the worst-case communication pat-
tern which includes this jitter must be considered when al-
locating resources. It is also possible that the dynamism in
the application causes changes in the communication pat-
tern which are effective over a longer period of time. An
MP3 decoder for example could switch from decoding a
stereo stream to a mono stream. This situation could be
taken into account by allocating resources for the worst-
case communication pattern that can occur. However, this
will result in a resource allocation which is too conserva-
tive for most situations [10, 19]. The solution to prevent
over-allocation of the resources is to consider communica-
tion patterns which differ considerably from each other as
separate scenarios. In an MP3 decoder, for example, the
decoding of a stereo and mono stream could be seen as two
distinct scenarios. It is possible that a switch from one sce-
nario to another is time-constrained and that the two scenar-
ios overlap for some time. These aspects should be taken
into account when allocating resources.
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Figure 2. Example application task graph.

Table 1. Scenario overlap during switching
scenario 1 scenario 2

scenario 1 - 5
scenario 2 3 -

Fig. 2 shows an example of a simple application task
graph consisting of two tasks t1 and t2. The application
contains two scenarios. In the first scenario, task t1 sends
a message m1 through stream s1 to task t2 and t2 sends a
message m2 through s2 to t1. This pattern is repeated with
a period P1. The second scenario has a different commu-
nication pattern and period. In the second scenario, task t1
sends every period P2 two messages m1 and m3 to task t2
and t2 sends a message m2 to t1. Note that also the time
at which messages are sent and size of them is different
in the two scenarios. When running, the application may
switch from one scenario to another. During this switching
period, due to the streaming nature of the applications, mul-
tiple scenarios may be active simultaneously. Tab. 3 gives
the overlap when switching between the two scenarios of
our example application. It shows, for example, that when
switching from scenario 1 to scenario 2, both communica-
tion patterns overlap for 5 time-units. It is also possible that
a switch from one scenario to another scenario cannot occur
or happens without overlap.

To meet the computational requirements of modern mul-
timedia applications, multi-processor systems are used. The
tasks, from an application graph, are mapped to the vari-
ous processors in the system. Whenever multiple tasks are
mapped to one processor, the execution order of these tasks
is fixed through a schedule. These schedules and the tim-
ing constraints imposed on the application determine time
bounds within which each task must be executed. Similarly,
they determine time bounds within which messages must be
communicated between the tasks. Identification of different
communication scenarios can be done using the technique
described in [10]. This paper presents techniques to sched-
ule messages from multiple scenarios, which are specified
with time bounds, on the NoC.

4. Architecture Platform

Multiprocessor systems-on-chip, like Daytona [1],
Eclipse [26], Hijdra [2], and StepNP [22], use the tile-based
multiprocessor template described by Culler [4]. Each tile
contains one or a few processor cores and local memories.
The architecture template used in our work fits also in this
template. A network-on-chip (NoC) is used to interconnect
the different tiles. Each tile contains a network interface
(NI) through which it is connected with a single router in
the NoC. The routers can be connected to each other in an
arbitrary topology. The connections between routers and
between routers and NIs are called links.

In this paper, the connections between the processing el-
ements and the NI inside a tile are ignored. We assume
that these connections introduce no delay, or that the delay
is already taken into account in the timing constraints im-
posed on communications, and that there is sufficient band-
width available. Hence, the NI can be abstracted away into
the tile. Given this abstraction, the architecture can be de-
scribed with the following graph structure.

Definition 1. (ARCHITECTURE GRAPH) An architecture
graph (N,L) is a directed graph where each node u,v ∈ N
represents either a tile or a router, and each edge l =
(u,v) ∈ L represents a link from node u to node v.

Communication between tiles involves sending data over
a sequence of links from the source to the destination tile.
Such a sequence of links through the architecture graph is
called a route and is defined as follows.

Definition 2. (ROUTE) A route r between node u and node
v with u 6= v is a path in the architecture graph of consecu-
tive links from u to v without cycles. The operators src and
dst give respectively the source and destination node of a
route or a link. The length of a route r is equal to the num-
ber of links in the path, and denoted |r|. We use l ∈ r to
denote that the link l appears in the route r.

Links can be shared between different communications
by using a TDMA-based scheduler in the routers and NIs.
All links have the same number of TDMA slots, N, and
each slot has the same bandwidth. At any moment in time,
at most one communication can use a slot in a link. This
guarantees that the NoC schedule is contention-free. Hence,
no deadlock will occur. The data transfered over a link in
a single slot is called a flit and it has size sz f lit (in bits).
To minimize buffering in routers, a flit entering a router at
time-slot t must leave the router at slot t + 1. Not all slots
in a link may be available for use by a single application.
Part of the slots may already be used by other applications
mapped to the system.

Wormhole routing [6] is used to send the flits through
the network. This technique requires limited buffering re-
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Figure 3. NoC-based MP-SoC architecture.

sources and offers strict latency bounds. A message is di-
vided by the sending NI into flits. The flits are then routed
through the network in a pipelined fashion. This reduces the
communication latency considerably. All flits which belong
to the same message and are sent in consecutive slots form
a packet. The first flit in a packet (header flit) contains all
routing information and leads the packet through the net-
work. The header has a fixed size of szph bits (szph ≤ sz f lit ).
The remaining sz f lit −szph bits in the header flit can be used
to send (a part of) the actual message. The size of the header
must be taken into account when allocating resources in the
NoC. Two messages, possibly sent between different source
and destination tiles but over one link at non-overlapping
moments in time can use the same slot. For messages that
use the same slot in the link between the source tile and
the first router but a different route, the routing information
stored in the NI for this slot must be changed. This can be
implemented efficiently by sending a message from a pro-
cessor or communication assist [4] inside a tile to its NI to
change the routing information. The time required to recon-
figure the NI is Trecon f . During this reconfiguration time, the
slot may not be used to send messages.

Tasks in an application communicate with each other
through streams of messages. The ordering of the messages
in a stream must be preserved. To realize this, the NIs send
messages onto the network in the same order as they receive
them from the processors. The scheduling of communica-
tions on the NoC must also guarantee that the messages are
received in the same order. No reordering buffers are thus
needed in the NIs, which simplifies their hardware design.
The NoC further requires that when the communication of
a message is started, slots are claimed in the links it is us-
ing. These slots are only freed after the communication has
ended. Preemption of a communication is not supported.

5. Time-Constrained Scheduling Problem
5.1. Overview

Informally, this paper tries to find a schedule for a set of
scenarios CS, such that the schedule of each scenario has no
conflicting resource requirements with the other scenarios
and other applications, and that the set of messages which
make up a scenario are sent between different tiles in a sys-
tem within given timing constraints. First, we formalize in
Sec. 5.2 the problem of scheduling a single scenario s ∈CS.

The formalization is such that only a single period of the
scenario needs to be scheduled. This schedule can then be
repeatedly executed as often as necessary. It uses a func-
tion U : L×N → {used,not-used} which indicates for ev-
ery link at every moment in the time-span of one scenario
period of the schedule whether a slot is occupied. The func-
tion U captures the resource constraints due to other appli-
cations using the same platform and from the schedules of
other scenarios on the messages being scheduled from sce-
nario s. Sec. 5.3 explains how the function U is constructed
and used when scheduling multiple scenarios on the NoC.
The complexity of the single-scenario scheduling problem
is studied in Sec. 5.4.

5.2. Scheduling a Single Scenario

A communication scenario consists of a set of messages
which must be scheduled on the NoC within their timing
constraints. A message is formally defined as follows.

Definition 3. (MESSAGE) Given an architecture graph
(N,L), a set of streams S and a period P. A message m is
a 7-tuple (u,v,s,n,τ,δ,sz), where u,v ∈ N are respectively
the source and the destination tile of the n-th message sent
through the stream s ∈ S during the period P. The earliest
time at which the communication can start, relative to the
start of the period, is given by τ ∈ N (0 ≤ τ < P). The max-
imum duration of the communication after the earliest start
time is δ ∈ N (δ ≤ P). The size (in bits) of the message that
must be communicated is sz ∈ N.

In the application task graph shown in Fig. 2, a message
m1 = (u,v,s1,n,τ,δ,sz) is sent each period P1 through the
stream s1 of scenario 1. This communication can start at
time τ and must finish before τ + δ. Note that a communi-
cation may start in some period and finish in the next period.
This occurs when τ+δ > P1.

In practice, messages may not always have a fixed earli-
est start time, duration, or size. Conservative estimates on
these figures should be used to construct the set of messages
in order to guarantee that all communications fall within the
timing and size constraints. Resources that are claimed but
not used, due to for example a smaller message size, can be
used to send data without timing requirements between tiles
without providing guarantees, i.e. best-effort traffic.

A message specifies timing constraints on the communi-
cation of data between a given source and destination tile.
It does not specify the actual start time, duration, route and
slot allocation. This information is provided by the schedul-
ing entity.

Definition 4. (SCHEDULING ENTITY) A scheduling entity
is a 4-tuple (t,d,r,st), where t ∈ N is the start time of the
scheduled message relative to the start of the period and
d ∈ N is the duration of the communication on a single link.
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The scheduled message uses the route r in the network and
the slots it uses from the slot table of the first link l ∈ r are
given by contained in the set st ⊆ {0, . . . ,N −1} with N the
slot-table size.

The slots given in st are claimed on the first link of the
route r at time t for the duration d. On the next link, the slot
reservations are cyclically shifted over one position. So,
these slots are claimed one time-unit later, i.e., at t +1, but
for the same duration d. The complete message is received
by the destination at time t + d + |r| − 1. Fig. 4 shows a
scheduling entity which sends a message over a link with a
slot-table of 8 slots. Starting at time t = 2, the slots 2, 3, and
4 are used to send the message. The communication ends
after d = 11 time units. In total two packets consisting both
of three flits are used to send the message.

The relation between a message and a scheduling entity
is given by the schedule function, formally defined below in
Def. 5. Among all schedule functions, those respecting the
constraints in Def. 5 are called feasible. One of the con-
ditions that a feasible schedule needs to satisfy is that it
is contention free, i.e., slot-tables should not be simultane-
ously reserved by different messages, different scenarios or
different applications. An important aspect in this context
is the relation between the slot-table size N and the period
of the scenario P. Fig. 5 shows an example of a link l with
slot table size N = 8. The second slot from the slot table
is occupied by another application. The message(s) from a
scenario with period P = 7 are also scheduled on the link
l. In the first period, the scenario uses the third slot from
the slot table. In the next period, the scenario uses the sec-
ond slot from the slot table. However, this slot is already
occupied by another application. Hence, there is contention
on the link at this moment in time as both schedules want
to use the same slot at the same moment in time. This ex-
ample shows that it is in general not sufficient to guarantee
that the first period of some scenario is contention-free; also
following periods must be free of contention. In fact, the
number of periods of a schedule with period P which must
be checked for contention is equal to the least common mul-
tiple of P and N, lcm(P,N), divided by P. After this number
of periods, the first time-unit of the scenario coincides again
with the first slot of the slot table. For simplicity, we assume
that the period of a scenario is a multiple of the size of the
slot table. It is then sufficient to check only a single period
for contention, which simplifies the formulas in the remain-
der. This is not a restriction as any scenario whose period
P which does not adhere to this requirement can be con-
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Figure 5. Contention in second period.

catenated for lcm(P,N)/P times before scheduling it. The
period of the concatenated scenario is then a multiple of the
slot table with size N.

Consider now Def. 5. The first two constraints make
sure that the communication takes place between the correct
source and destination tile. The third and fourth constraint
guarantee that the communication falls within the timing
constraints given by the message. The fifth constraint en-
sures that enough slots are reserved to send the message
and packet headers over the network. It uses a function π(e)
which gives for a scheduling entity e = (t,d,r,st) the num-
ber of packets which are sent between t and t + d on the
first link of the route r considering the slot reservations st
and assuming that at time 0 the first slot of the slot table is
active. The function ϕ(e) gives the number of slots reserved
by e between t and t + d. The sixth constraint makes sure
that a scheduling entity does not use slots in links which
are at the same moment in time used by other applications
or scenarios. It uses a function σ(e, lk,x) which indicates
for a scheduling entity e and the k-th link lk on the route
r of e whether it uses a slot from the slot-table with size
N of lk at time x; σ(e, lk,x) = used when (x + k) mod N ∈
(s+k) mod N, else σ(e, lk,x) = not-used. The seventh con-
straint requires that the schedule is contention-free. The
next constraint makes sure that there is enough time to re-
configure the NI between two messages which originate at
the same NI and use the same slot but different routes. The
last constraint enforces that the ordering of messages in a
stream is preserved.

Definition 5. (SCHEDULE FUNCTION) A schedule function
is a function S : M → E where M and E are respectively the
set of messages and scheduling entities. We call S feasible
if and only if, for all messages m = (u,v,s,n,τ,δ,sz) ∈ M
associated to scheduling entity S(m) = e = (t,d,r,st),

1. the route starts from the source tile: u = src(r),

2. the route ends at the destination tile: v = dst(r),

3. the communication does not start before the earliest
moment in time at which the data is available: t ≥ τ,

4. the communication finishes not later than the deadline:
t +d + |r|−1 ≤ τ+δ,

5. the number of allocated slots is sufficient to send the
data: sz+ szph ·π(e) ≤ sz f lit ·ϕ(e),

6. the communication uses no slots occupied by other ap-
plications or scenarios: for all links l ∈ r and time
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instances x with 0 ≤ x < P, σ(e, l,x) = not-used when
U(l,x) = used,

and for each pair of messages m1,m2 ∈ M with
m1 6= m2, m1 = (u1,v1,s1,n1,τ1,δ1,sz1), S(m1) = e1 =
(t1,d1,r1,st1), m2 = (u2,v2,s2,n2,τ2,δ2,sz2), and S(m2) =
e2 = (t2,d2,r2,st2),

7. for all l ∈ r1 ∩ r2 and for all x with 0 ≤ x < P,
σ(e1, l,x) = not-used or σ(e2, l,x) = not-used,

8. if u1 = u2, r1 6= r2, and st1
T

st2 6= /0, then there is
enough time to reconfigure the NIs: (t2 − t1 −d1) mod
P ≥ Trecon f ,

9. if s1 = s2 and n1 < n2, then the ordering of these mes-
sages is preserved: t1 + d1 < t2 ∧ t1 + d1 + |r1|− 1 <
t2 + |r2|.

If a schedule function is not feasible, it means that one
or more of the above rules are violated in at least one asso-
ciated scheduling entity. Such a schedule is called infeasi-
ble. By construction, any feasible schedule is contention-
free and hence free of deadlock and livelock [11].

5.3. Scheduling Multiple Scenarios

The problem of scheduling a set of scenarios CS consists
of finding a feasible scheduling function S for the streams in
all scenarios s ∈CS. Feasibility requires that resource con-
straints from a scenario si ∈ S are considered when schedul-
ing another scenario s j ∈ S which overlaps with si. Of
course, slots occupied by other applications must also be
taken into account. When scheduling a single scenario, all
these constraints are taken into account through the function
U. This subsection explains with an example, illustrated in
Fig. 6, how the function U is constructed.

Consider the situation in which messages of four scenar-
ios must be scheduled on a link l. Assume that the link
has a slot table of size 8 of which the second slot in the
slot table is already occupied by another application. This
slot cannot be used for any scenario. Assume now that the

first three scenarios are already scheduled on l. To schedule
the messages of the fourth scenario, a function U must be
constructed which takes into account the slots used by the
three already scheduled scenarios and the slots occupied by
other applications. Let the scenarios 1, 2 and 3 have re-
spectively a period of 32, 24 and 40 time-units. The slots
occupied by the scheduled scenarios 1, 2 and 3 are shown
on the left-hand side of Fig. 6. The fourth scenario has a
period of 32 time-units and it has an overlap with the sce-
narios 1, 2 and 3 of respectively 16, 32 and 40 time-units.
Note that a consequence of the earlier assumption that the
start of a scenario aligns with a slot-table rotation is that the
overlap between two scenarios is a multiple of the slot-table
size. This means that a new scenario can only be started at
the beginning of a slot-table rotation. If desirable, this re-
striction can be relaxed to allow arbitrary overlap, but this
makes the construction of U more tedious and it seems of
little practical value.

The overlap of 16 time-units between scenarios 1 and 4
implies that the last 16 time-units of the last period of sce-
nario 1 overlap with the first 16 time-units of the first period
of scenario 2. After these 16 time-units, scenario 1 is no
longer repeated. So, the slots occupied in the last 16 time-
units of scenario 1 cannot be used for scenario 4. Due to the
overlap between scenarios 2 and 4, more than one period
of scenario 2 overlaps with scenario 4. The slots occupied
by scenario 2 cannot be used for scenario 4. The overlap of
scenario 3 on scenario 4 is even larger than a complete pe-
riod of scenario 4. Slots occupied after a complete period of
scenario 4 do constrain the next period of the scenario and
should therefore also be considered as a constraint on the
available slots. The dotted arrow between scenario 3 and 4
gives an example of such a constraint. Only slots which are
not occupied by other applications or any of the overlapping
scenarios can be used to schedule the messages of scenario
4. These slots are colored white in Fig. 6.

5.4. Complexity
In this section, we prove that the single-scenario schedul-

ing problem is NP-complete.



Theorem 1. Given an architecture graph G(N,L) and a
scheduling problem consisting of a set of messages M with
a period P. The problem of finding a feasible schedule func-
tion is NP-complete.

We first show that the problem belongs to NP. The verifi-
cation algorithm must check whether the scheduling entities
satisfy the constraints of Def. 5. The first five constraints
can be checked in O(|M|) time. The other constraints can
be easily checked in polynomial time for a single link l ∈ L,
but need to be repeated for all l ∈ L. However, this is still
polynomial in the problem size.

To prove that the problem is NP-complete, we show that
the disjoint-path problem [8] can be reduced in polynomial
time to our scheduling problem. The disjoint-path problem
was proved to be NP-complete (even for planar graphs) [8].
In the disjoint-path problem, a set of edge-disjoint paths in a
given graph must be found between a set of pairs of vertices.
The reduction of the disjoint-path problem to our schedul-
ing problem works as follows. Let G be the graph and the
set {(u1,v1) . . . (uk,vk)} the pairs of vertices that form an
instance of the disjoint-path problem. We construct an in-
stance of the scheduling problem with architecture graph
G and the number of slots in each link equal to 1. We ig-
nore the ordering of the messages in the streams, i.e. we
assume that each message belongs to a different stream.
The length of the period is equal to 1. The set of messages
M = {(u′1,v

′
1,s1,1,0,1,1), . . .(u′k,v

′
k,sk,1,0,1,1)}, i.e., all

messages have sequence number 1, starting time 0, deadline
1, and size 1. This construction can be done in polynomial
time. Suppose that there are edge-disjoint paths p1, · · · , pk
between (u1,v1) . . . (uk,vk). For each i, the path pi, which is
in fact a route from node u′i to v′i in the scheduling problem,
is exclusively dedicated to the message (u′

i,v
′
i,si,1,0,1,1).

The message is scheduled to be sent at time 0 using all band-
width in the links on its route. It is easy to see that this
schedule function is feasible. Conversely, suppose that there
is a feasible schedule function for the set M; then, the set
of scheduling entities cannot share bandwidth, as sharing
bandwidth leads to missing deadlines. Since bandwidths
are all set to be 1, it trivially follows that the routes are all
disjoint. Hence, any feasible schedule is a solution to the
disjoint-path problem.

6. Scheduling Strategies

6.1. Overview

Given a set M of messages, a scheduling strategy for
a single scenario must find a schedule entity e for each
message m ∈ M and the set E of scheduling entities must
form a feasible schedule function (i.e., all constraints from
Def. 5 must be met). Given that an exhaustive approach is
not tractable, we present several heuristic approaches. The
heuristics allow the user to trade off quality of solutions and

effort spent on solving problems. First, a greedy strategy is
presented in Sec. 6.2. Typically, the greedy approach gives
a solution quickly. However, it also excludes a large part of
the solution-space. The second strategy, ripup, adds back-
tracking to the greedy approach. This improves the quality
(number of feasible solutions found for a set of problems),
but it also increases the run-time. The backtracking tries
to resolve scheduling conflicts when they occur. The third
strategy, presented in Sec. 6.4, tries to avoid conflicts by es-
timating a priori the usage of all links. This should steer the
routing process to avoid scheduling conflicts and as such
minimizes the use of the backtracking mechanism. A fea-
sible schedule for the messages of a single scenario takes
into account the constraints that originate from other ap-
plications and scenarios. These constraints are captured in
the function U. A scheduling strategy for multiple scenario
based on the scheduling strategies for a single scenario is
presented in Sec. 6.5.

6.2. Greedy

The greedy strategy explores a small part of the solution-
space. As a result, it has a small run-time. However, it
may miss solutions or find non-optimal ones in terms of re-
source usage. The greedy strategy essentially tries to sched-
ule the largest, most time-constrained messages first, via the
shortest, least congested route that is available. It works as
follows. First, all messages m = (u,v,s,n,τ,δ,sz) ∈ M are
assigned a cost using Eqn. 1 and sorted from high to low
based on their cost. The cost function guarantees that mes-
sages are ordered according to their (integer) size (larger
size first) and that two messages with the same size are or-
dered with respect to the duration (tighter constraint first).

costM(m) = sz(m)+
1

δ(m)
(1)

Next, a schedule entity e = (t,d,r,st) must be constructed
for the first message m = (u,v,s,n,τ,δ,sz) ∈ M. To mini-
mize the resource usage, the scheduling strategy must try
to minimize the length of the routes. For this reason, the
greedy strategy determines a list R of all routes from u to v
with the shortest length and assigns a cost to each route r
using the following cost function that determines the mini-
mum number of available slots in any link in a route during
the time-span that the link might potentially be used by the
message.

costR(r,m) = min
lk∈r

∑
τ(m)+k≤x≤τ(m)+δ(m)+k−|r|

F (lk,x) (2)

with F (lk,x) = 1 when U(lk,x) = not-used and F (lk,x) =
0 otherwise. The routes are sorted from low to high cost
giving preference to the least congested routes. Next, a
schedule entity e is constructed using the first route r in



R. The scheduling strategy should avoid sending data in
bursts as this increases the chance of congestion. There-
fore, the start time, t, of e is set equal to the earliest possible
time respecting the third and last constraint from Def. 5.
Given t and the fourth and last constraint from Def. 5, the
maximal duration d of e can be computed. All slots avail-
able between t and the maximal duration on the first link of
the route, respecting the sixth, seventh and eighth constraint
from Def. 5, are located. From these slots, a set of slots, st,
is selected which offer sufficient room to send the message
and the packet headers. The scheduler tries to minimize the
number of packets that are used by allocating consecutive
slots in the slot table. This minimizes the overhead of the
packet headers, which in turn minimizes the number of slots
needed to sent the message and its headers. This leaves as
many slots as possible free for other messages. It is possible
that no set of slots can be found which offer enough room
to send the message within the timing constraints. If this is
the case, the next route in R must be tried. In the situation
that all routes are unsuccessfully tried, a new set of routes
with a length of the minimum length plus one is created
and tried. This avoids using routes longer than needed and
it never considers a route twice. A route which uses more
links than the minimum required is said to make a detour.
The length of the detour is equal to the length of the route
minus the minimum length. If no set of slots is found when
a user-specified maximum detour of X is reached, then the
problem is considered infeasible. If a set st of slots is found,
the minimal duration d needed to send the message via the
route r, starting at time t using the slots st is computed us-
ing the fifth constraint from Def. 5. The scheduling entity
e = (t,d,r,st) is added to the set of schedule entities E. The
new set of schedule entities E ∪{e} is guaranteed to respect
all constraints from Def. 5. The next message can be han-
dled. The process is repeated till a schedule entity is found
for all messages in M, or until the problem is considered
infeasible (a message cannot be scheduled).

6.3. Ripup

The ripup strategy uses the greedy strategy described in
the previous section to schedule all messages. This guaran-
tees that all problems that are feasible for the greedy strat-
egy are also solved in this strategy. Moreover, the same
schedule function is found. As soon as a conflict occurs (i.e.
no schedule entity ei can be found for a message mi which
meets the constraints given in Def. 5), an existing schedule
entity e j is removed from the set of schedule entities E. To
choose a suitable e j, the heuristic calculates for each sched-
ule entity e j ∈ E the number of slots it uses in the links that
can also be used by ei. The higher this number, the larger
the chance that e j forms a hard conflict with ei. A schedule
entity e j with the largest conflict is therefore removed from
E. This process is continued until a schedule entity ei for

the message mi can be created that respects the constraints
given in Def. 5. After that, the messages of which the corre-
sponding schedule entities were removed are re-scheduled
in last-out first-in order. On a new conflict, the ripup mech-
anism is activated again. The user specifies the maximum
number of times a ripup may be performed. This allows a
trade-off between quality and run-time of the strategy.

6.4. Global knowledge
The ripup scheduler does not know a priori which un-

scheduled messages need to use links in the route it assigns
to the message it is scheduling. It can only use local infor-
mation to avoid congestion. The global knowledge strategy
tries to estimate, before scheduling messages, the number
of slots that are needed in each of the links. This gives the
scheduling strategy global knowledge on the congestion of
links. This knowledge is used to guide the route selection
process when scheduling the messages.

Communication of a message m can take place at any
moment in time within the time interval specified by m.

Within this interval it requires at least
⌈

dsz(m)/sz f lite
max(bδ(m)/Nc,1)

⌉

slots in each link of the route it uses. In the optimal sit-
uation, all scheduled messages use a route with the short-
est length. To estimate the congestion on all links in the
NoC, the strategy assumes that only shortest length routes
are used. For each link l ∈ L, the strategy computes the min-
imal number of slots required at each moment in time when
all messages which can use l, as it is part of at least one
of their shortest routes, would use the link l. The function
C : L×N → N gives the estimated number of slots used in
a link l ∈ L at a given time x.

The global knowledge strategy uses the same algorithm
as the ripup strategy. However, a different cost function is
used to sort the routes it is considering when scheduling a
message. The cost function used by the greedy and ripup
strategy (Eqn. 2) is replaced by the following cost function.

costR(r,m) = ∑
lk∈r

max
τ(m)+k≤x≤τ(m)+δ(m)+k−|r|

C (l,x) (3)

This cost function ensures that the routes are sorted based
on the estimated congestion of the links contained in the
routes. Routes containing only links with a low estimated
congestion are preferred over routes with links that have a
high estimated congestion. This minimizes the number of
congestion problems which occur during scheduling. As
such, it makes more effective use of the allowed ripups.

6.5. Multiple Scenarios
Given a set S of scenarios, a scheduling strategy for mul-

tiple scenarios must find a feasible scheduling function for
each scenario while taking into account the resource con-
straints of the scenarios on each other. These constraints
are captured in the function U (See Sec. 5.3).



Our multi-scenario scheduling strategy must first decide
on the order in which it schedules the scenarios. A scenario
which overlaps with many other scenarios has potentially
tight resource constraints as many other scenarios share re-
sources with it. When this scenario is scheduled first, the
scheduling functions can minimize the number of packets
which it needs to sent its messages. This minimizes the re-
source usage of the scenario. The overlap in time-units be-
tween two scenarios is given by the function O : S×S → N.
To sort the scenarios according to the overlap which they
have with each other, the multi-scenario scheduling strat-
egy assigns a cost to each scenario using Eqn. 4 and sorts
them from high to low based on their cost.

costS(si) = ∑
s j∈S

O(si,s j)+ O(s j,si) (4)

Next, a set of scheduling entities Ei must be constructed for
the set of messages Mi which make up the first scenario si
in the ordered set of scenarios. This is done using a single-
scenario scheduling function. The greedy, ripup or knowl-
edge strategy can all be used for this purpose. The function
U contains at that moment only the constraints which origi-
nate from other applications. When the used single-scenario
scheduling strategy finds a feasible scheduling function S ,
the multi-scenario strategy updates the function U to in-
clude the constraints which originate from S(Mi). This is
done using the procedure described in Sec. 5.3. The multi-
scenario strategy continues by scheduling the next scenario
in the ordered list of scenarios. This process of scheduling
a scenario and updating the constraint function U continues
till either no feasible scheduling function is found for a sce-
nario or all scenarios are scheduled. In the latter case the
problem is called feasible; else it is called infeasible.

7. Benchmark

A benchmark is needed to test the quality of the schedul-
ing strategies. It must contain a set of problems that covers
a large part of the problem space typical of realistic appli-
cations. It should also be large enough to avoid optimiza-
tion towards a small set of problems. It is not possible to
construct a benchmark containing only real existing appli-
cations. Profiling these is too time-consuming and they are
not representative for more demanding future applications
at which NoCs are targeted. Therefore, a benchmark which
consists of a set of randomly generated problems is used.
A method to generate synthetic workloads for NoC perfor-
mance evaluation is introduced in [29]. It assumes a com-
munication model in which tasks exchange data-elements
with each other through channels. The communication of
data-elements has a periodic time behavior with some jit-
ter on it. We use a benchmark generator to evaluate the
scheduling strategies which is based on a similar idea.

Many NoCs use a regular topology like a mesh [12, 14,
16, 18] or torus [5]. Tiles located at the edge of a mesh are
restricted in the links that can be used as at least one direc-
tion is not available because of the topology. In a 3x3 mesh
this holds for all tiles except for one. In a 5x5 mesh there
are 16 edge tiles and 9 non-edge tiles and a 7x7 mesh has
24 edge tiles and 25 non-edge tiles. The ratio of edge to
non-edge tiles can possibly influence the scheduling strate-
gies. To study this effect, problem sets are generated for
a 3x3, 5x5 and a 7x7 mesh. All tiles in a 2D-torus have
the same number of links. So, a torus has compared to a
mesh more scheduling freedom as it has more links. To
study, the effect of the additional scheduling freedom on
the scheduling strategy, torus topologies with the same di-
mensions as the mesh topology are included in the bench-
mark. The NoC topology can be optimized when the appli-
cations running on it are known at design-time. This may
result in the use of irregular NoC topologies [15, 20, 21].
To study how our strategies behave on irregular topologies,
two topologies with respectively 9 and 25 tiles are added to
the benchmark. Following [15], these topologies are based
on a regular mesh topology in which 10% of the links are re-
moved. These irregular topologies are constructed such that
communication between any pair of tiles remains possible.

A traffic generator is developed which creates a user-
specified number of streams of messages between randomly
selected source and destination tiles. The streams can model
uniform and hotspot traffic. All messages in a stream are
assigned a start time, size, and duration which consists of
a randomly selected base value which is equal for all mes-
sages in the stream plus a random value selected for each in-
dividual message in the stream. The first part can be used to
steer the variation in message properties between streams.
The second part can be used to create variation between
messages in a single stream (i.e. jitter).

The problem space can be characterized in a 2-
dimensional space. The first dimension is determined by the
number of messages which must be communicated within
a period. The second dimension is determined by the ratio
of the size of the messages communicated and the avail-
able bandwidth. When constructing the problem sets, we
found that there is an area in the problem-space where prob-
lems change from being easy to solve to unsolvable. We se-
lected 78 equally distributed points around this area in the
problem-space. For each point we generated 100 problems.
This gives a benchmark with a set of 7800 different prob-
lems per topology-size and traffic model. The mesh, torus
and irregular topologies have similar topology sizes and can
thus share the problem sets. Fig. 7 shows for each point
in the problem-space of the 5x5 mesh with uniform traffic
how many problems are solved with the greedy and global
knowledge strategies. The results for the greedy strategy
show that most problems do not have a trivial solution. A
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Figure 7. Feasible problems in the problem-space.

solution is found for only 30% of the problems. The re-
sults of the global knowledge strategy show that 57% of
the problems can be solved (and already suggest that global
knowledge performs better than greedy). So, our bench-
mark contains problems which are not trivial to solve (i.e.
greedy does not find a solution), but a solution does exist
(i.e. global knowledge finds a solution). Note that when
the problems get harder to solve, the demands on the re-
sources are increased. More latency sensitive messages
and/or larger messages (more bandwidth) need to be sched-
uled. Scheduling strategies which are more resource effi-
cient will be able to solve more problems.

The benchmark must also contains multi-scenario
scheduling problems in order to benchmark the multi-
scenario scheduling strategy. These problems can be con-
structed by combining multiple single-scenario scheduling
problems into one multi-scenario scheduling problem and
selecting a random overlap between them. Scheduling prob-
lems from the 5x5 topologies are used for this purpose.
Only scheduling problems are used for which all schedul-
ing strategies, including the reference strategy [14] intro-
duced in Sec. 8.1, find a feasible scheduling function. This
guarantees that when the multi-scenario scheduling strategy
cannot find a feasible scheduling function, this must be due
to the resource constraints which result from scenario over-
laps. In total, 500 random combinations of two problems
are selected with a random overlap value between 5% and
50% of the period of the problems.

8. Experimental Results

8.1. Single-Scenario Reference Strategies

A state-of-the-art scheduling strategy is presented in
[14]. The strategy allows the use of non-shortest routes
but it assumes that slots cannot be shared between differ-
ent streams. Reconfiguration of the NIs is not possible.
As in our greedy strategy, this strategy does not reconsider
scheduling decisions when a conflict occurs. We used this

strategy in our experiments as our reference strategy. It is
implemented using the greedy strategy with an adapted cost
function to sort the routes and three restrictions imposed on
it. One, messages in one stream must use the same route.
Two, streams are not allowed to share slots. Three, the re-
configuration time is equal to a period. This makes it im-
possible to reconfigure the NIs. The cost function that is
used to sort the routes computes the ratio between the num-
ber of slots that are currently not-used in the links of a route
and the total number of slots in the links of the same route.
The experimental results suggest that using a backtracking
mechanism is very effective. For this reason, we extended
the reference strategy with our ripup mechanism. This strat-
egy is used in the experiments as the improved reference
strategy.

8.2. Single-Scenario Scheduling

All single-scenario scheduling strategies have been
tested on the benchmark problems. The ripup, global
knowledge and improved reference strategies have been
tested with a number of different values for the maximum
number of ripups (1, 10, 50, 100, 150, 200, 400, 800) to
study the trade-off between the number of problems for
which a solution is found and the run-time. A slot-table
size of 8 slots is used in all experiments and the maximum
detour (X) is initially set to 0. Note that X = 0 guarantees
that any solution uses only shortest routes. This allows us to
study for how many problems each strategy is able to find a
solution with minimal resource requirements. The reconfig-
uration time of the NI, Trecon f , is set to 32 time units. This
gives tiles 4 complete rotations of the slot table to reconfig-
ure the NI. A processor or communication assist must send
a message to update the routing information in the NI. The
size of this message is less than the size of a single flit (i.e.
it needs one time unit to be sent), so the value for Trecon f is
conservative.

The trade-off between the run-time and the number of
problems that is solved with the various strategies on the
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(a) 3x3 mesh with uniform traffic.
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(b) 5x5 mesh with uniform traffic.
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(c) 7x7 mesh with uniform traffic.
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(d) 3x3 mesh with hotspot traffic.
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(e) 5x5 mesh with hotspot traffic.
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Figure 8. Trade-off between feasible problems and run-time.

mesh topologies is shown in Fig. 8. The trade-off curves for
the other topologies are similar and therefore omitted. Tab.
2 summarizes the results for all strategies and all topologies
assuming that 800 ripups are allowed. The column ‘Im-
provement’ shows the percentage of additional problems
that is solved by all strategies compared to the reference
strategy. The column ‘Avg time’ gives for each strategy the
average run-time on a problem.

Looking at the number of problems solved, the results
show that the reference strategy is outperformed by the im-
proved reference strategy. This shows that adding back-
tracking to the state-of-the-art scheduling algorithm pre-
sented in [14] improves the results considerably. The results
show further that the reference strategy solves less problems
than greedy and the improved reference strategy solves less
problems than the other two strategies using ripups. From
this, we conclude that not using the ability of NoCs to re-
configure their connections is a limiting factor. As modern
NoCs do not have this limitation, problems scheduled using
the reference strategies may unnecessarily be considered in-
feasible or use unnecessarily many resources. Slot sharing
is especially advantageous for hotspot traffic. For this type
of traffic, our strategies are able to solve up-to 81% more
problems than the improved reference strategy. This shows
that slot sharing reduces the problem of contention on links
connected to a hotspot.

The cost-functions in the greedy, ripup and global
knowledge strategy which sort the routes have been adapted
in this paper compared to our previous work [27]. Due to

these changes, the three strategies solve currently respec-
tively 48%, 9% and 9% more problems on the same mesh-
tolopolgies and problem sets as compared to [27]. This
shows that the improved cost-functions are more effective
in sorting the routes which are tried in the scheduling strate-
gies.

The results in Tab. 2 show that the global knowledge
strategy always outperforms the other strategies. However,
the average run-time on a problem is larger for this strategy
than for the other strategies. This is caused by the conges-
tion estimation made at the start of the strategy. Simpler
estimates might be used to reduce its run-time. The refer-
ence and improved reference strategy have always the low-
est run-time. This is logical as route selection is done only
once for all messages in a stream and the slot allocation
does not have to consider reconfiguration of slots.

Modern NoCs allow the use of flexible routing schemes
(i.e. routes may use a detour). More problems may be
solved when this flexibility is used. To quantify this gain,
we tested all strategies with a maximum detour of 2 on all
problems in our benchmark. The results of this experiment
are shown in column ‘Detour’ of Tab. 2, which shows the
improvement in the number of problems solved when com-
pared to the reference strategy with detour zero. It shows
that using non-shortest routes helps in solving additional
problems.

8.3. Multi-Scenario Scheduling
The multi-scenario strategy can use all available single-

scenario scheduling strategies. For the experiments, the



Table 2. Results single scenario problem.
Mesh-topology

Improvement Avg time [ms] Detour (X = 2)
Greedy 118% 178 304%
Ripup 277% 615 365%
Knowledge 371% 1201 420%
Reference 0% 9 5%
Improved ref. 213% 80 263%

Torus-topology
Improvement Avg time [ms] Detour (X = 2)

Greedy 284% 54 434%
Ripup 417% 111 473%
Knowledge 458% 196 487%
Reference 0% 5 1%
Improved ref. 242% 14 255%

Arbitrary topology
Improvement Avg time [ms] Detour (X = 2)

Greedy 58% 66 295%
Ripup 260% 602 454%
Knowledge 449% 905 595%
Reference 0% 6 68%
Improved ref. 148% 167 339%

knowledge strategy with 800 ripups is used as this strat-
egy solves the largest number of single-scenario schedul-
ing problems. This indicates that this strategy is the most
resource efficient strategy. To compare our multi-scenario
scheduling strategy, we use the state-of-the-art strategy pre-
sented in [19]. This strategy assumes that two schedul-
ing problems cannot share slots when the scheduling prob-
lems overlap. In [19], the strategy is used in combination
with our reference strategy. The experiments on the single-
scenario scheduling strategies showed that all our strategies
are more resource efficient than this strategy. To exclude the
influence of the reference strategy on the results obtained
with the strategy from [19], we use the strategy from [19] in
combination with our best strategy, the knowledge strategy
with 800 ripups.

All multi-scenario problems from our benchmark are
scheduled on a 5x5 mesh topology. Our scheduling strat-
egy is able to find a feasible scheduling function for 74% of
the problems. The strategy from [19] fails to find a feasible
scheduling function for any of the 500 problems. This is due
to the fact that the number of slots occupied by each individ-
ual single-scenario problem is too large to allow a combi-
nation of both problems on the NoC. To schedule the multi-
scenario scheduling problems using the strategy from [19] a
NoC with more resources (e.g. larger bandwidth, larger slot
tables) is needed. Using our multi-scenario strategy, many
problems can be scheduled within the available resources.
This shows that the impact of slot sharing between scenar-
ios can have a large impact on the required resources.

8.4. Cost functions

Cost functions are used in the scheduling strategies to
sort the messages M and routes R. The cost functions should
minimize the chance of having a conflict when scheduling
messages. They are constructed in such a way that the most

resource constrained messages are handled first and that the
resource usage is balanced over all links in the NoC. How-
ever, by doing so, they up-front exclude points from the
solution-space. To circumvent this problem, randomly or-
dered sets M and R can be used as an alternative for the cost
functions.

To test the impact of the cost functions on the quality
of the strategies, the cost functions in the ripup strategy are
replaced with a mechanism which assigns random costs to
messages and routes. Experiments showed that the num-
ber of times we this randomized the strategy with a fixed
number of ripups on a given problem set did not have an
influence on the number of problems for which a feasible
schedule function is found. However, the number of prob-
lems solved within a limited run-time and randomly ordered
messages and routes is far lower than the number of prob-
lems solved by any of the heuristics in the same time. This
shows that the cost functions in the heuristics are effective
in ordering the messages and routes.

8.5. Scalability

The experiments showed that the run-time of the various
strategies increases when the size of the topology increases
(see Fig. 8). This is caused by the fact that the number
of links in a route increases and that the number of routes
which is considered when a scheduling strategy tries to find
a schedule entity for a message increases. Therefore we also
did some experiments for a 9x9 mesh. When going from a
5x5 mesh to a 9x9 mesh and assuming that each tile has an
equal chance of being the source/destination of a stream, the
average number of links in a route goes from 3.33 links to
6.00 links and the average number of routes which is con-
sidered for a single scheduling entity increases from 5.41
routes to 113.73 routes. So, with increasing mesh-size, a
scheduling strategy has to consider potentially more links
and more routes when it tries to find a scheduling entity for a
message. Fig. 9 shows the relation between the run-time of
the scheduling strategies and the average number of routes
which is considered when scheduling a message on a mesh-
topology. It shows that the run-time of the strategies in-
creases more than linearly with increasing mesh-size. This
could potentially lead to large run-times for the scheduling
strategies when the size of the NoC increases. However, in
many practical situations, an algorithm that maps tasks to
tiles will try to keep the source and destination of a stream
close to each other. In other words, the algorithm will try
to map an application to a region of the platform and not
utilizing resources all across the platform. As a result, the
average length of a route and the number of routes which
is considered when scheduling a message is in many practi-
cal cases not proportional with the topology-size. It grows
(much) less rapidly. Furthermore, the experimental results
presented in Tab. 2 show that the run-time of all strategies is
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Figure 9. Relation between run-time and mesh-size.

still within seconds when an application is mapped to a re-
gion of 7x7 tiles. So, all scheduling strategies can definitely
be used when an application is mapped to a region of this
size.

9. Extracting Communication Scenarios from
SDFGs

The application model presented in Sec. 3 has a commu-
nication centric view on an application. Typically, an appli-
cation is not described in this model when mapping the ap-
plication onto a NoC. Concurrent multimedia applications
which are realized using MP-SoCs are often described with
dataflow models [23]. Synchronous Dataflow Graphs (SD-
FGs) [17] is a popular dataflow model as techniques exist
to study, for example, the throughput [9] and storage re-
quirements [28] of an SDFG. This section explains how an
application modeled as an SDFG can be converted to the
application model presented in Sec. 3.

An SDFG consists of a set of actors (tasks) which com-
municate with each other by sending tokens (messages) to
each other via dependency edges. Every time an actor fires
(executes) it consumes a fixed number of tokens from its in-
puts (consumption rates) and after the execution time of the
actor has elapsed it produces a fixed number of tokens on
its outputs (production rates). An example of an SDFG is
shown in Fig. 10(a). It consists of an actor a1 with an execu-
tion time of 4 time-units, an actor a2 with an execution time
of 2 time-units, two dependency edges d1 and d2 and one
initial token on d2. Rates are associated with the source and
sink of edges. Edge d1 has a (worst-case allowed) latency
of 1 time-unit. Edge d2 has no latency as it only constrains
the execution of actor a1 and does not involve any true com-
munication. Actor a1 can fire when there is a token on d2.
At the start of the firing, it consumes the token. When the
firing ends after 4 time-units, it produces the token again
on d2, while also producing 2 tokens on d1. The token on
d2 enables the next firing of a1. Hence, a1 can fire every 4
time-units. Actor a2 can fire as soon as there are 3 tokens
on the dependency edge d1. At the start of a firing, it simply
consumes these tokens from d1.
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(a) SDFG.
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(b) Self-timed execution taking into ac-
count the latency of d1.

Figure 10. Example of an SDFG with its execution.

The execution of an SDFG can be captured in a state-
space traversal [9]. The state-space of an execution of our
example SDFG is shown in Fig. 10(b). States are repre-
sented by black dots and state transitions are indicated by
edges. The label with a transition indicates which actors
start their firing in this transition and the elapsed time till
the next state is reached. In our example, the first firing
of actor a1 is started at time 0. This firing is completed
after 4 time-units. The execution proceeds in a self-timed
manner meaning that all actors are fired as soon as pos-
sible while respecting dependency, execution time and la-
tency constraints. It is known that this type of execution
achieves the highest possible throughput. In general, an ex-
ecution of an SDFG always starts with a, possibly empty,
transient part followed by a periodic execution of the ac-
tors. In our example, the transient phase takes 8 time-units
and is followed by a periodic phase of 12 time-units.

The behavior of actor executions is different in the tran-
sient and periodic phase of the SDFG execution. Both
phases define when actors are fired and therefore when to-
kens are sent and received. The communication behavior of
each phase can be captured in a communication scenario.
The first scenario captures the communications related to
the transient phase. The second scenario contains the com-
munications that belong to the periodic phase. The commu-
nication pattern of both scenarios and their overlap can be
derived from the execution of the SDFG.

Consider as an example the SDFG and its self-timed ex-
ecution shown in Fig. 10. The execution of the graph starts
with firing actor a1 (see Fig. 10(b)). After 4 time units,
the firing of a1 ends and 2 tokens are produced on edge d1.
These tokens are consumed by the first firing of a2 which
occurs 9 time-units after the start of the execution of a1.
In our application model (see Sec. 3), the tokens are cap-
tured as two messages which both have an earliest start-
time at time-unit 4 and a duration of 5 time-units (see Fig.
11); note that this duration exceeds the worst-case allowed
latency of dependency d1, but this is allowed and even de-
sirable because a2 can only be fired after another firing of
a1. The second time that actor a1 produces 2 tokens on d1
is at time-unit 8. One of the tokens which is produced at
that moment is used to fire a2 at time-unit 9. This token
has to respect the latency constraint of dependency d1. The
other token is used in the next firing of a2 which occurs at
time-unit 13. Both the state in which the tokens of this sec-



1d

1d

1P =9

2P =12

messages
scenario 2

scenario 1
messages

1 4 5 8

4

Figure 11. Scenarios in the SDFG execution.

ond firing of a1 are produced and the state in which these
tokens are consumed belong to the periodic phase of the ex-
ecution. Therefore, the communication of tokens between
the actor firings belongs to the communication scenario of
the periodic phase. Hence, the communication pattern re-
lated to the transient phase (scenario 1) contains only two
messages which can be sent starting from time-unit 4. The
scenario ends at time-unit 9 with the consumption of both
messages. The period of the scenario is therefore equal to
9 time-units. The communications related to the periodic
phase are captured in scenario 2 (see Fig. 11). This scenario
starts at time-unit 8 with the production of two tokens by a1
on d1. One token needs to be delivered within 1 time-unit;
the other within 5 time-units. The start times and durations
of the other messages can be derived in a similar way from
the periodic part of the (self-timed) execution. The length of
the cycle in the state-space is 12 time-units. So, the period
of scenario 2 is equal to 12 time-units. Scenario 1 ends at
time-unit 9 and scenario 2 starts at time-unit 8. The overlap
between them is thus 1 time-unit.

The method described above can be used to extract the
communication scenarios and their overlap from the execu-
tion of an SDFG. It cannot be guaranteed that the length of
the periods and their overlap is a multiple of the slot table
size. However, as explained in Sec. 5, the scheduling prob-
lem assumes that both the period and overlap are a multiple
of the slot table size. To guarantee that the overlap between
the scenarios and the period of scenarios are a multiple of
the slot table size, the length of scenario 1 (transient) must
be extended such that this requirement is met. First, the end
of scenario 1 is simply extended to guarantee that the over-
lap becomes a multiple of the slot table size. For our ex-
ample SDFG, this means an extension of the period of sce-
nario 1 from 9 time-units to 16 time-units. When needed,
the start of scenario 1 is also shifted such that the total pe-
riod becomes a multiple of the slot table size. This is not
needed for our example. To solve the potential mismatch
between the period of scenario 2 (P2) and the slot table size
(N), the scenario should be concatenated a number of times
(lcm(P2,N)/P2) till the period of the resulting scenario is
equal to lcm(P2,N). The resulting scenarios with their pe-
riods for our example are shown in Fig. 12. The overlap
between the two scenarios is 8 time-units.
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Figure 12. Scenarios with extended periods.

10. Experiments on a multimedia system

Besides the synthetic streams, a realistic multimedia ap-
plication consisting of an MPEG-4 decoder and an MP3
decoder is used in the experiments. Both applications are
modeled together in an SDFG which contains 15 actors
(tasks) and 16 channels (streams). All actors in the applica-
tion task graph are mapped and scheduled (manually) onto
a 2x2 mesh. Actor execution times are obtained via worst-
case execution time analysis, and worst-case dependency
latencies from the NoC. Using the method described in the
previous section, communication scenarios are derived for
the transient and periodic phase of the SDFG execution. For
each scheduling strategy, the minimal slot table size is de-
termined for which a feasible schedule is found. When only
shortest routes are used, both the reference strategy and the
improved reference strategy require a slot table with 8 slots.
Our strategies require a slot table with only 2 slots. This
shows that for a realistic application slot sharing reduces
the resource requirements on the NoC (i.e. fewer slots need
to be allocated for the application). When the maximum
detour is 2 links, the reference strategies require a slot ta-
ble with 6 slots and our strategies require a slot table with
1 slot. This confirms that using non-minimal routes reduces
the requirements on the NoC.

11. Conclusion

This paper studies the problem of scheduling time-
constrained communication of streaming applications on
a NoC. Several new strategies are presented to route and
schedule streaming communication. The scheduling strate-
gies use all routing and scheduling flexibility offered by
modern NoCs while limiting resource usage. Short routes
and the reservation of consecutive slots in slot tables min-
imize resource usage and packetization overhead. How-
ever, they also create potential bottlenecks in the NoC,
which may render some resources unusable for schedul-
ing other streams. The use of non-minimal routes and
non-consecutive slot reservations might increase scheduling
freedom for remaining streams. Our strategies try to find a
good compromise in the allocation of routes and slot-table
slots. The experiments show that our strategies perform bet-
ter than the state-of-the-art strategy of [14]. The reason is
that our strategies exploit freedom offered by modern NoCs



not used in the existing strategy. Additionally, we found
that adding backtracking to this state-of-the-art strategy im-
proves its results considerably with only a small overhead
on its run-time.

This paper also shows that the dynamism in communi-
cation patterns of an application can be captured in a set of
time-constrained scheduling problems. Sharing slots from a
slot-table between these problems is possible when the tim-
ing relations between the problems are taken into account.
The experimental results show that this reduces the amount
of resources needed to schedule an application onto a NoC
outperforming the technique of [19].

The presented scheduling strategies assume that tasks
have already been mapped and scheduled onto the tiles.
This is an important step in a systems-on-chip design flow.
In our future work, we want to consider this mapping and
scheduling step and study the phase coupling with the rout-
ing and scheduling problem presented in this paper.
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[25] A. Rădulescu, et al. An efficient on-chip NI offering guaran-
teed services, shared-memory abstraction, and flexible net-
work configuration. IEEE Trans. on CAD of ICs and sys-
tems, 24(1):4–17, 2005.

[26] M. Rutten, et al. A heterogeneous multiprocessor architec-
ture for flexible media processing. IEEE Design & Test of
Computers, 19(4):39–50, 2002.

[27] S. Stuijk, T. Basten, M. Geilen, A. Ghamarian, and B. Thee-
len. Resource-efficient routing and scheduling of time-
constrained network-on-chip communication. In DSD’06,
Proc., pages 45–52. IEEE, 2006.

[28] S. Stuijk, et al. Exploring trade-offs in buffer requirements
and throughput constraints for synchronous dataflow graphs.
In DAC’06, Proc., pages 899–904. ACM, 2006.

[29] R. Thid, et al. Flexible bus and NoC performance analysis
with configurable synthetic workloads. In DSD’06, Proc.,
pages 681–688. IEEE, 2006.


