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Abstract

Future generations of embedded multi-media systems will have an increasing need for
compute platforms that combine high compute power with low energy consumption. To
meet with these requirements, multi-processor systems must be used. These systems
are in nature concurrent, and this concurrency in the architecture should be exploited.
This requires that the concurrency is used in the mapping trajectory from the system
specification to the hardware architecture. The concurrency in an application should
therefore be extracted, and made explicit, in the models that are used to specify a
system. To support the extraction of concurrency from an application, the model must
contain a concurrency model. This concurrency model should support formal reasoning
about concurrency.

This thesis present a model of computation that can be used to explicitly specify the
concurrency in an application. This model of computation, the computational-network
model, is based on the Kahn process network model. The computational-network model
is extended with a concurrency model. This concurrency model is comprised of five main
measures supported by a set of detailed measures. These measures provide an insight
in the concurrency properties of the specified system. The thesis presents also a first
implementation of the presented model of computation and concurrency model.

The thesis presents a case study that shows that all of these five measures are meaningful
and do not overlap. These experiments suggest further that the measures are sufficient
for obtaining good results; no more measures are needed. The design case shows also
that it is possible to perform a concurrency optimization that is architecture independent
and to obtain results similar to an optimization performed by an experienced designer
that optimizes the application for a given architecture.
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Chapter 1

Introduction

Motivation. Multimedia systems are characterized by an ever-increasing need for com-
pute power. This compute power is needed for the processing of large amounts of data
such as images, video and speech. The demand for growing compute power is combined
with high energy-efficiency constraints and is satisfied by integrating many average-speed
and energy-efficient processing elements on a single chip. The integration of processing
elements is resulting in the development of both heterogeneous and homogeneous multi-
processor systems. These multi-processor systems are inherently concurrent, as they
contain many processing elements that operate in parallel. With a trend toward larger
and complexer multi-processor architectures, there will be even more parallelism to ex-
ploit. This requires that the parallelism available in an application, which is mapped
onto the multi-processor system, is made visible in the mapping trajectory.

A number of different formal models of computation are used in concurrency theory.
They express concurrency using formal languages [3], partial orders [30] or automata [7]
at different levels of abstraction. Prime examples are Dataflow graphs [23], Petri nets [29]
and Kahn process networks [13, 14]. These models of computation make the parallelism
in an application visible. They are however not able to answer questions such as: How
concurrent is my application? Does the specification maximally exploit the concurrency
inherent in the application? How must the specification be modified to better exploit the
concurrency in the application? Does the specification optimally exploit the concurrency
inherent in the target architecture?

As mentioned, next-generation multi-media systems will use multi-processor architec-
tures to meet the high performance and low energy constraints set by these systems.
The concurrency in an application must be made explicit in the specification to exploit
the concurrency inherent in these architectures. Such a specification should allow for-
mal reasoning about the concurrency in the application and about how to exploit this
concurrency. To date, no formal models exist that are able to do this without fully im-
plementing the system.

This thesis describes a model of computation and accompanying concurrency model that
allows formal reasoning about the concurrency in an application without fully imple-
menting the system.
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Overview. This thesis is divided in seven main parts: problem definition, model of
computation, concurrency model, implementation, design exploration method, experi-
mental results, and conclusions and recommendations. In Chapter 2, we describe the
problem definition. Chapter 3 presents a model of computation, namely the model of
computational networks, for describing a computation that is performed in a distributed
system. A formal concurrency model is presented in Chapter 4. This model can be used
to analyze the concurrency in computational networks. In Chapter 5, the implementation
of the concurrency model is discussed. A design exploration method that uses the con-
currency model is presented in Chapter 6. Chapter 7 demonstrates a design case. This
case shows how to convert a computational network into another computational network
that better exploits the available concurrency. Finally the conclusions and recommenda-
tions are discussed. This includes shortcomings of the concurrency model. Also, further
improvements in the software implementation are discussed.



Chapter 2

Problem Definition

2.1 Introduction

Future generations of embedded multi-media systems such as hand-held computers, mo-
bile phones, gaming devices, car navigation systems, etc., will have an increasing need for
compute platforms that combine high compute power with a low energy consumption.
The compute power is needed for the processing of large amounts of data such as images
and video, and for applications such as speech recognition and synthesis that can be used
to improve user interfaces. The systems must be energy-efficient because they often have
only a limited energy supply, typically consisting of a rechargeable battery. Furthermore,
a high energy dissipation means that a lot of heat is generated which, in turn, requires a
lot of cooling. However, cooling technology takes a lot of space, is relatively expensive,
and is susceptible to disturbances.

Engineers are looking for ways to meet both the high compute power and low energy
dissipation requirements. One common aspect of many approaches is the exploitation
of parallelism in one way or another, as the requirements cannot be achieved via single-
processor technology. The following example explains why, and it shows why multi-
processor technology can meet the requirements.

Example 2.1 Consider a system that has to realize a computation (e.g., JPEG or
MPEG decoding). The first solution might be to realize this computation using a sys-
tem that consists of a single processor (single-processor system). This single-processor
system has a switching capacitance C, and runs at a supply voltage V with a frequency
f. The power dissipation of the single-processor system is equal to: P = fCV? [6].

The computation can also be realized using a system with two processors in parallel
(multi-processor system). These processors can operate at a frequency f/2. The same
amount of work is then still done in the same time as in a single-processor system; assum-
ing the overhead of the multi-processor system is negligible. However, the switching ca-
pacitance of the multi-processor system is 2C. The supply voltage of the multi-processor
system is V' < V. This voltage can be lower because of the lower switching delay fre-
quency used in the multi-processor system. The power dissipation of the multi-processor
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system is then equal to: P' = fCV"2.
The ratio between the power dissipation of the multi-processor system and the single-
processor system is:

PI fCVIQ VI2
P fCvVz V2

The power dissipation of the multi-processor system drops with the square of the differ-
ence between the voltage of the multi- and single-processor. Note that both solutions
have the same compute power, but only a different energy consumption. |

This example shows that when a multi-processor system is used, the energy consumption
is reduced. A multi-processor system realizes in this way the low energy constraints
imposed by future embedded multi-media systems. It can also full-fill the need for
high compute power by using enough processors in the system. The single-processor
technology can meet the high compute power constraint, but this comes with a higher
energy consumption than in the multi-processor solution.

There is, besides the high compute power and low energy dissipation constraint, another
reason for considering concurrency. This is the wiring delay problem [27], the delay
introduced by on-chip wiring is getting so large in future IC designs that only a very
small percentage of the die will be reachable during a single clock cycle. The whole die
can as a result no longer be used for one single processor. Locality must be introduced in
the architecture to be able to use the whole die. Locality means that a lot of processors
will be integrated on a single die. This results in multi-processor systems-on-chip.

The trends described above will lead to systems in which a lot of parallelism is available.
The important question is now how this parallelism can be exploited. This requires that
the concurrency in the application is made explicit and is adapted to the parallelism in
the multi-processor system onto which it is mapped. To solve this problem, we have to
answer three questions. First, what do future system architectures look like? Second,
how can the concurrency in an application be made explicit without the need to fully
implement the system? Third, how do we map a specification onto a multi-processor
system? Section 2.2 tries to answer the first question by describing the trends in modern
system architectures. Section 2.3 describes the problems that arise when the second
question is answered. The third question, the problem of multi-processor mapping is
discussed in Section 2.4.

2.2 System Architectures

Modern system architectures try to exploit parallelism in one way or another. Good ex-
amples are instruction-level parallelism (ILP) in super-scalar and very-long-instruction-
word (VLIW) processors and data-level parallelism (DLP) and task-level parallelism
(TLP) in (multi-)processor architectures. ILP generally concerns general purpose CPUs,
DLP is most common used for both single processor and multi-processor architectures,



2.3. APPLICATION SPECIFICATION 5

and TLP for multi-processor architectures. In the multi-processor approach a system
is constructed out of a number of coarse-grain components working together to get the
job done. This leads to both heterogeneous [35] and homogeneous [34] multi-processor
systems.

The previous section shows that in order to meet the high compute power and low en-
ergy consumption constraints of next generation embedded multi-media systems, multi-
processors systems must be used. These systems are in nature concurrent. This concur-
rency must be exploited. This requires that task- and data-level parallelism is used as
these allow to execute different parts of a computation concurrently on different proces-
SOrS.

2.3 Application Specification

Next-generation embedded multi-media systems will often realize so-called streaming
applications in which data transformations play a dominant role (such as video process-
ing). Programming techniques are required to model the functional behavior and desired
timing- and energy-related properties of these applications. The previous section shows
that these applications will be executed on multi-processor systems. To use these sys-
tems, they must be able to exploit the task- and data-level parallelism in the application.
This requires that the parallelism in the application is specified, so that it can be used
in the multi-processor system.

To model the functional behavior and desired timing- and energy-related properties of
these applications, novel programming techniques are required. These programming tech-
niques should provide insight in concurrency-, timing-, and energy-related properties of a
system at the specification level, without the need to fully implement an application. An
important aspect of these programming techniques is that they must be able to specify
the concurrency in an application and allow formal reasoning about it. The next chap-
ter presents a programming technique, the computational-network model, that can be
used to explicitly specify the concurrency in an application at the specification level. This
model is based on the existing Kahn process network model [13, 14]. The computational-
network model is extended with a concurrency model, which makes it possible to reason
formally about the task- and data-level parallelism in an application.

2.4 Multi-Processor Mapping

Section 2.2 discussed the trends in modern systems architectures. These systems will be
multi-processors systems that contain concurrency. Section 2.3 discussed that in order
to exploit this concurrency, it must be extracted from the application and made explicit
in the specification. One of the important issues facing modern multi-processor design-
ers is now the development of effective techniques for the distribution of the specified,
concurrent program over multiple processors. These techniques must optimize execution
time, memory usage, and energy consumption.

Research on mapping abstract models of computation (e.g. Kahn process networks) onto
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multi-processor systems is still in a very early state [8, 40]. A good example of this is
a JPEG case study performed at Philips Research [18]. The article describes a JPEG
decoder that is mapped onto a multi-processor system. The techniques used in this case
study require that the target architecture is known before the mapping is started. A sim-
ulation model of the system architecture is needed in the complete mapping trajectory to
verify that the mapping is optimal. This makes that the used techniques are only valid
for a given architecture. It also requires extensive simulation, which make the design
exploration expensive. To overcome these problems, we think that a global framework
needed to do this mapping looks like the mapping trajectory shown in Figure 2.1.

specification
/)
[N
A\l v Q—»
" implementation

hardware architecture

Figure 2.1: Mapping

The mapping trajectory starts with a computational network that specifies the behavior
of the application. This computational network is mapped onto an implementation. The
implementation is also a computational network. The difference between the specification
and the implementation computational network is that the former is to a large extent
target-architecture independent, whereas the latter takes all the relevant aspects of a
given architecture into account, and is optimized toward desirable properties concerning
execution time, power dissipation, etc. The final step is a mapping from the implemen-
tation to the hardware architecture. It concerns the efficient execution of sequential code
on various sorts of processing elements and is covered by compiler technology.

2.5 Motivating Example

In the introduction of this chapter it is stated that future embedded multi-media systems
use multi-processor architectures. The trends in these architectures and the required
programming and mapping techniques for them are discussed in the previous sections.
One of the important messages of these sections is that concurrency must be made
explicit in the specification of an application. The granularity of the concurrency in the
specification must be adapted to the concurrency available in the system architecture to
provide a good mapping. To be able to do this, a model is needed that allows formal
reasoning about the concurrency in a specification. This section presents an example
that illustrates this need for a formal concurrency model. This example serves as our
prime motivation to perform the research described in this thesis.
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Example 2.2 Figure 2.2 shows a model for the computation performed by an appli-
cation. The computation is divided in 3 tasks. These tasks are performed after each
other, as indicated by the arrows connecting the tasks. There is an arrow connected
to task 1 that is not connected to another task. This models that task 1 gets the data
needed to perform its computation, task, from the environment. The arrow leaving task
3 models the output of this task 3. The output produced by task 3 is the output of the
computation performed by the application.

10 5 5

Figure 2.2: A computation split in three tasks.

The numbers below the tasks in Figure 2.2 represent the work (e.g. processor time used)
of a task when it is executed on a processor for a computation. Section 2.4 stated that at
the implementation level there is a specification that can be mapped on a multi-processor
system by only considering the efficient execution of sequential code on a processor. This
requires that the tasks at the implementation level of the mapping trajectory have a one-
to-one mapping with the processors in the system architecture.

The goal of a multi-processor system will often be to keep all processors busy. As one
task is mapped onto one processor, it requires that the total computation is divided
evenly over the tasks. In other words, all tasks have to do the same amount of work.
The tasks in Figure 2.2 do not meet with this requirement as the first task does the same
amount of work as the tasks 2 and 3 together. Figure 2.3 shows two solutions to this
problem. Solution I combines the tasks 2 and 3. The two resulting tasks perform both
50% of the work. This solution can be mapped onto 2 processors. The approach used in
solution IT is different. It does not combine two tasks, but splits task 1 in two new tasks.
These tasks la and 1b perform both half of the work performed by the original task 1.
The tasks in this solution perform all 25% of the total work needed for the computation
and would require a multi-processor system with 4 processors.

0 , 5 5

N
N
1n~

&7l 4
&
1b la
10 10 5 5 5 5
Figure 2.3: Two solutions with a balanced workload for the computation.
An important question is now which solution, I or II, is better. This will first depend on

the systems architecture. If this architecture does not contain 4 processors, then only
solution I can be chosen. However if the number of processors in the system architecture
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is not fixed yet, we can make a trade-off. Solution II will require more processors,
more area, than solution I. On the other-side, solution II contains 4 tasks. If these four
tasks run on four different processors, then it is possible to let each task execute on a
different computation, set of input data. Solution II can then perform its computation
on 4 different sets of input data, while solution I can perform in the same time the
same computation only on 2 different sets of input data. Solution II has thus a higher
throughput. We can thus say that solution II is more concurrent than solution I. |

This example shows different that solutions can have different concurrency properties.
To compare different solutions, a model of concurrency is needed that allows a system
designer to analyze the concurrency in an application in a formal way. This concurrency
model must help a system designer in answering questions like: How concurrent is my
application? Which of these solutions contains the most concurrency in its specification?

2.6 Conclusion

This chapter shows that concurrency will play an important role in next-generation
embedded multi-media systems. These multi-media systems will be multi-processor sys-
tems, as that is the only way in which the high-performance and low-power constraints
of next-generation compute platforms can be met.

Multi-processor systems are in nature concurrent, and this concurrency in the architec-
ture should be exploited. This requires that the concurrency is used in the mapping
trajectory from the system specification to the hardware architecture. The concurrency
in an application should therefore be extracted, and made explicit, in the models that are
used to specify a system. To support the extraction of concurrency from an application,
the model must contain a concurrency model. This concurrency model should support
formal reasoning about concurrency. In this way, concurrency can be extracted from an
application in a uniform way. To support the designer in the concurrency extraction, the
concurrency model must indicate to what extent the concurrency is extracted from an
application and it should suggest how the specification of a system must be modified to
better exploit the concurrency available in the application.

The next chapter of this thesis presents a model of computation that can be used to
specify a system. Concurrency is made explicit in this computational model. Chapter 4
describes a concurrency model that can be used with this computational model and has
the above mentioned properties. The rest of this thesis discusses the implementation of
the computational model and the concurrency model. It further shows the use of these
models in a case study that implements a JPEG decoder.



Chapter 3

Model of Computation

3.1 Introduction

A number of different formal models of computation are used to model distributed com-
putations. They express concurrency using formal languages [3], partial orders [30] or
automata [7] at different levels of abstraction. Prime examples are Dataflow graphs [23],
Kahn process networks [13, 14], Petri nets [29], Statecharts [10] and Process Algebra
[3]. Section 3.2 introduces a computational model at a higher level of abstraction than
these models. The relation with the previously mentioned models is also discussed in
this section. Concurrency is made explicit in this model of computation, called the
computational-networks model. Section 3.3, extends the computational-networks model
with a notion of partially ordered events in time.

3.2 Computational Networks

Informally speaking, a parallel computation is organized in the following way: some au-
tonomous computing nodes are connected to each other in a network by point-to-point
connections. Computing nodes exchange information through these connections. These
connections are the only way by which the computing nodes may communicate. A given
node computes on data coming along its input connections to produce output on some
or all of its output connections. The computing nodes are at any given time computing
or waiting for information on one of their input connections.

Such a parallel computation can be represented as a directed graph. The nodes of this
graph represent the computing nodes. The edges represent the communication connec-
tions between the computing nodes; an incoming edge represents an input connection,
an outgoing edge represents an output connection.

This informal definition of a parallel computation is used to construct the computational-
network model. A computing node is modeled in the computational-network model as a
compute node. This compute node is a ”component” that has a set of input ports and
a set of output ports. The input ports hold the input data. This input data is modeled
using strings of data-elements. The execution of the compute node can be imagined
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by the compute node "reading” or ”"observing” these input strings and generating the
appropriate output strings. This is done following the transformation that describes the
behavior of the compute node. The output ports will hold the strings after applying the
transformation to the input strings. This defines a compute node in an informal way;
Definition 3.1 defines a compute node in a computational network in a more formal way.

Definition 3.1 (Compute node) A compute node is a tuple (I,0,t) where

i) I is a set of input ports;
ii) O is a set of output ports;

iii) tis a transformation. A transformation describes how a compute node computes
a (tuple of) strings on its output ports using a (tuple of) strings on its input ports.

A compute node computes a (tuple of) strings on its output ports using a (tuple of)
strings on its input ports. These strings are produced and consumed by other com-
pute nodes in the parallel computation or by the environment of the computation. The
”communication” of these strings between the different compute nodes is done in the
computational-network model using connections. Data-streams are transferred in-order
over connections.

Definition 3.2 (Connection) A connection is a pair (p,q). The connection transfers
data-streams in-order (fifo) from port p to port gq.

The definition of a compute node and a connection enables us to construct a network
component. This network component realizes a parallel computation. It contains a set of
compute nodes that are connected to each other using connections. The compute nodes
in the network component communicate with each other using the connections.

A computation is only useful if the network component will eventually produce a result
on some (set of) output port(s). These results are produced on the output port(s) of the
compute node(s) in the network component. These output ports must not be connected
to the input ports of other compute nodes. The unconnected output ports of the compute
nodes serve as the output ports of the network component. A compute node might then
communicate its results not only to other compute nodes in the network component,
but also to the environment. The parallel computation might also require the use of
input from the environment of the network component. The network component should
therefore contain a (set of) input port(s). An unconnected input port of a compute
node serves then as an input port of the network component. Definition 3.3 defines this
network component in a formal way.

Definition 3.3 (Network component) A network component NC'is a tuple (N, C, I, O)
where

i) N is a set of compute nodes;

ii) C is a set of connections;



3.2. COMPUTATIONAL NETWORKS 11

iii) Every connection in C connects an output port of a compute node to an input
port of a compute node;

iv) Every port of every compute node is connected to at most one connection;

v) I is the set of input ports of the network component, being defined as those input
ports of the compute nodes in N not connected to a connection in C;

vi) O is the set of output ports of the network component, being the unconnected
output ports of the compute nodes in N.

An example of a network component is shown in Figure 3.1. The network component
shown here contains three compute nodes a, b and ¢. They are connected to each other via
three connections labeled c¢1, ¢2 and c3. The input port of compute node a is unconnected
and thus an input port of the network component. This input port is represented by
a diamond. An output port of a network component is represented by a small box.
Compute node ¢ provides the only output port of this network component.

Figure 3.1: An example of a network component

It is now possible to construct a model for a parallel computation using a single net-
work component. This network component does not contain any hierarchy. Hierarchy
might however be useful in a larger computational network, as it allows abstraction from
primitive operations taking place in the system. The computation in a network com-
ponent could be seen as a primitive operation. A parallel computation may consist of
the computations taking place in a number of these network components. The network
component itself is for the rest of the system a black box with a set of input ports, a set
of output ports and a defined behavior i.e., to the outside world it looks like a compute
node. Definition 3.4 defines a computational network, which realizes this hierarchy. The
definition follows the same lines as Definition 3.3.

Definition 3.4 (Computational network) A computational network is defined as a
tuple (NC,C, I,0) where

i) NC is a set of network components;

ii) C is a set of connections;

iii) Every connection in C' connects an output port of a network component to an
input port of a network component;

iv) Every port of every network component is connected to at most one connection;
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v) I is the set of input ports of the computational network, being defined as those
input ports of the network components in NC' not connected to a connection in C}

vi) O is the set of output ports of the computational network, being the unconnected
output ports of the network components in NC.

A computational network contains a set of network components that perform compu-
tations. The computational network contains further a set of input ports and a set of
output ports. These are used to communicate with the outside world. The network
components are connected to each other by connections in the computational network.
The unconnected input ports and output ports of the network components serve as the
input ports and output ports of the computational network. An example of a compu-
tational network containing two network components A and B is shown in Figure 3.2.
The two network components are connected to each other with the connection ¢;. This
connection connects the input port of compute node v in network component B to the
output port of compute node u in network component A.

Figure 3.2: An example of a computational network

The combination of Definitions 3.3 and 3.4 gives a modular model of computation that
allows two levels of abstraction. It is straightforward to generalize this to a truly hi-
erarchical model by assuming that the compute nodes in a network component can be
seen as network components themselves. However, this is not done because it would
unnecessarily complicate the remainder.

The concept of the computational-network model introduced in this section is as follows:
compute nodes read a (set of) strings from their input ports. These strings are trans-
formed according to the transformation defined by the compute nodes. The result of this
transformation is again a number of strings that are written to the output ports of the
compute nodes. The compute nodes communicate with each other using connections.

Section 3.1 lists a number of formal models of computations that are used to model dis-
tributed computations. We now discuss how some of these computational models can be
modeled in the computational-networks framework. The first model of computation that
was mentioned is the Kahn process networks (KPNs). KPNs are easily modeled in our
framework. The functions in KPNs become our compute nodes. The data streams that
are used in KPNs to communicate between the functions are realized by sending these
streams over the connections in the computational-network model. The computational-
network model can also model Dataflow graphs (DFGs). The actors in a DFG become our
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compute nodes and the communication is done using data streams. The computational-
network model can further model a subclass of Petri nets, the marked graphs. The
transitions in these marked graphs become our compute nodes and the places become
the connections.

3.3 Executions

A computational network, which was introduced in the previous section, consists of a
set of network components. These network components consist on their turn of a set of
compute nodes ni, na, ... , Ny which together perform a computation. Each compute
node performs therefore a sequence of actions which are modeled as a totally ordered
sequence of events. A compute node can write on its output ports, as a (set of) strings,
the result of the transformation performed to the (set of) strings it reads from its input
ports.

The events that can occur in a computational network during a computation are classified
into the following three types:

1. write event Such an event models a write operation in which a compute node
writes on one of its output ports;

2. read event Such an event models a read operation in which a compute node reads
from one of its input ports;

3. internal event Such an event models the execution of an action or a sequence of
actions; these actions must not include read or write operations.

The execution of a compute node is a totally ordered sequence of internal, read and write
events that take place during the execution of the compute node. The read and write
events impose further a partial order on the events taking place in the computational
network as a whole. The relation between the different events is called the causality
relation or happened before relation and denoted by <. The causality relation is defined
according to [22].

Definition 3.5 (Causality relation) Let E be a set of events produced by the execu-
tion of a computational network. For e, ¢’ € E, e < €' holds if and only if

i) e and €’ are events in the same compute node and e precedes €',

ii) e is a write event and €’ is the corresponding read event, or

iii) there exists an €” such that e < €” and ¢” < ¢€'.
Two events e and €’ are said to be causally related if and only if e < €’ or €’ < e holds.
If neither e < €’ nor ¢ < e holds, these events are concurrent. Let e1,es,...,e; be a

sequence of events such that e; < e;41 for 1 <4 < k — 1. Such a sequence is called a
causal path from event e; to event eg.
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In an implementation it makes sense to associate different delays with the different events
that can take place in the system. The communication that takes place in the system will
also have a delay associated with it. The main idea behind the computational network is
that it can model a distributed computation and that it allows reasoning about different
aspects of the system. A number of these aspects are influenced by the timing properties
of the events that take place in the system and the causal path of the events in the
computation. To allow reasoning about causality and some timing aspects on a relative
high level of abstraction without referring to implementations/physical time, we use
logical clocks. To make it more practical, we introduce delays for the events that take
place in compute nodes and delays for the connections.

Lamport’s logical clocks [22] can be used to create an ordering that is consistent with
causality (Definition 3.5) for all events that occur during a computation in the computa-
tional network. Lamport’s system of logical clocks assumes a set of logical clocks, one per
compute node. The logical clock’s assign to every event a time-stamp that contains the
value of the logical clock at the moment the event occurred. Every event is performed
within a single logical clock value; there is no delay associated with this event. The clock
of a node is incremented once between two events. Furthermore, communication imposes
a causality relation that must be respected by the logical clock, which means that the
clock of a reading node is updated based on the time-stamp of the read event. There is
no delay associated with the communication itself.

To reason about timing aspects without referring to implementations, we associate a
delay with the events that take place in the compute nodes and the communication over
the connections. To model this delay, we extend the Lamport’s logical clocks with a
function d, called the delay function. This function associates a delay with every event
that occurs during a computation in the computational network.

Formally, the delay function maps a set of events E plus the set of connections C' to the
set of natural numbers, denoted N. Formally, d : £ U C — N. The Lamport’s logical
clocks can be modeled by assigning a delay of one to every event and a delay of zero to
every connection.

The time-stamping mechanism based on Lamport’s logical clocks, in the remainder sim-
ply referred to as the time-stamping mechanism, contains a function ¢. It is called the
global logical clock and maps a set of events E to a totally ordered set N with ordering
<. Formally, t : E — N such that e < ¢/ = #(e) < t(e/). The global logical clock can be
computed via a set of counters, the local logical clocks. Each compute node in the com-
putational network maintains a different counter. Let ¢; denote the counter maintained
by compute node n;.

When a compute node n; executes an event, it updates first its local clock #; and then
assigns a time-stamp ¢ to the event. This time-stamp is the value of the local logical
clock after the event is executed.

The protocol used to update the clock ¢; of a compute node n; is the following:

1. When n; executes an internal event or a write event e, the clock value ¢; is advanced
by setting t; := t; + d(e).
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2. When n; executes a read event e, where y is the time-stamp of the corresponding
write event and c; is the connection over which the event was received. The clock
is advanced by setting ¢; := max(t;, ¢t + d(c;)) + d(e).

The local logical clock change depends in case 1 of the protocol only on the delay as-
sociated with the event executed. The change of the local logical clock in case 2 of the
protocol is more complex. It is of course determined by the delay associated with a read
event, but also by the causality relation imposed by the corresponding write event and
the delay associated with the connection. If the logical clock of the compute node is
already larger than the logical clock value of the compute node in which the write event
occurred at the time of this write event plus the delay associated with the channel, then
the logical clock is advanced by the delay associated with the read event. Otherwise,
the logical clock of the compute node is changed to the value of the logical clock of the
compute node at the time the corresponding write event occurred. This logical clock
value is then raised by the delay associated with the connection and the read event.

The time-stamping mechanism based on Lamport’s logical clocks provides a method for
deriving an ordering of all events that take place during a computation in the computa-
tional network. This ordering is consistent with causality and the delay associated with
the events that take place in the computation. The time-stamping mechanism can be
used to analyze the ordering and abstract timing of events that take place in a com-
putation. The remaining part of this section introduces a number of measures, based
on the time-stamping mechanism. The measures represent a number of timing related
properties of a computation in a computational network.

First, we define the ezecution time (Definition 3.6) of a compute node and the total
execution time (Definition 3.7) of a computational network. The execution time of a
compute node represents the amount of logical time that a compute node is executing
for a computation. The duration of the total computation in the computational network
is expressed in the total execution time.

Definition 3.6 (Execution time) The execution time, 77, of a compute node n in
which the set of events E, occurs, is defined by Equation 3.1.

T =) dle) (3.1)

ecEy,

Definition 3.7 (Total execution time) The total execution time, Tg, is defined as
the time needed for an execution. In other words, the total execution time is equal to the
largest value of the local logical clocks of all compute nodes at the end of the execution.

The execution time of a compute node indicates how long, expressed in logical time,
the compute node was running. The total execution time measures how much time was
needed to execute the complete computation on the computational network. A compute
node need not be executing during the total execution time. The compute node may
be idle because it has finished its execution or it is waiting for data on one of its input
ports. The idle time of a compute node is defined as follows:
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Definition 3.8 (Idle time) The idle-time, 7}, of a compute node n is defined by
Equation 3.2.

" =T — T (3.2)

An executing compute node performs read, write and internal events. The read and
write events are needed to communicate with other compute nodes. The internal events
are needed to perform the transformation of the compute node. This transformation
can be seen as the computation performed by the compute node on the data read on its
input ports. The logical time needed to perform this transformation is expressed in the
computation time (see Definition 3.9).

Definition 3.9 (Computation time) The computation time, 77", of a compute node
n in which the set of internal events I,, occurs, is defined by Equation 3.3.

T =" d(e) (3.3)

ecl,

In the remainder of this thesis we use the word computation exclusively for the trans-
formations performed on the strings of data in the network. This does not include the
communication of the strings of data. When we refer to the combination of computation
and communication we use the word ezecution. The computation performed by a com-
pute node refers thus to the internal events that have occurred in the node to perform the
transformation. The execution of a compute node refers to the combination of internal,
read and write events that occur in a node.

A computation can be displayed graphically in an event diagram, such as the one shown
in Figure 3.3. There are four compute nodes a, b, ¢ and d in this figure. The clock ticks
at which a read, write or internal event is occurring are indicated by black circles with
respectively an arrow leaving it, entering it or with no arrow connected to it. An event
that takes more clocks ticks is indicated by a black ellipse over all clock ticks at which
the event occurred. An arrow indicating a read or write event is connected to the first
clock tick at which the event occurred. In Figure 3.3 we have Lamport’s logical clocks,
i.e., d(e) =1 for event e and d(c) = 0 for connection c. At logical time 1, there occurs
a read event in compute node a, this is a read event in which the compute node reads
data from the environment — outside world. This is represented by a black circle with an
arrow entering it, just as in a normal read operation. But the other side of the arrow is
not connected to another event in the event diagram, this indicates that it is a read from
the environment. A write to the environment is represented by an arrow leaving a black
circle but not entering another black circle. Such a write event can be seen at logical
time 12 in compute node d. The total execution time of this computational network is
equal to 12, as at that logical clock value the last event occurs. The compute node a has
an execution time of 4, an idle-time of 8 and a computation time of 2.
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Figure 3.3: Example of an event diagram

As explained, the idle-time 7T]* represents the logical clock values at which no event is
being executed in a compute node n;. The node is said to be idle at these clock values.
The clock value at which this occurs is called an idle time of the node. Idle times are
represented in Figure 3.3 by unfilled circles.
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Figure 3.4: Idle events in a compute nodes

Figure 3.4 shows the event-time diagram for a computation in a computational network
that consists of two compute nodes a and b. It shows all the computation needed for a
single input from the environment. Compute node a performs events at the logical clock
values 1 through 4 (period (1)) and from 9 through 12 (3). The compute node is idle
from the logical clock values 5 through 8 (2) and from 13 through 16 (4). The reason for
the compute node being idle in period (2) and (4) is different. In (2), the compute node is
waiting for data from compute node b. In (4), the compute node has finished its execution,
while the computation has not yet finished. Another execution of compute node a for
a new input could already start during period (4). This is a desired property as we are
aiming at streaming applications in which the same computation must be repeated many
times on different inputs. Starting another computation is not possible during period
(2), as the execution has not yet finished. The idle time of period (2) is unavoidable
in the computation — the compute node cannot execute for this computation or another
computation —, while the idle time of period (4) is not. The question is now what causes
the idle time and whether or not the idle time is unavoidable in the computation. To
answer the first question, we have to see why an idle time can be present:

1. The execution of a compute node n is not started yet, but the computation is;
2. The execution of a compute node n is finished, but the computation is not;

3. The execution of a read event of a compute node n is delayed because the required
data from another compute node is not yet available.
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The idle time caused by case 3 is important for the behavior of the computational network
and should be removed to get a more concurrent solution. It may be possible to remove
this idle time by changing the order of events in the causal chain(s) leading through the
read event causing the problem. The idle time caused by cases 1 and 2 are not important
for the computational network, as those idle times will be used for the execution of the
compute node for another input. To make a distinction between the idle time that is
important for the computational network and the idle time that is not important, we
introduce the communication idle time (Definition 3.10). This communication idle time
is equal to the idle time caused by case 3.

Definition 3.10 (Communication idle time) The communication idle time, 77, of
a compute node 7 is defined as the number of idle times of n after the first read or write

event occurred and before the last read event occurred.

The time that a computation occupies a compute node, the node cannot execute for an-
other input, is called the run-time. This time includes the execution time (see Definition
3.6)and communication idle time (see Definition 3.10) of a compute node, as those two
times together determine the number of logical clock values at which the compute node
is occupied by a computation.

Definition 3.11 (Run-time) The run-time, 7}, of a compute node n is given by Equa-
tion 3.4.

" =T+ T} (3.4)
The last measure that is defined is the sequential execution time.

Definition 3.12 (Sequential execution time) The sequential time of an execution,
Tsg, is the time needed to run the computation sequentially. This time is defined to
be equal to the sum of the execution times of all compute nodes in the computational
network:

Tog = ZT: (3.5)
n

The sequential execution time is found by adding the execution times of all compute nodes
in the computational network. This approximates the execution time of a sequential
version of the computation. This approximation is in general not exact, as a sequential
execution might have different delays associated with the read and write events, as these
transform into local variable operations. There will also be control statements needed
in the sequential execution to perform the correct computation. This will introduce
some extra delay. It is however assumed that the sum of the execution times will be a
reasonable measure of the execution time of a sequential version of the computation.
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3.4 Conclusion

This chapter has presented a model of computation that can be used to model distributed
computations. This model is comprised of two parts. The first part, the computational-
network model, can be used to specify a concurrent system. The second part models
executions and can be used to analyze the events that take place during a single execu-
tion.

The computational-network model operates at a high level of abstraction. This allows
the modeling of all kinds of different properties of systems in a very natural way. The
computational-network model introduces a natural way to explicitly specify concurrency
in a system by introducing different compute nodes in a computational network. These
compute nodes communicate with each other by means of connections. The computa-
tional networks model allows for the modeling of different models of computation in its
framework.

Section 3.3 has introduced a classification for the different events that can occur in
a distributed computation and introduces the causality relation among these events.
These events can be ordered using a time-stamping mechanism based on Lamport’s
logical clocks. This time-stamping mechanism gives an ordering of the events taking
place in a distributed computation and introduces an abstract notion of time into the
computational-network model. The notion of time is extended with a number of different
time measures that express the activity of a compute node and the computation.

The remainder of this thesis studies a formal concurrency model that is based on the
computational-network model and the notion of time which have been introduced in this
chapter.
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Chapter 4

Concurrency Model

4.1 Introduction

The previous chapter introduced the computational-network model. In this model, au-
tonomous computing nodes are modeled as compute nodes, which communicate with
each other using point-to-point connections. The compute nodes perform a concurrent
computation on the data. Concurrency in the computation is made explicit in this way.
This chapter describes a formal concurrency model that can be used to analyze the
concurrency in a computational network. Section 4.2 discusses the basic assumptions
that are made in the concurrency model about the computational network. Section 4.3
presents the concurrency model that is comprised of five main measures supported by a
set of detailed measures. A set of computational networks analyzed using the concur-
rency model is presented in Section 4.4. The relation with other concurrency models is
discussed in Section 4.5 Finally, Section 4.6 contains some concluding remarks.

4.2 Assumptions

Concurrency in a computational network is influenced by many things. It is for instance
influenced by the way the computation is divided over the different compute nodes in the
computational network. If all compute nodes have to do more or less the same amount
of work for a computation, then it might be possible to do much of the computation
concurrently. If not, then a small number of the compute nodes has to do most of the
job, while the other compute nodes are idle (not executing). It will be clear that in the
latter case there is less concurrent activity possible in the computational network. This
concurrency property is one of those that we are interested in, because changes in the
computational network may influence it. Therefore, it will be taken into account in the
concurrency model that is presented in the next section.

The communication structure may also influence the concurrency in the computational
network. This can happen in a number of ways. First, the length of the string of data
that can be present on a connection at one moment in time may influence it. Assuming
a connection can hold only a string of data of finite length, then a write event may be

21
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blocked because a connection is full. This will influence the concurrency, as the compute
node cannot continue its computation until there is enough space on the connection to
complete the write event. This effect is caused by the amount of memory allocated for
the connection [2] and not by the computational network itself. This effect from the
environment should not be taken into account in the concurrency model. It can be left
out with the following assumption.

Assumption 4.1 The strings of data on the connections of the computational network
may be of infinite length.

A compute node can also be blocked if it cannot read the data from its input ports. If
these input ports are connected to the environment, then it implies that the compute
node must wait until the environment has written the data to the connection. As we
do not want to study the effects of the environment on the concurrent behavior of the
computational network, this should not be possible. This is realized using the following
assumption.

Assumption 4.2 The strings of data on the input ports of the computational network
are of infinite length. These strings of data are infinite concatenations of the strings of
data required for one computation and are present on the connection before the connected
compute node wants to read them.

This assumption implies that the computational network performs infinitely many times
the same computation on the same data set. In this way, it is possible to analyze the
behavior of the computational network as if it is running on an infinitely large set of
inputs. These inputs are all the same. In practice, this will not be true. lL.e., a JPEG
decoder will decode a set of different images. The images need not be the same. However,
their data streams will be comparable. It is the idea that the input used in our assumption
approximates the average input of the computational network.

The concurrency is also influenced by the mapping of compute nodes on processors. The
nodes of a network will be executed on a set of processors. A (run-time) scheduler will
assign the nodes to processors on which they execute. If there are less processors than
compute nodes, the scheduler will have to choose which compute node to execute when.
This effect is caused by the environment — the (run-time) scheduler — and not by the
computational network itself. We are not interested in effects on the concurrency that are
caused by the environment. They must therefore be left out of the concurrency analysis.
This is done using the following assumption.

Assumption 4.3 There are infinitely many processing nodes available.

This assumption implies that a compute node that wants to execute can do this as soon
as the required data becomes available. Only the absence of required data on its input
ports can stop a compute node from executing. Effects of scheduling a compute node on
a processor are in this way left out of the model.

The final assumption that is made is the following.
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Assumption 4.4 The computation time of a single computation is finite.

This assumption implies that the strings of data for one computation, which are present
at the input ports of the computational network, are of finite length. This makes it
possible to analyze, in finite time, the behavior of the computational network.

4.3 Concurrency Measures

A computational network that realizes a computation has certain concurrency proper-
ties. The goal of the concurrency model is to provide measures for these properties.
To be able to derive these measures, we must first identify which properties must be
considered. To do that, we consider what a computational network does. In short: a
computational network performs a transformation on the data streams communicated
over the connections. The compute nodes in the computational network are busy with
the computation — applying transformation — and communication — reading and writing
to the connections. Considering concurrency, we want that all compute node have to do
an equal share of the computation. This balanced workload provides the option to have
a low scheduling overhead. The compute nodes must also perform the computation as
fast as possible — each compute node individually and the computational network as a
whole. Finally, it is required that not too much of the time is spent on communication.
To get numerical values for all of these properties, we introduce five different concurrency
measures in the following sections. Each section treats one measure. It explains which
concurrency property the measure captures, why it is needed and how the measure must
be interpreted. An important goal for the concurrency measures is that the values are
in the range [0,1], in which a value 1 means that the measured concurrency property is
optimal and a value close to 0 means that it is very bad. This makes it simple to compare
different computational networks.

In the remainder it is assumed that CN = (NC, C, I, O) is a computational network with
NC a set of network components and C a set of connections. nc = (N, C,I,0) denotes
a network component in NC and n is a compute node in the network component nc.

4.3.1 Computation Load

A computational network consists of a set of compute nodes that communicate with each
other. Each compute node performs a transformation on the data it reads from its input
ports. The result of this transformation is written to the output ports of the compute
node. The transformation can be seen as the computation performed on the data by the
compute node. The compute node will need a certain amount of time to perform this
computation. The compute node will also need a certain amount of time to communicate
the data with other compute nodes.

The goal of a computational network is that the strings of data that are on the input
ports of the computational network are transformed into strings of data on the output
ports of the computational network. This transformation should be done efficiently. This
means that all of the compute nodes working must spend as much effort as possible on
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computing the result. This implies that every compute node should spend a large amount
of its time on the computation and not on communication.

One could argue that introducing more compute nodes may result in the possibility to do
more of the transformation in parallel. This would then lead to a faster transformation
of the strings of data. However, communication takes time and this time needed for
communication may outweigh the time gained by splitting compute nodes.

We can conclude from the observations presented above, that the ratio between the
time spent on computation and the time spent on communication is important when
considering concurrency. This observation leads to the first measure in the concurrency
model, the computation load.

The computation load has to express the ratio between the time spent on the transfor-
mation and the time spent on the transformation and communication together. This
ratio can easily be computed for a single compute node. The time spent on the transfor-
mation is then expressed by the computation time of the compute node (see Definition
3.9). The time needed for both the transformation and communication is expressed by
the execution time (see Definition 3.6). The computation load of a compute node n is
then given by Equation 4.1.
n
computation load,, = T—Cn (4.1)
[+
The value of the computation load is in the range [0,1]. A value of 1 means that the
compute node is all of its time busy with the transformation, while it does not spent
time on the communication. A value of 0 means on the other hand that all of the time
is spent on communication.

To get a value for the computation load of a network component, we take the average
computation load of the compute nodes in the network component nc (See Equation 4.2).
In this way, we get a notion of the time spent on the transformations in the compute
nodes compared to the time they spent on transforming and communicating the strings
of data.

Z computation load,,

computation loady, = " - (4.2)
|compute nodes in nc|

Equation 4.2 associates a computation load with a network component as defined in
Definition 3.3. A computational network consists of a set of network components. To
get a computation load for the computational network, we could simply take the average
computation load of the network components. The problem with this solution is that the
average is taken over the network components without considering the number of compute
nodes in a network component. The number of compute nodes in a network component
does not influence the measure. This is not a desired property. Consider for instance
the situation in which a computational network contains two network components. One
has a computation load of almost 1 and contains 10 compute nodes. The other network
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component contains only 1 compute node and has a computation load of almost 0. If
the computation load of the computational network is calculated by taking the average
over the computation loads of the network components, then it would have a value of
around 0.5. We might conclude from this that the compute nodes spend on average
as much time on the transformation, as they spend on the communication. This is
obviously not true, as most of the compute nodes spend almost all of there time on the
transformation. In this way, it would be possible to regroup the compute nodes over
the network components and obtain different numbers. This does not make sense, as
the time spent on the communication and transformation of each compute node and the
computational network as a whole does not change.

It will be clear that the number of compute nodes in a network component must be
taken into account, when computing the computation load of a computational network.
Therefore, we associate with each network component a size. The size of a network
component is equal to the number of compute nodes in the network component (See
Equation 4.3).

The computation load of the computational network is given by Equation 4.4. This
measure weights the computation load of the network components by their size.

sizen = |compute nodes in nc| (4.3)

g computation load,,. - size,,
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computation load =

(4.4)

The main concurrency measure in the concurrency model is the computation load mea-
sure of a computational network (Equation 4.4). The computation load measures for
the network component (Equation 4.2) and compute node (Equation 4.1) are so called
detailed concurrency measures. These detailed measures provides an insight in the con-
currency properties of the different network components and compute nodes.

Example 4.1 Given the computational network of Figure 4.1. This computational
network consists of one network component. The network component contains four
compute nodes a, b, ¢ and d.

Figure 4.1: Computational network

The computation performed by this computational network starts with compute node a
that reads data from its input port. It performs a transformation on this data. The result
is written to its output ports, that are connected to the input ports of the compute nodes
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b and c. These compute nodes read the data output by compute node a from their input
ports, apply a transformation to it and write the result to their output ports. Compute
node d will then read these strings of data and perform also a transformation on it.
The results of this transformation are output by compute node d and the computational
network, as the output port of compute node d is the output port of the computational
network.

The event diagram for this computation is shown in Figure 4.2.

‘ — e

T -

|
1
|
|
|
J

Figure 4.2: Event diagram

The event diagram shows that all compute nodes have idle time. For instance, compute
node a has an idle-time of 8 logical clock values. This idle-time does not belong to the
communication idle time (see Definition 3.10). As all idle-time for a occurs after the
last write event. The idle time of all other compute nodes is also no communication idle
time. These compute nodes idle before the first read event and after the last write event.
The computation load of the compute nodes is found using Equation 4.1 and is listed in
Table 4.1.

compute node ‘ computation load

a 0.25
b 0.5
c 0.5
d 0.5

Table 4.1: Computation load of compute nodes.

The computation load of the computational network is now found using Equation 4.4.
The result is listed in Table 4.2.

measure ‘ value

computation load ‘ 0.44

Table 4.2: Computation load of computational network.

The value of the computation load indicates that the compute nodes in the computational
network spent almost the same amount of time on performing the transformation as they
spent on communication. |
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4.3.2 Execution Load

The computation load measure came from the observation that there must be a balance
between the time spent on the transformation in the compute nodes and the time spent
on communication between the compute nodes. The measure compares the number of
internal events to the total number of internal, read and write events that occur during
the execution of a transformation in a compute node. The measure does not consider that
a compute node may also be idle as it is waiting for data on its input ports. This idle time
has been called the communication idle-time (see Definition 3.10) in the previous chapter.
It will be clear that in the optimal situation there is no communication idle-time. This
might however not always be possible, but the communication idle-time should always
be as low as possible. This observation leads to the introduction of the second measure
in the concurrency model, the execution load.

The execution load must express the ratio between the time that a compute node is busy
compared to the time that a compute node must wait. This ratio can easily be computed
for a single compute node. The time that a compute node is busy is expressed by the
execution time of the compute node (see Definition 3.6). The total time needed by a
compute node is given by the run-time (see Definition 3.11). This run-time takes both
the execution time and communication idle-time into account. The execution load of a
compute node n is given by Equation 4.5.
n
execution load, = CZTZ (4.5)

T

The value of the execution load is in the range (0,1] assuming that at least one event
occurs in a node. A value of 1 means that the compute node does not idle during its
execution; it does not have to wait for data. A value close to 0 means that the compute
node is almost all of its time waiting for data produced by other compute nodes.

To compute the execution load of a network component, we could follow the same ap-
proach as with the computation load and take the average execution load of the compute
nodes in the network component. We would then ignore the fact that a compute node
may have to idle before it can start a new transformation on a new set of data-strings
because the compute node is faster than another compute node. To explain this, we must
consider Assumption 4.2. This assumption says that the computational network must
perform the same computation infinitely many times. Fach compute node inside the
computational network will perform the same events in the same order for every compu-
tation, as the input for every computation is the same. Therefore, the execution-time of
every compute node will be the same for every computation. Consider now the situation
in which two compute nodes a and b have a run-time of respectively 10 and 20 time-units
and their executions depend on each other. If both compute nodes are executed for 10
computations, then a executes for 100 time-units, while b executes for 200 time-units.
One could then be tempted to say that a has finished these 10 computations much ear-
lier than b. But if infinitely many computations are run, they will require both infinite



28 CHAPTER 4. CONCURRENCY MODEL

time-units to execute. The time required for a single computation is for compute node a
still half of the time required for compute node b. This can be seen as that compute node
a has to wait after each computation until compute node b is finished. Compute node b
is thus adding extra idle-time to the execution of compute node a. This example shows
that if infinitely many computations are executed and a compute node does not have the
longest run-time of all compute nodes in the computational network, it will have to idle
before it can start a new computation.

This leads to the conclusion that the rate at with subsequent computations can be
started is determined by the slowest compute node i.e., compute node with longest run-
time. This longest run-time is called the run-time of the network component and is given
by Equation 4.6.

T = max " (4.6)

To compute the execution load of a network component, we must scale the execution
loads of the compute nodes inside the network component with their run-time compared
to the run-time of the network component. In this way, we take the fact that compute
nodes may have to idle before subsequent computation into account. The execution load
of a network component nc is given by Equation 4.7.

n

T
E execution load,, - —~
Tnc
. neEN "
execution load,, = , (4.7
sizene

Using the execution load of a compute node (see Equation 4.5) and the run-time of the
network component (see Equation 4.6), we get Equation 4.8 for the execution load of a
network component nc.

' '
€ . T E "
Tn  Tnc €
. neN T r neN
execution load,. = - = — oy (4.8)
S12€n, Sizene » max T,
neN

The execution load measures takes in this way the average of the time that compute
nodes are performing internal, read and write events during a computation. It indicates
how well the workload (transformation and communication) is balanced over the different
compute nodes in the network component. This execution load balance should be as high
as possible, as that means that all compute nodes need around the same time to finish
their work.

Example 4.2 We continue with the previous example (Example 4.1). The execution
load of the compute nodes is found using Equation 4.5. It is listed in Table 4.3.
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compute node ‘ execution load
a 1

b 1
C 1
d 1
Table 4.3: Execution load of compute nodes.

All compute nodes have an execution load of 1. This indicates that a compute node
does not have to wait for data of other nodes when it can start executing, it has no
communication idle time. A compute node may have to idle before it can start a new
computation. Because of that, we must scale the execution load of the compute nodes
when the execution load of a network component is calculated. This scaled execution
load is given by Equation 4.9. The scaled execution load of the compute nodes in the
network component are shown in Table 4.4.

n

scaled execution load, = execution load,, - T:w (4.9)
T

compute node ‘ scaled execution load

a 0.66
b 0.66
c 0.66
d 1

Table 4.4: Scaled execution load of compute nodes.

Table 4.4 shows that when we repeat the same computation infinitely many times on this
computational network, the compute nodes a, b and ¢ will be busy doing a transformation
or communicating for 66% of their time, while compute node d is always busy. |

The computation load of a computational network was found by scaling the computation
load of the network components in the computational network, and then taking the
average over it. The execution load of a computational network can be computed in the
same way (see Equation 4.10). The reasons for doing this are the same as used in the
computation of the computation load of a computational network. This execution load
measure for the computational measure is one of the main measures in the concurrency
model. The execution load measures for the compute node and computational network
are used as detailed measures in the concurrency model.
T'nC
Z execution loady, - sizep, - ————=
max T,
nceENC nceENC

E Stz€pe

nceENC

(4.10)

execution load =
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Using Equation 4.8, we find Equation 4.11 for the execution load of a computational
network.

> YT

nce NC nenc (4'11)

n }
max T, - E S1Z€nc
nceNC

execution load =

Example 4.3 This example continues with Example 4.2. The execution load of the
computational network is now found using Equation 4.10. The results are listed in Table
4.5.

measure ‘ value
execution load ‘ 0.75

Table 4.5: Execution load of computational network.

The value of the execution load indicates that the compute nodes in the computational
network are 75% of the time active. This is expected as a new computation can be
started every 6 logical clock values, making that the four compute nodes require 4 times
6 logical clock values to execute. They spend 18 logical clock values running of these
24 logical clock values. This makes that the are executing 18 of the 24 logical clock
values. This value for the execution load means that when the computational network
would be realized in a system where all compute nodes can execute as soon as the data
becomes available (Assumption 4.3), then 75% of the time there will be 4 compute nodes
executing. |

This section ends with a concluding remark on the name of the measure, execution load.
This name might give the impression that the measure is only dependent on the execution
of the compute nodes in a network and depends thus solely on the read, write and internal
events that take place in the compute nodes. This is not true, the measure depends also
on the communication idle time of a compute node. This time is influenced by the
communication delay of the connections and "happened before relations” introduced by
the computation. These are an integral part of the execution and are therefore taken
into account in the measure. One should therefore always remember that as a result not
only the internals of the compute node but also the connections between the compute
nodes influence the measure. It is interesting to note that this is not the case for the
computation load measure.

4.3.3 Restart Interval

The previous section has argued that the compute node with the longest run-time is
dominating the computation. This observation has been used to state that the compu-
tation must be distributed evenly over the compute nodes. There are two options to
improve the execution load. First, the computation could be better distributed over the
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same number of compute nodes. Second, the computation could be distributed over a
different number of compute nodes. An extreme case of this would be a computational
network with just one compute node. This computational network would have a com-
putation load and an execution load of one. However, it would be hard to argue that
such a solution is always the optimal one from a concurrency point of view. The single
node computational network can not start executing the compute node for another in-
put before it has completely finished the computation for the previous input. The rate
at which different computations can be started is as low as a sequential version of the
computation. On the other hand, a solution with more compute nodes will probably be
able to start a new computation sooner. The restart interval of that solution will be
better, while the execution load can be the same if the communication overhead is kept
to a minimum. The restart interval is therefore an essential property of a computational
network, when considering concurrency. The restart interval is defined as the third mea-
sure in the concurrency model. It is given by Equation 4.12 for a compute node n, by
Equation 4.13 for a network component nc and by Equation 4.14 for a computational
network. The restart measure for the computational network uses the run-time of the
network component (Equation 4.6) to find the maximum run-time of all compute nodes
in the computational network.

restart, = — (4.12)
I
restarty. = max T7 = gél]lvl restarty, (4.13)
neN
1 .
restart = “max T = n?g\l]lcrestartnc (4.14)
nceNC

The value of the restart measure is in (0,1], as the run-time of a compute node is in
[1,00). A large value for the restart measure means that the restart interval is small,
computations can be started quickly after each other. On the other hand, a small value
indicates that there is a long time between the starts of two computations.

The previous concurrency measures, computation and execution load, produce for every
computational network meaningful values over the whole range from 0 to 1 if changes in
the computational network are made. The restart measure will not that easily spread
its values over the whole range. Only in the extreme cases — execution-time close to 1
or oo — it will produce values at the edges of the range. This is not a desired property,
as one would want that the values of the measure are well spread over the whole range
for all solutions of a given application. The problem is that it is cannot be decided what
this range is in the case that we do not know the application in default. Therefore, it is
not possible to solve this problem by changing the restart measure.

The following example shows what the implications of this drawback are and how it can
be overcome partially.
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Example 4.4 Let us consider two computational networks C' N7 and C' N, that realize
the same computation. The maximum run-time of the network components in the com-
putational network C'N; is 1000. The compute nodes in computational network C Ny
have been changed such that the same computation is still realized, but the maximum
run-time of the network components in the computational network is now 100. The
slowest compute node in C Ny is thus 10 times as fast as the slowest compute node in
CN;.

The restart measure for C'N; is equal to 0.001 and for C'Nj its equal to 0.01. Looking at
the values of the restart measure its difficult to see that computational network C Ny is
much faster than computational network C'N7. This will even be harder if the execution-
time of a computational network is 1000000 and another computational network that
realizes the same application is two times faster. This relative difference in restart in-
terval must be made visible when comparing different solutions of the same application.
This can be done by normalizing the values of the restart measure over a set of designs
with the largest value.

If we do this for the computational networks CN; and C' Ny we get a value of 0.1 for
the computational network C'N; and a value of 1 for the computational network CNj.
These values show clearly that the computational network C'Ny has 1/10 of the restart
interval of C'V;.

The disadvantage of this approach is that the 1 value for CN; may suggest that the
restart value is optimal whereas this is obviously not always the case. |

4.3.4 Synchronization

A distributed system performs a parallel computation. The parallel implementation of
the computation will in most cases be faster than a sequential implementation of the
computation. This is because parts of the computation can be done in parallel. To what
extent this can be done depends on the synchronization that is required between the
different compute nodes in the computational network and how well the computation is
balanced over the different compute nodes. To what extent the computation is well bal-
anced over the different compute nodes is measured in the execution load. The influence
of the synchronization is not captured in this, or one of the other concurrency measures.
Synchronization is important when considering concurrency, because synchronization is
limiting the execution of compute nodes and with that the number of compute nodes
that can run in parallel. Synchronization constraints may impose the restriction that
two compute nodes can only execute one after another, making the computation realized
by these two compute nodes longer than the time required to execute each one of them.
The synchronization determines in this way the time that a computation will take in a
computational network. This time is measured as the total execution time (See Defini-
tion 3.7).

The goal of a parallel computation is often to get a solution faster than a sequential
computation. This is often in literature referred to as speed-up [28]. This speed-up
is limited by the synchronization, as it determines the total execution time. It is also
limited by the communication overhead, but that is already covered in the computation
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load. To capture this speed-up and limitations imposed on it by the synchronization,
we introduce a new concurrency measure, the synchronization. The measure is given
by Equation 4.15. The measure uses the inverse value of the speed-up achieved by the
computational network compared to a sequential solution. This value is subtracted from
1 to meet with our objective that a value of 1 for a concurrency measure indicates a good
solution from the concurrency point of view.

synchronization = 1 — Iy (4.15)

Tsk

The range of values for this measure is in (—o0,1] in which a value close to 1 indicates
a good solution and 0 a solution that is as fast as the sequential computation. Negative
values indicate that the computation is even slower than a sequential computation.

Example 4.5 This example uses the same computational network and event diagram
as used in Example 4.1.

The execution time (see Definition 3.6) of the four compute nodes can be determined
using Figure 4.2. This execution time is equal to 4 for the compute nodes a, b and ¢
and equal to 6 for compute node d. The compute node in the computational network
with the longest execution time is compute node d. The figure shows further that the
total execution time (see Definition 3.7) is equal to 12. Using Equation 3.5, we find a
sequential execution time of 18.

Using Equation 4.15, we find the following value for the synchronization:

1
synchronization =1 — — = 0.33

18
This value for the synchronization indicates that the computation using the given com-
putational network is 33% faster than a sequential computation. |

The previously introduced concurrency measures, computation load, execution load and
restart contained measures for the compute nodes, network components and computa-
tional network. The synchronization measure is only given for the whole computational
network. This is done because it is impossible to determine the computation time of
a network component. It cannot be decided with the used time-stamping mechanism
whether an idle-time is caused by a causality relation imposed by an event in a compute
node inside the network component or by a causality relation imposed by an event in a
compute node outside of the network component. In other words, the total computation
of a network component may depend on an event outside the network component. This
is undesirable as the measure must be independent of its environment. As it is not pos-
sible to determine computation times for the network components, it is not possible to
determine a synchronization measure for them. This problem can be solved with vector
time [9, 26]. Vector time provides the possibility to decide whether an event in a compute
node of a network component depends on an event in a compute node in another network
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component. It was decided to not use vector time, as its is much more compute inten-
sive than the time-stamping mechanism. The idea is that the time-stamping mechanism
already provides enough information, so that the overhead of computing vector times is
not justified.

4.3.5 Structure

The previous sections have introduced four concurrency measures that use the time-
stamping mechanism based on Lamport’s logical clocks to measure certain concurrency
properties of the computational network. The structure of the computational network
plays only an implicit role in these measures. The structure of the computational net-
work reveals the task and data-parallelism that is present. The task-parallelism is made
explicit in the computational network through the compute nodes that can perform
transformations in parallel. The data-parallelism is transformed in task-parallelism by
introducing separate compute nodes for the different data streams.

A simple computational network of a streaming application will consist of a single chain
of compute nodes from the input ports of the computational network to the output ports
of the computational network. This can be seen as a path through the computational
network that realizes a computation. In terms of microprocessors, this can be seen as
a pipeline in which every compute node represents a stage of the pipeline. Just as in
the pipelines of a microprocessor, it is possible in the computational network to have
feed-forward or feed-backward connections in the computational network.

The strings of data in a more complex computational network, particularly those con-
taining data-parallelism, will not all pass the same chain of compute nodes from the input
ports of the computational network to the output ports of the computational network.
There will be different paths from the input ports through the compute nodes to the
output ports of the network. This implies that not all strings of data are transformed
through the same chain of compute nodes; parts of the transformations, computations,
are done in different paths — chains of compute nodes.

This observation is used to create a formal analysis method for the structure of the
computational network. This analysis method is used to derive the fifth measure of the
concurrency model.

The first step in the analysis of the structure of a computational network is to trans-
form it into a graph. This graph transformation removes the hierarchy present in the
computational networks model. During this project, it was not possible to find a graph
transformation in which this information is preserved. The transformation is done in the
following way. Let CN = (NC, C, I, O) be a computational network with NC' a set of net-
work components and C a set of connections. This network can be represented as a graph
G = (V,E), with V a set of vertices and F a set of directed arcs. A vertex v represents a
compute node n that is inside a network component nc = (Ny¢, Crey Ine, One) € NC. A
directed arc e;; between the vertices v; and v; represents a connection ¢ € ¢, € C from
the output port of compute node v; to the input port of a compute node v; with nodes
v; € nc; € NC and v; € ncj € NC.
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The vertices v that represent the compute nodes with input ports of the computational
network are called the start nodes. This set of vertices is denoted as Vg. The vertices v
that represent the compute nodes with an output port of the computational network are
called the end nodes and are denoted as V.

Example 4.6 Given is the computational network of Figure 4.3. This computational
network consists of one network component with 8 compute nodes. This computational
network must be transformed into a graph representation before we can analyze its struc-
ture. All compute nodes in the network component are transformed into corresponding
vertices. The edges between the vertices are found by considering the connections be-
tween the compute nodes. The graph representation of this computational network is
shown in 4.4.

Figure 4.3: Computational network Figure 4.4: Graph representation

The input port of the compute node a is the only input port of the computational
network. The vertex a that represents the compute node belongs therefore to the set
of start nodes. The output port of the compute node d is the only output port of the
computational network. The vertex d that represents the compute node d forms therefore
the set of end nodes. |

Using the graph model of the computational network, we define a path as follows.

Definition 4.1 (Path) A path S inagraph G = (V, E) is asequence S = (vg, v1, V2, - . -, V)
of vertices from a vertex vy to a vertex vg for which holds:

l) vy € Vs;
ii) v € Vg;
iii) ('Ui—la'Ui) ceFEfori=1,2,...,k;

iv) v; at most 2 times in S for 1 =0,1,2, ..., k.

A path represents a chain of compute nodes through the network components of a com-
putational network. This chain of compute nodes starts at a compute node of which
at least one input is an input port of the computational network. The chain ends at a
compute node with an output port of the computational network. The definition of a
path assumes that all nodes in a computational network are on a path from Vg to Vg.
This assumption is realistic, as we are aiming at streaming applications. Normally, these
systems require input data (e.g. image, video stream) and they produce output data.
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The computational networks that specify these systems will therefore have at least one
input port and one output port.

A path that does not go through a cycle in the graph is a path that contains no duplicate
nodes, as each vertex of the graph is present at most once in the path. The graph may
however contain cycles. The last constraint of the path definition guarantees that in that
case that a path can go at most once through a cycle in the graph.

Example 4.7 This example continues with the computational network of the previous
example.

The graph contains four paths: p1 = (a,d), p2 = (a,b,c,d), p3 = {(a,b,c, f,e,b,c,d),
ps = (a,g,h,d). The path p; goes directly from compute node a to compute node d.
The path ps goes through the compute nodes a, b, ¢ and d. The path p3 goes also through
these compute nodes, but it traverses also through the cycle b - ¢ —e — f — 0. |

Example 4.7 shows the paths that are found in the computational network that is used
in this example. The compute nodes that belongs to the path p; are a subset of the
compute nodes that belong to the path ps. The path p; is therefore called a sub-path
of path py. Each path ¢; that contains a subset of the compute nodes found in another
path ¢ is called a sub-path of path cy. Path ¢y is then called a super-path of ¢ as it
contains a super-set of the compute nodes found in path ¢;.

The paths that are present in a computational network can be grouped in computational
paths. These computational paths are defined in Definition 4.2. A computational path
is a set of paths that all have the same input and output node of the computational
network and contain only nodes from some super-set of compute nodes. In other words,
it groups all paths that belong to the same set of subsequent transformations.

Definition 4.2 (Computational path) A computational path is defined as the tuple
(u,u',C) with u € Vg, u' € Vg and C a set of paths. For every path (vg,v1,v9,...,v%) €
C holds vy = u and v, = u'. For the set of paths C holds:

i) For each p1,p2 € C holds that p; is a sub-path of py or py is a sub-path of p;
(i.e., C is totally ordered using the sub-path relation);

ii) C is maximal, i.e., there is no path p not in C that can be added to C such that
C is still totally ordered.

Example 4.8 This example uses the paths found in Example 4.7. The paths p1, po
and p3 of this example go through the same set of vertices {a,b,c,d,e, f}, they can
therefore be grouped into one computational path ¢; = (a,d, {p1,p2,p3}). The path p4
goes through the vertices a, g, h. These vertices are not a subset of the vertices found in
the other paths. Path ps does therefore not belong to the computational path ¢;. The
vertices found in path p; are however a subset of the vertices found in path ps. These
paths must therefore be grouped into another computational path co = (a,d, {p1,ps})-
|
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The computational paths in a computational network represent the different data flows
that go through the system during the computation. Exploiting parallelism implies that
it is tried to maximize the number of different data flows. These data flows should be
as distant from each other as possible. In other words, they must share as little com-
pute nodes as possible. Sharing a compute node implies that two data flows have to
synchronize in order to execute the compute node that needs data from both computa-
tional paths. This synchronization hinders the exploitation of concurrency. Whether the
computational network has a concurrent structure can therefore be seen by looking at
the number of computational paths that go on average through a node.

This observation has lead to the definition of the structure measure. This measure is
given by Equation 4.16. The measure is zero if all computational paths go through all
nodes. This implies that there is no parallelism in the structure. A value close to one
indicates that the structure of the computational network is very parallel.

av

structure =1 — — (4.16)
c

,with ¢ = #computational paths and av = average number of computational paths
through a compute node.

Example 4.9 The previous example shows a computational network that contains two
computational paths. Both computational paths go through the compute nodes a and
d. All other compute nodes in the computational path belong to only one computational
path. On average there goes 1.25 computational paths through every compute node.
The parallelism in the structure is equal to:

1.25

structure=1— —

0.4
2

Example 4.10 This example uses the computational network of Figure 4.5. The
computational network consists of one network component with 7 compute nodes. The
computational network has one input port and one output port. The figure shows that
there is one data stream in the computational network through the nodes a,b,c and d.
There are two feed-backward paths connected to this data stream. One goes through
the node e and the other one through the nodes f and g.

The graph representation of this network is shown in Figure 4.6 and the path that found
in the graph are listed in Table 4.6.

Figure 4.5: Computational network. Figure 4.6: Graph representation.
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path ‘
p1 | {a,b,c,d)
p2 | {a,b,c,e,b,c,d)
ps | {a,b,¢c,f,9,b,c,d)

Table 4.6: Paths in computational network.

The paths found in the graph representation of the computational network must be
grouped in computational paths. The paths p; and p2 must be combined in one compu-
tational path. Both paths start in node a and end in node d and p; is a sub-path of ps.
Path p3 cannot be added to this computational path, as p3 is no sub-path of ps and ps is
no sub-path of p3. The first computational path found is thus ¢; = (a,d, {p1,p2}). The
path ps must be grouped in a different computational path. Path p3 is a super-path of p;.
The path p; must thus also be grouped in this computational path. The computational
path ¢y is then: ¢y = (a,d, {p1,ps}).

The paths po and p3 are both feed-backward connections of the path p;. The definition
of a computational path prevents that these feed-backward connections are combined in
one computational path. The definition allows that a path is grouped in a computational
path with at most one of its feed-backward connection. |

4.4 Examples

Consider a computational network that has to perform the following function: y :=
24x + 30. This function must be realized with a system that has the following three
internal events, each with a delay of one logical clock value:

i) v:i=2u
i) vi=u+1
iil) vi=u+w

The delay for a read or write event is also one logical clock value. The restart measure
has been re-scaled, as is suggested in Example 4.4. One solution will therefore have a
value of 1 for the restart measure.

e Solution 1

A first solution to the problem is the computational network shown in Figure 4.7. The
computation of the three compute nodes a, b and ¢ is shown in Figure 4.9. The com-
munication delay of the computational network is taken to be zero. As a result, a read
event can occur one logical clock value after the corresponding write event occurred.

St

Figure 4.7: Computational network
solution 1

Figure 4.8: Event diagram solution 1
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Compute node A: Compute node B: Compute node C:
read(x, in) read(t0, in) read(t0, in)
tl=x+1 t1 =1t0 -2 t1 =1t0 + 1
t2 =t1 -2 t2 =t0 + 1 y=t1-2
write(t2, out) t3 = t1 + t2 write(y, out)

t4d = t3 - 2

write(t4, out)

Figure 4.9: Transformations compute nodes solution 1

All timing information needed for the concurrency model can be extracted from the
event diagram shown in Figure 4.8. Numeric values for the concurrency measures can be
determined using the Equations 4.4, 4.10, 4.14, 4.15 and 4.16. Their values are shown
in the table below. Analysis of the structure of the network reveals that the network
contains one computational path, which goes through the three nodes. The structure
measure is therefore zero. This is shown in Table 4.7. The computation load of this
solution is relatively low because the computation is small. This introduces a large
communication overhead. This problem can not be solved and will be present in all
presented solutions.

Table 4.7: Concurrency measures for solution 1

Measure

computation load | 0.56
execution load 0.78
restart 0.68
synchronization 0
structure 0

e Solution 2

In the previous solution, the execution load was not equal to one. This was caused
by compute node b, which had an execution time longer than the other two compute
nodes. This can be solved by splitting the compute node in two compute nodes b1 and
b2. The resulting computational network is shown in Figure 4.10. The transformations
performed by the compute nodes are shown in Figure 4.12. The compute nodes a and ¢
are the same as in the previous solution. Compute node b has been split in the middle by
inserting a read and write operation. The events that compute t2 and t3 in the previous
example have also been reordered. This is done to avoid having to send both ¢; and t9
over the connection. This shows that splitting a compute node is not trivial, as it may
require re-ordering of the events.
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Figure 4.10: Computational network

solution 2 Figure 4.11: Event diagram solution 2
Compute node A: Compute node B1: Compute node B2: Compute node C:
read(x, in) read(t0, in) read(t2, in) read(t0, in)
tl =x + 1 tl =1t0 - 2 t3 = t2 + 1 tl =t0 + 1
t2 =t1 . 2 t2 = t1 + t0 td = t3 - 2 y=1tl. .2
write(t2, out) write(t2, out) write(t4, out) write(y, out)

Figure 4.12: Transformations compute nodes solution 2

It is assumed that the communication delay is still zero in this solution. The timing
diagram that presents the behavior of the computational network is shown in Figure
4.11.

Table 4.8 shows the values for the different measures of the concurrency model. If we
compare these values with the results of solution one, we see that we have a higher
execution load and restart measure. The execution load is one, which means that all
compute nodes are always busy with some computation. Solution 2 has a higher value for
the restart measure than solution 1, because the slowest compute node requires 4 logical
clocks to execute, while this is 6 in solution 1. This balanced execution load comes with
a price, the computation load dropped slight because of the extra communication.

Table 4.8: Concurrency measures for solution 2

Measure

computation load | 0.
execution load
restart
synchronization
structure

O O = oo

The event diagram clearly shows that this solution differs with respect to concurrency
from the previous solution. The execution load and restart measure of the concurrency
model do both indicate this difference. Therefore, at least one of these two measures
should be part of the concurrency model.

e Solution 3

The execution load is optimal in the previous solution. However, the synchronization
indicates that the solution is equal to a sequential implementation of the algorithm. A
single computation will therefore take the same time as a computational network that
consists of a single compute node. The computational network realizes no speed-up of
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the algorithm compared to a sequential computation. This means that the execution of
the different compute nodes needed for the computation are performed one after another;
the compute nodes execute in series. This is an undesirable property, as the goal is to
exploit the parallelism in the network. The computational network must be transformed
in such a way that a speed-up is obtained and that the number of compute nodes that
execute in parallel on one computation is raised. The resulting computational network
is shown in Figure 4.13. The compute node declarations are shown in Figure 4.15. The
events in the compute nodes have again been reordered. Compute node a has to write its
result to two connections. Compute node ¢ has to read the data from two connections.
To still have the same execution time for all compute nodes, the addition in this node
is moved to the compute nodes bl and b2. This gives us again a computational network
that realizes the required function. The required transformations to the compute nodes
are not trivial, just as it was in solution 2. It is again assumed that the communication
causes no delay.

Figure 4.13: Computational network Figure 4.14: Event diagram solution 3
solution 3
Compute node A: Compute node B1: Compute node B2: Compute node C:

read(x, in) read(t0, in) read(t0, in) read(t0, in2)

tl =x+ 1 tl =t0 - 2 t3 =t0 + 1 read(tl, ini)

t2 = t1 - 2 t2 = t1 - 2 t4d = t3 - 2 t2 = t0 + t1

write(t2, out2) t3 = t2 + 1 th = t4 + 1 y=t2 -2

write(t2, outl) write(t3, out) write(t5, out) write(y, out)

Figure 4.15: Compute node declarations solution 3

The timing diagram that corresponds to the behavior of the computational network is
shown in Figure 4.14. The figure shows that part of the computation is now performed
in parallel (execution of compute nodes bl, b2). As a result, the synchronization will
no longer be zero. Figure 4.13, shows a computational network that contains two com-
putational paths. This implies that not every node is on the same computational path.
There is thus parallelism present in the structure. The numeric value for the synchroniza-
tion, structure and the other measures in the concurrency model are shown in Table 4.9.
The restart measure is changed compared to solution 2. This is due to the introduced
communication overhead.
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Table 4.9: Concurrency measures for solution 3

Measure

computation load | 0.50
execution load 1
restart 0.80
synchronization | 0.30
structure 0.33

The values of the concurrency measures of solution 3 are different from solution 2. This
is correct, as solution 3 is clearly different compared to solution 2 with respect to the
concurrency that is available in the computational network. This difference is indicated
by the different values for the synchronization, structure and restart measure. This
difference is indicated the best by the synchronization and structure measure. Therefore,
at least one of these two measures should be present in the concurrency model.

e Solution 4

The previous solutions assumed that the communication causes no delay. Consider now
the same computational network as in the previous solution, but with a communication
delay of one logical clock value for all connections. The timing diagram for this situation
is shown in Figure 4.16. Table 4.10 shows that the synchronization is the only measure
that changes. It is lower than in the previous solution. This is because the communication
delay lowers the number of events that can occur simultaneously.

Figure 4.16: Event diagram solution 4

Table 4.10: Concurrency measures for solution 4

Measure

computation load | 0.50
execution load 1
restart 0.80
synchronization 0
structure 0.33

The difference between this solution and the previous one is indicated by the changed syn-
chronization. Therefore, the synchronization must be present in the concurrency model.
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The structure measure must also be present in the concurrency model, as this measure
indicates the possibility to execute compute nodes in parallel, if the communication is
not preventing this. Whether or not the communication prevents this is indicated by the
synchronization.

The synchronization measure suggests in this solution that the computation is sequential,
but the structure measure indicates that this is a coincidence. The computation is not
sequential, but due to communication overhead it takes the same time as a sequential
solution.

e Solution 5

As a last solution to the problem we construct a computational network that contains a
single compute node. The transformation performed by the compute node is shown in
Figure 4.17. This solution is created by combining the three compute nodes of solution
1. The sequential execution time, total execution time of the computational network,
and the execution time and run time of the slowest compute node are all equal, as there
is only one compute node in the computational network. This compute node has as a
result an execution load of one and a bad synchronization measure of zero. Parallelism
in the structure is not present. The numeric values for these and the other measures in
the concurrency model are shown in table 4.11.

Compute node A:
read(x, in)

tl=x+ 1
t2 =t1 - 2
t3 =1t2 -2
t4 = t2 + t3
tb=t4 + 1
t6 = tb - 2
t7 = t6 + 1
y =t7 -2

write(y, out)

Figure 4.17: Transformation compute node solution 5

Table 4.11: Concurrency measures for solution 5

Measure

computation load | 0.80
execution load 1
restart 0.40
synchronization 0
structure 0

It will be clear that there is a difference between the second solution and this one if con-
currency is considered. This difference is indicated by the value of the restart measure in
the concurrency model. To make the distinction between these two solutions, the restart
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measure must be present in the concurrency model.

4.5 Related Work

Section 4.3 extended the computational-network model with a concurrency model. This
concurrency model contains five different measures to capture the different concurrency
properties of a system. This section present a brief survey of other concurrency models
found in literature. It will also discuss the relation between these models and our model.
For an extensive discussion on models and languages for parallel computation, we refer to
[33]. The article surveys parallel programming models and languages and assesses their
suitability for realistic portable parallel programming. They argue that an ideal model
should be easy to program, should have a software development methodology, should be
architecture-independent, should be easy to understand, should guarantee performance,
and should provide accurate information about the cost of programs. We agree with
them that these criteria are important for a realistic model of parallel computation. It
is our belief that the concurrency model is easy to understand and use. The idea behind
the concurrency model is that a system designer must optimize the five concurrency
measures. To what extend this is realized can directly be seen by looking at the measure
and looking at how close they are to one. In the implementation, presented in the next
chapter, we try to meet with the other criteria.

During a literature search conducted at the start of this project, we found basically
two different type of concurrency models. In the first type, the concurrency models
that try to measure the performance of a parallel program and compare that with the
performances of a sequential program. Good examples of this are [37], [25], [28] and [15].
They simulate the parallel program and measure its run-time. This run-time is used to
estimate the run-time of the parallel program if it is distributed over a set of processors
and to estimate the run-time of a sequential version of the program. They compute
then the speed-up realized by the parallel program. This speed-up is the ratio between
the run-time of the sequential and parallel program. The most important difference
between these concurrency models is the way in which they determine the run-time of
the parallel and sequential program. The synchronization measure of our concurrency
model is closely related to these concurrency models. The synchronization measure uses
the same ratio to provide an insight in the speed-up achieved by the computational
network compared to a sequential solution.

A second type of concurrency models are the more formal models. These models operate
often on a higher level of abstraction than the before mentioned concurrency models.
Examples of this are [11], [32] and [31]. The approach of Raynal [31] is interesting as
there is a large resemblance with our approach. Both the model of computation used in
our approach and Raynals approach uses a time-stamping mechanism based on logical
clocks. Both approaches associate also a delay with the events executed in a node.
The concurrency model proposed by Raynal is comprised of one measure. In terms
of our model, it calculates the sum of the idle-time of all nodes that occurred in the
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computation and normalizes this with the idle-time of all nodes that must occur because
of the causality relation imposed on the events in the nodes. This measures the time that
nodes are busy compared to the time that the are idle because of the causality relations.
The measure is closely related to our execution load. The difference is that the execution
load takes all communication idle-time into account and not only the idle-time caused
by the causality relations.

Concurrency models related to our work can also be found in the field of systolic proces-
sors. Systolic processors are a class of pipelined array architectures proposed by Kung
and Leiserson [19, 20]. A systolic array is a network of processors which rhythmically
compute and pass data through the system. Systolic processors accomplish a speed-up of
the computation. They are not suited for speeding-up the communication, but allow for
the balancing of communication and computation [20]. Research to performance analysis
and design optimization has been performed in the field of systolic processors [21]. For
the optimality criteria they often consider the computation time, latency, throughput
and the number of processors and size of communication network. We do not consider
the number of processors or the size of the communication network in our concurrency
model, but we do consider the other criteria.

4.6 Conclusion

This chapter introduced a formal concurrency model that can be used to analyze the con-
currency in a computational network. The concurrency model is based on five different
measures: computational load, execution load, restart, synchronization and structure.
The computational load and execution load indicates to what extent the computation
is balanced over the computational network and how much of the effort is put in trans-
forming the data compared to communication. The synchronization provides an insight
in the speed-up that is achieved by creating a concurrent solution compared to a se-
quential solution. The restart is used in the concurrency model to provide feedback over
the rate at which new computations can be started on the computational network. The
parallelism that is present in the structure of the computational network is identified,
to some extent, using the structure measure. These measures are explained in Section
4.3. Three of the five main measures are derived from a set of detailed measures which
describe the computation load, execution load and restart for compute nodes and net-
work components. These detailed measures can be used to get a better insight in the
concurrent behavior of the elements of the computational network.

Section 4.4 presents a number of computational networks that realize the same com-
putation, but have different concurrency properties. It is shown that those differences
are indicated by the concurrency measures. It is further shown that all measures are
needed to make a clear distinction between the different solutions that are presented in
this section.

The concurrency model was introduced in this chapter by observing what properties
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are important when considering concurrency in a computational network. It was not
considered what properties are important for a system designer at the point that the
concurrency measures were introduced. Let us discuss now how the measures relate to
the properties of a system considered to be important by a system designer. A system
designer will in general be concerned about the latency and throughput of the system.
The latency is measured in the computational-network model in the total execution time.
The latency relative to a sequential solution is used in the synchronization measure. To
minimize the latency, one should try to optimize the synchronization. The throughput
is related to the restart interval and as such to the restart measure. The system designer
must optimize the restart measure in order to get an optimal throughput. The system
designer can use the concurrency model to get feedback about the latency and throughput
of the specified system.



Chapter 5

Implementation

5.1 Introduction

The previous chapter introduced a concurrency model that can be used to analyze the
concurrency in a computational network. The computational network itself was intro-
duced in Chapter 3. The following two sections introduce an implementation for the
computational network and the time-stamping mechanism that is used in the model of
computation. Section 5.4 presents a software program that implements the concurrency
model. The software program takes a computational network as an input. It analyzes
this computational network for its concurrency properties by simulating the computa-
tional network and analyzing the data produced by this simulation. The output of this
analysis are the numerical values of the concurrency measures.

Simulating the network does not contradict with our desire for abstraction. The concur-
rency model is based on the time-stamping mechanism. This time-stamping mechanism
requires a static list of events that occur in the computation. To get this static list of
event, we have to simulate the computational network with a given input. To allow
abstraction from this input, we must use multiply simulations and perform statistical
analysis on them. This gives us the desired abstraction.

5.2 Computational Networks

The definition of a computational network allows the modeling of a number of different
models of computation known from literature (see Section 3.2). Amongst them are the
Kahn process networks (KPNs) and Dataflow graphs. These two models of computation
are mainly used for the modeling of signal processing applications. The objective when
developing the computational-network model was to get a model of computation that
is suited for modeling embedded applications. These embedded applications are often
signal processing applications. Therefore it seems logical to consider the possibility to
extend an existing implementation of Kahn process networks or Dataflow graphs to get
a suitable implementation of the computational-network model for a first experimental
evaluation of the concurrency model. An advantage of this approach is that it allows the

47
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reuse of code that is written for YAPI.

YAPI, the Y-chart application programming interface, is a programming interface de-
veloped at Philips Research [16, 17]. It is used to model signal processing applications
as process networks. The YAPI model of computation extends the existing model of
KPNs with channel selection to support non-deterministic events. A C-++ library is
provided as an implementation of this model of computation. This makes YAPI suitable
as a first implementation of the computational-network model. The compute nodes of
the computational-network model become the processes of the YAPI/KPN model. A
computational-network of the computational network model is equal to a process net-
work in the YAPI/KPN model. The connections of the computational-network model
are represented by the fifo’s in the YAPI/KPN model.

5.3 Time-Stamping Mechanism

To implement the time-stamping mechanism based on Lamport’s logical clocks, we need
an implementation for the different delay functions used in this time-stamping mecha-
nism. The time-stamping mechanism contains two delay functions. One that associates
a delay with the communication of data over a connection. And one that associates a
delay with each event that occurs in the compute nodes. The delay function for events
in a compute node will be implemented using a delay function for internal events and
a delay function for read and write events. The reason for using two delay function for
events becomes clear when we discuss their implementation.

Section 5.3.1 describes the implementation of the delay function for internal events. The
delay function for read and write events is described in Section 5.3.2. Section 5.3.3
discusses the implementation of the delay function for connections.

5.3.1 Delay Function for Internal Events

Computational networks are implemented using C++4. This implies that a single event
in a compute node is equal to a single C++ statement. The delay function for internal
events must map each C++ statement on a delay value associated with that statement.
This should be done in a way that the value of the delay represents the amount of work
associated with performing the event.

The amount of work associated with performing an event is often expressed by the time
needed to perform the event. This represents the resources of a system that are used
by an event. This time can be measured using a wall-clock or the systems clock. These
values are difficult to measure, as it is difficult to determine the exact times at which
the event started and ended. It is difficult to determine the number of cycles that are
needed to perform an event. Furthermore, it is very architecture dependent and thus not
very abstract. However if we assume that the average statement found in the code of
the compute node, normalized to the number of machine-instructions needed to execute
it, takes the same number of cycles to complete, then it becomes possible to determine a



5.3. TIME-STAMPING MECHANISM 49

value for the time needed to perform an event that is a little more abstract. It remains
to be seen whether it is sufficiently architecture independent to be useful in practice.
However our first experiments show that the assumption holds.

The assumption now is that the number of instructions executed for an event is a good
measure for the work associated with the event. The number of instructions needed for a
statement can be determined using a cycle-accurate simulator. The problem with using
this kind of simulator is that they have long run-times. A solution to this is the system
used in VCC [5]. The Virtual Component Co-Design environment provides an option to
annotate the C code of a program with the delay associated with executing the behavior
on a given architecture. This gives a performance model for a behavior implemented in
software without running it on the processor. This allows for fast simulation and rapid
design exploration.

This is the kind of profiling that we propose to implement for the delay function for in-
ternal events. It associates a reasonably accurate delay with each statement, but allows
for fast simulation as no instruction set simulator is used. The latter is needed because
the concurrency optimization is performed in an early stage of the design where still a
lot of architecture exploration will be performed. This requires that simulations can be
performed reasonably fast.

To implement the above described profiling mechanism, we could use VCC to profile
the statements inside the code of the compute nodes. The problem is that VCC is not
publicly available; therefore we decided to create our own VCC like implementation of
this profiling mechanism.

The required mechanism is quite simple. The information required to profile the code
is the number of instructions needed for each statement in the source code. This infor-
mation can be obtained in the following way. Consider the situation in which a single
line in the source code contains exactly zero or one statements. Normally it is possible
to relate each assembler operation to a line in the source code. As each line contains
exactly zero or one statements, each assembler operation is related to a single statement.
Counting the number of assembler instructions related to a specific line gives the number
of assembler instructions related to a specific statement. Using this method, it is possible
to assign a delay to each statement in the sequential code of a compute node.

The delay can be determined using a compiler that is available on the machine that
runs the simulations used in the design process. This machine will in general contain a
general purpose CPU. The final implementation may contain processors with a different
instruction set. This implies that in the implementation there may be different delays
associated with the events in the compute nodes. The determined delay values do depend
on the architecture of the system.

The best way to overcome this problem is to use a compiler for the processors that are
used in the implementation. In case of a heterogeneous system, this may require the use
of multiple compilers. It is in that case required that a mapping of compute nodes to
resources is made.
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In the case that the homogeneous multi-processor system contains only general purpose
CPUs like Pentiums or MIPS, it is assumed that the delays do not have to be calculated
for a specific architecture. They can be determined using a compiler for another general
purpose CPU that is not used in the system but is available on the machines that run
the simulations.

The time-stamping mechanism was introduced in Section 3.3 to allow reasoning about
causality and some timing aspects on a relative high level of abstraction without referring
to implementations/physical time. To get accuracy, we relate the events to the number
of instructions needed to execute these events on a processor. To get abstraction from
the system architecture we assume that the influence of a specific instruction set of a
processor does not have that much influence on the results. Our first experiments show
that the proposed notion of time is both accurate and abstract enough to perform target
architecture independent concurrency optimization.

5.3.2 Delay Function for Read and Write Events

For the delay function of internal events, we use the number of instructions needed
to execute the event. The same approach could be used for read and write events.
However, the read and write functions used in our software library as communication
primitives will in general not be used in the actual implementation. The implementation
will use a software library containing read and write functions optimized for the given
system. The functions will then require a different number of cycles; they have a different
delay. It is also possible that the implementation uses no read and write function at all.
The communication primitives of YAPI may be replaced by different, more efficient,
communication primitives.

Let us consider the case that the YAPI communication primitives are used. A compute
node will produce some data that it places in a memory. When the compute node writes
this data to the connection, it is copied from the memory location where it resides to the
memory location used for the connection. On a read event of another compute node, the
data is transferred from the memory location of the connection to the memory assigned
to the compute node. The data is copied in this system a number of times. Option I
of Figure 5.1 shows an example of this. The dashed arrows in this figure represent the
different memory transfers involved in the communication excluding the required syn-
chronization messages.

To avoid the copying of data, one can use different communication primitives. Option
IT shows a solution that can be used in a system with a shared memory. A processor
is informed with semaphores about the memory location to which it can write or from
which it can read. The run-time system that implements the communication primi-
tives must guarantee that processors read from and write to the correct locations in
the shared memory. A technique for mapping process network communication onto a
multi-processor architecture with shared memory that uses semaphores is action syn-
chronization [1].

A multi-processor system that contains no shared memory cannot use the communication
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Figure 5.1: Data communication in multi-processor system.

primitives of option II. But instead of using the communication primitives of option I, it
can use those of option ITI. In option III, the processors have their own local memory in
which the data is stored. The compute node A will write the produced data to its own
local memory. As soon as the processor running compute node B needs the data written
by compute node A, it will request it from the processor running compute node A. The
data is then directly copied from the local memory of the processor running compute
node A to the processor running compute node B. The data needs to be copied only
once in this solution. The processors however are responsible for not overwriting the
produced data.

There is still another solution, Option IV. This option is not shown in the figure. Option
IV assumes that all data output by a compute node will be needed at some point and
only by one compute node. The data can in that case be copied to the receiver as soon
as possible. In practice, this solution will fail in many implementations of computational
networks for the following reason. The data produced by a compute node may be needed
by multiple compute nodes, i.e., one-to-many connections will be present in implementa-
tion of computational networks. The producing compute node must output the data as
many times as there are receivers in case option IV is used. This problem can be avoided
if option III is used.

In an implementation, one will use a technique similar to option II or III for communi-
cation. Option I will not be used as it is always more expensive than option III. Option
IV is not used for the above mentioned reason. Consider now the case that option II is
used. The communicated data is already available in the memory when a read or write
call is issued. The only thing that needs to be done is to communicate the location in
the memory of it between the processors. This can be done in a constant time with
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respect to the number of data elements transferred. If option III is used, there is also
a constant time needed in the communication costs for setting up the communication
channel. But the total communication costs will also depend on the time needed to send
all data-elements over the physical communication medium.

To model all of the involved effects completely, one needs information about the com-
munication architecture of the system. This requires for instance information on the
average access times to the communication medium, size of the buffers inside the I/O
units of the processors, mapping of compute nodes on processors etc.

When a design exploration is started, this information will not be available in this de-
tail. The delay function for read and write events can therefore not take it into account.
From the above observations, it becomes clear that the costs of communication / delay
associated with communication is determined by a constant time needed to get access
to the channel and a time that depends on the number of data-elements communicated.
The first can be taken into account in the delay function for read and write events by
a constant ¢ > 0, the latter can be taken into account by a constant b > 0 that is
multiplied by the number of data-elements communicated. The a,b constants must be
integers. This guaranties that the delay has an integer value. This is required as the
logical clock can only have integer values. For a read or write event e, we use the delay
function of Equation 5.1.

d(e) = a + b - #elements communicated (5.1)

The constants a and b are determined by the type of communication chosen. Values for
these can be determined by running simulations on the targeted multi-processor system
if this is known and available.

5.3.3 Delay Function for Connections

The previous section discussed that much of the costs of communication are not known
when the concurrency optimization is performed. The delay function for connections
can therefore not use much information about the architecture and its characteristics.
It is however observed that the costs of communication of a single data-element over a
communication medium depends on the size of this element. The bigger the element,
the more time is needed on the communication medium, the higher the cost. It seems
therefore logical to take the size of the data-element transferred over a connection as a
basic measure for the delay associated with a connection. The size of a data-element is
expressed in the number of bytes that are needed to store it in memory. To be able to
scale the delay of the different connections, we introduce a constant a > 0 with which
the size of the data-element is multiplied to get the value for the delay associated with
it. The a constants must be an integer. This guaranties that the delay has an integer
value. This is required as the logical clock can only have integer values.

Equation 5.2 gives the delay function for a connection c¢. Each data-element that is
communicated through the connection is assigned this delay.

d(C) = a - #bytes of data element (5.2)
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5.4 Concurrency Analysis and Simulation Tool

5.4.1 Introduction

Chapter 4 has presented a concurrency model for computational networks that uses a
time-stamping mechanism based on Lamport’s logical clocks. The implementation of
the computational-network model and time-stamping mechanism have been discussed in
the previous sections. This section will add to that a software implementation of the
concurrency model. This program is called the Concurrency Analysis and Simulation
Tool or CAST for short.

The measures of the concurrency model are based on the ordering of the events that take
place in the computational network (See Section 3.3). This ordering can be computed
from a list of all events that are executed in the computational network. The structure
measure in the concurrency model requires further information about the structure of
the computational network. This information must be gathered before the concurrency
measures can be calculated.

The computational network must be simulated to obtain the needed information. During
the simulation, a trace must be generated that contains the information needed for the
time-stamping mechanism. The simulation must also extract the information on the
structure of the computational network.

The trace generated during the simulation contains information about the internal, read
and write events that have occurred in the compute nodes of the computational network.
An internal event is equal to a single C++ statement. This statement is mapped onto a
delay using the delay function for internal events. This delay function takes the number
of machine instructions executed as a value for the delay of the statement. The trace file
could contain information about the statement executed, which could be mapped onto
the appropriate delay when creating the event ordering. However, it is more convenient
to map the statement onto the delay before creating the trace. The trace can then contain
the delay associated with the executed statement instead of the statement itself. This
requires however that the source code is annotated with the appropriate delays. The
source code must also contain code to create the trace file and to extract the structure
of the computational network.

There are now three steps visible that must be taken care of by the program. First, the
source code describing the computational network must be annotated with the values
of the delay that is associated with executing the code and code for creating a trace.
This step is called the parser step. Second, the annotated source code must be simulated
to obtain the trace and information about the structure of the computational network.
This is done in the simulation step. In the third step, the analysis step, the trace is
used to create an event ordering which on its turn is used to calculate the concurrency
measures. The time-stamping mechanism must use the delay functions for communica-
tion events and connections to map the read and write events onto the appropriate delay.
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The overview of CAST is shown in Figure
5.2. The figure shows the three different
steps of the program and the input and out-
put files of each of them. These steps and delay
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Figure 5.2: CAST overview

5.4.2 Simulator

An important step before the concurrency measures can be calculated is the simulation.
The CAST simulator is responsible for creating a trace of all events that have occurred
in the computational network during the computation. It must also gather information
about the structure of the computational network.

The created trace file does not contain information on which statements (internal events)
were executed. It contains only the delay associated with the execution of these internal
events. Each time a statement is executed we do not log the delay associated with this
event, but instead, we raise a counter associated with the compute node. This counter,
the delay counter, counts the delay associated with all internal events that have occurred
up to the point where the compute node is in the execution. If a read or write event
occurs in the execution of the compute node, we do not have to log which internal events
have occurred before this read or write event. It is sufficient to log the value of the
counter, as that provides the required information for determining the event ordering.

There are mainly two options for creating the trace. The first option is that a trace file
could be created for each compute node individually. The result is a set of trace files
that have to be parsed when creating an event ordering. The events within the trace file
respect the causality relations imposed on them, as these are always respected by the
events that occur in a single compute node. However, the causality relation for the events
between compute nodes — read and write — is not captured in the data structure. This
causality relation must be derived from the trace files by correlating the traced events.
This is a complex operation as it requires that all events of all trace files are scheduled
in an ordering that respects the causality relation.

The second option is to use a single trace file for all compute nodes. The events that occur
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Figure 5.3: CAST run-time environment

within a single compute node are still logged in an order that respects causality. These
events are mixed with the events that occur in other compute nodes. This ordering is
determined by the order in which the YAPI scheduler executes the compute nodes. The
scheduler will obviously do this always in an order that respect the causality relation. It
is not possible to log a read event before the corresponding write event has occurred.

A run-time environment is required to log information in the trace and maintain the delay
counter of every compute node. This run-time environment maintains a data-structure
for every compute node known by the run-time environment. The UML diagram [38] of
the run-time environment is shown in Figure 5.3. The run-time environment is available
in the program through the global variable castRTE which is a CastRTE object. The
castRTE variable maintains a list of CastLogger objects. A CastLogger object contains
the delay counter for a compute node and a reference to the trace file.

A reference to the CastLogger object that belongs to a compute node can be obtained
via the getCastLogger procedure of the CAST run-time environment. This procedure
requires the name of the compute node to find the corresponding CastLogger object in
the list of CastLogger objects maintained by the run-time environment. If the compute
node is not found in the list, a new object is created for the corresponding compute node.
The delay attribute of the CastLogger object is a 64 bit counter used to count the delay
associated with the internal events executed in the compute node. This delay counter
can be updated and accessed through the delayCycle procedure. The CastLogger object
contains further an event attribute; this maintains the number of read and write events
that have been performed by the compute node. A read or write event in a compute node
is traced through the readLog and writeLog procedures of the object. These procedures
add a line to the trace file, which identifies the event that has occurred in the compute
node.



56 CHAPTER 5. IMPLEMENTATION

This line in the trace file must contain information whether the logged event is a read or
write event. If this is the case, it must further contain information on the compute node
and port that were involved in this event. With these, it is possible to identify which
connection is used in the communication. This makes it possible to correlate the read
and write events. Finally, the line must contain the value of the delay counter and the
number of data elements that are transferred in the read or write event.

The CAST parser must make the necessary changes to the source code of the YAPI
process network for the CAST run-time environment to work. This parser is discussed
in the next section. The annotated YAPI process network created by the parser is the
input for the CAST simulator. The CAST simulator will first compile the annotated
YAPI process network to obtain an executable. This is done using a standard GCC
compiler for the platform on which the simulation must be performed. After that, the
simulator executes the binary with the arguments for the simulation that were passed to
CAST. The binary will execute and run like a standard YAPI program. It will use the
YAPI run-time environment to execute the process networks and processes in it. The only
difference is that the binary will also use the CAST run-time environment. This run-time
environment is used to create a trace of all events that take place in the computational
network and an XML file describing the structure of the computational network. This
structure information describes all computational networks, compute nodes, ports and
their connections found. All these elements are assigned a number, called an id. This
is a unique number that identifies an element throughout the whole system. These id’s
are assigned such that the compute nodes in the computational networks have the lowest
numbers, starting from zero. How these id’s are used is explained when the analyzer step
is discussed.

5.4.3 Parser

The first stage in CAST is called the parser stage. It takes as an input a set of C++
source files with the YAPI process network. The parser must annotate the code in these
files in order to allow tracing of the internal, read and write events that occur in the
compute nodes.

Using the CAST run-time environment, it is possible to create a trace of all events that
occur in the computational network during a computation. It is required for the run-time
environment that each compute node can access its CastLogger object. One method to
implement this is to add an attribute to the object describing the compute node. During
initialization of the object it is possible to initialize this attribute with a reference to the
CastLogger object. This requires that the CAST program is able to understand a large
portion of C++ syntax in order to determine which objects must be identified. Another
solution would be to modify the YAPI run-time environment and combine this with the
CAST run-time environment. This requires that YAPI is changed. This makes it harder
to use new versions of YAPI in the future, as all changes to YAPI have to be redone for
each new version of YAPI developed at Philips.

There is a simpler solution that requires slightly more run-time, but only needs a very
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simple parser in the CAST program. This solution adds a variable castLogger to every
function that belongs to a compute node. This castLogger variable is valid within the
scope of the function and is initialized by calling the getCastLogger procedure of the
CAST run-time environment with the name of the compute node. The name of the
compute node is obtained by calling the fullName procedure available in YAPI.

To simplify the parser, we have chosen to implement this last solution in CAST. The
parser in CAST must now be able to identify where a function starts and ends in the
source code. The parser must now be able to identify the different functions in the source
code and modify the body of the functions. The functions that must be modified are
member functions of the compute node classes. To determine whether a function belongs
to a compute node class, the source code file and all its include files must be analyzed.
This is needed to determine which function belongs to which class and whether that
class is derived from a compute node class. Doing this in an automated fashion would
require a complex parser that has to understand a lot of the C++ syntax. There is a
simple solution to overcome this problem. This requires that the user informs the CAST
parser that a function must be annotated with delay information. This is the only change
that the user has to make to the source code of a YAPI program in order to analyze
it using CAST. This annotation works as follows. Whenever the CAST parser finds a
profile pragma within the body of a function, it will annotate the source code with
the appropriate delay for each statement. The CAST parser outputs first the statement
and then a call to the CAST run-time procedure delayCycle with the delay associated
with the statement. This is done until an end profile pragma is found or the end of
the function body is found.

The CAST parser adds also calls to the readLog and writeLog procedures of the CAST
run-time environment. These are inserted to log the read and write events that it finds
in the function body. If a read function call is found in the original source code, this
read call is output by the CAST parser followed by a call to the readLog procedure of
the CAST run-time environment. The call to the CAST run-time environment must be
placed after the read call. This ensures that it is performed after the moment that the
data was available on the connection. If the read call is logged before it is performed,
there is the risk that a read event is logged of which the corresponding write event has
not yet occurred. A write event can be logged just before or after it is performed if the
connection can store enough data elements to never block a write event. In practice, this
will not be true. If a write event would be logged after it has occurred, a read event on
the corresponding data may already have occurred and be logged. To prevent this, the
CAST parser inserts the writeLog procedure before the call to the write procedure.
Figure 5.4 contains a code fragment before and after the CAST parser step.

If an iteration or selection statement is found and no compound statement (open/close
brackets) is present around the statement(s) within the iteration or selection, it must
be inserted by CAST. This is because the CAST parser may add new statements that
have to be executed together with the statements within the iteration or selection. The
parser must be able to decide whether or not to insert the compound statement. To help
the parser with this, the original source code is pre-processed. After this pre-processing
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void A::main(Q) {

void A::main(Q) { #pragma profile

#pragma profile castlLogger = getCastLogger(fullName());
read(in, a): read(in, a);

— castlogger->readLog(in);
b =2=a; b=2%a;

castLogger—->delayCycle(4);

castLogger—>writeLog(out);
} write(out, b);

}

write(out, b);

Figure 5.4: Annotated source code.

step, the opening bracket of a compound statement is on the same line in the file as the
iteration or selection statement. The parser needs to analyze only one line of the file to
decide whether or not to insert the compound statement.

The implementation of the delay function for internal events has been discussed. It re-
quires that a single line of code contains exactly zero or one statements. This requires
that the source code is reformatted to meet with this requirement. To perform the nec-
essary pre-processing, CAST uses a program called indent. Indent is a source code
formatting program that is installed on many Linux systems and is available for free.
As this program is easily available, it was decided to use it instead of adding a reformat
function to the CAST program.

The result after the CAST parser is run on the source code files is a set of annotated
files. The original source code files have first been reformatted for CAST. This format
is hard to read for humans, as it may contain long lines of code. To create more human-
readable code, the output of the CAST parser is reformatted using the GNU coding style
in conjunction with the indent program. This creates readable source code, which is
placed in the cxx directory of the project directory.

The implementation of the delay function for internal events is discussed in Section 5.3.1.
The delay of an internal event is determined by the number of machine-instructions
needed to execute the internal event on a given processor. The problem with this ap-
proach is that the final implementation may use different processors, with a different
instruction set. The delays used in the delay function are in that case not correct. The
section discussed an option to overcome this problem. That requires the use of a com-
piler for the platform on which a compute node will be mapped. To support this, CAST
has an option to generate delay information for internal events using a different compiler
than the standard compiler. To make this work, small changed to the code of the parser
must be made. The parser must know which compiler to use for the platform.

CAST supports besides the standard compiler also a MIPS compiler. CAST can be
instructed to use this MIPS compiler via the project file. CAST generates in that case
assembler code from the source code with the MIPS compiler. This assembler code is
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used to obtain the delay for the internal events that occur in the compute nodes and
annotate the source code. Note that the actual simulation can be done on a different
platform than the platform used in the parser step; the parser creates only annotated
source code.

5.4.4 Analyzer

The simulator has created a trace, cast.trace, of all events that have taken place in
the computational network during the simulation. It has also created an XML file,
network.xml, that describes the structure of the computational network. These two
files and the delay settings provided by the user form the input of the analyzer. The
analyzer creates an internal data-structure from the network description. It also reads
the delay settings and sets the constants of the delay functions of the read and write
events and the communication. The trace file is used to create an event ordering. The
result is stored in the data structure and is used to calculate the different concurrency
measures.

This section describes in detail how all of these steps are performed. Before doing so,
we have to make one remark on the implemented concurrency model. The analyzer
currently implemented in CAST does not use the hierarchy in the concurrency model as
presented in Chapter 4. It uses a flat model for the computational network. This means
that the analyzer assumes that all compute nodes belong to one network component, this
network component is the only network component in the computational network. The
analyzer does not have to store the size attributes of the different network components,
as there is only one network component. The formulas for the concurrency measures of
the network component and computational network can be simplified in this case. The
execution load and computation load can simply take the average over the loads of the
compute nodes. The synchronization, restart and structure measure do not change.

Internal Data Structure

The analyzer starts with parsing the network description in the file network.xml. The
result of this is a reference to a ComputationalNetwork object. This object contains ref-
erences to objects for all computational networks, compute nodes, ports and connections
in the computational network. The UML description of these objects is given in Figure
5.5.

The ComputationalNetwork class and the ComputeNode class both contain a set of
InPorts and a set of OutPorts that represent the input ports and output ports of the
computational network and compute node. The InPort and OutPort class are derived
from a Port class. A Port object stores references to the connectors in which a port
serves as a source and as a destination. A connector can be linked to the port through
the link procedure. A Connector object contains a reference to a Connection object. The
connection class implements the behavior of the connection as defined in Definition 3.2.
The read and write procedures must be used by the ports of the compute nodes to read
and write data to the connection. This data is stored in a fifo that is implemented as a
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linked list. Data-elements can now be add and removed in constant time from the start
and end of the fifo.

The computational-network model contains network components. These are not present
in the UML description of the data structure used by the analyzer. These network
components are not necessary as it is possible to generalize network components to
computational networks. A network component can simply be seen as a computational
network that contains compute nodes. This generalization is used in the data structure
of the analyzer.

All classes mentioned so far are derived from the Id class. This Id class stores the name
of an object. The complete hierarchical name of the object can be obtained through
the fullName procedure. The id procedure gives the id of the element. The Id object
contains further a reference to the parent of the element. For instance, the parent of a
compute node is the computational network it belongs to.

The ComputationalNetwork, ComputeNode, Port and Connection class are derived from
the EventSystem class. A object of this class stores all data for the time-stamping mech-
anism. It contains the constants used for the different delay functions. These constants
can vary per port, compute node or connection. They are stored in the EventSystem
object for each element. The EventSystem object contains also procedures to count the
number of read and write events that occur during the execution of the computation.
The delay associated with the execution of the internal events in a compute node is also
counted. These values and the time measures of Section 3.3 can be accessed through a
number of procedures present in the class.

The EventSystem class contains further the procedures setPrimary and isPrimary.
To explain these two procedures, we must consider the problem of how to simulate a
computational network. The computational-network model describes a computational
network as an element that contains a set of input ports and a set of output ports. The
computational network communicates with the outside world through these ports. To
simulate a computational network, we have to connect these ports to other computational
networks or compute nodes that read data from or write data to the connections of
the computational network that is analyzed. The computational networks and compute
nodes that simulate the environment are also simulated when the analyzed computational
network is simulated. Assumption 4.2 says that the data written by the environment
may not cause delay in the computational network that is analyzed. This assumption
is satisfied if the local logical clock of the compute nodes that simulate the environment
stay at zero during their execution. Compute nodes to which this applies are called
primary nodes.

Which compute nodes are primary nodes must be specified in CAST. This is done by
adding an XML primary node tag to the delay settings. The syntax of this tag is
described in the following paragraph along with the rest of the delay settings.
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Delay Settings

The delay function for read and write events and the delay function for connections need
a number of constants to calculate the delay associated with a read or write event or
communication. The values for these constants, as well as the definition of primary nodes
is done in the delay settings. These delay settings are stored in an XML file. Normally,
this is done in the project file used by CAST (cast.xml). For an example see Figure
5.6.

The tags of the different delay settings are inside a delaysettings element. There
are two different elements allowed inside this delaysettings element. The first is the
primary element. It contains one attribute, node, whose value is equal to the hierarchical
name of a compute node that is a primary node. There may be an unlimited number of
primary nodes defined in the delay settings.

The second element allowed inside the delay settings is the delay element. This element
contains always a type attribute. The value of this attribute is equal to 'rw’ or ’connec-
tion’ and defines whether the delay settings must be used for the delay function of read
and write events or for the delay function of connections. If the type attribute is 'rw’,
then the delay element must contain an element d with a value ’a,b’. a and b are the
integer constants used in the delay function. If no comma is found, it is assumed that
the b constant is zero. It must further contain a node attribute. The value of this node
attribute is equal to the hierarchical name of the compute node to which the setting
applies. If the value is equal to 'default’, then it applies to all compute nodes in the
computational network for which no setting is specified.

If the type attribute has a value ’connection’, then the delay element must contain also
a d attribute with the value for the constant a of the delay function for connections. It
must further contain a connection attribute with the name of the connection to which
the setting applies. The value of the connection attribute may also be 'default’. The
settings applies in that case to all connections for which no setting is specified in the
delay settings.

CAST assumes at start-up that the a constant of the delay function for read and write
events is 1. It takes a value of 0 for the b constant of this function. The delay function for
connections uses a default value of 1 for the a constant. These settings can be overwritten
by the default settings specified in the delay settings. These values can on their turn be
overwritten by values for specific compute nodes and connections in the delay settings.

Event Ordering

The time-stamping mechanism requires that all events traced during the simulation are
ordered using the algorithm described in Section 3.3. The EventSystem object of each
compute node contains the required counters and procedures for the time-stamping mech-
anism. An Event object is used to send the time-stamp at which a write event occurred
in a compute node over a connection to the compute node that reads the written data.
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Figure 5.5: UML description of computational-network model.

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE cast SYSTEM “"cast.dtd">
<cast version="1.0">
<del aysetti ngs>
<primary node="jpeg.frontend"/>
<primary node="] peg. backend"/>
<del ay type="rw' d="10" node="default"/>
<del ay type="connection" d="100" connecti on="j peg. pi xel s"/ >
<del ay type="rw' d="1" node="j peg.vld"/>
</ del aysettings>
</ cast>

Figure 5.6: Example of the delay settings.
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Figure 5.7: UML description of Event class.

The UML description of the Event class is shown in Figure 5.7. When a compute node
writes this Event to a connection, it contains a value identifying the event in the com-
pute node, and a value clk that is equal to the time at which the event occurred. The
connection updates this clk value when it receives the event object. The connection adds
to it the delay associated with the connection. This is done using the delay function for
connections.

The event ordering mechanism must first find the compute node, port and connection
involved in a read or write event. Then it can perform the event. It must also make sure
that delay for all internal events that occurred in this node between the previous read or
write event and this read or write event in the node is added to the local logical clock.
If necessary, to respect the causality relation, idle time must be inserted.

To find the compute node involved in an event, CAST could use the internal data struc-
ture described above. The problem with this is that for each event it must traverse
through the computational network to find the correct compute node. This cannot be
done in constant time. It is possible to access the correct compute node in constant
time. To do that, CAST must create a list computenodes that contains references to all
the compute nodes in the computational network ordered with their id. This list uses
the property that the id’s of the compute nodes have the lowest number, starting from
zero. This makes it possible to access through an array directly a compute node when
its id is known. The id of the compute node is simply the location in the array where
the reference to the compute node is stored.

The event ordering mechanism can now read a single line from the trace. This line
contains the id of the compute node involved in the read or write event and the name of
the port involved in the read or write event. Using the id of the compute node and the
name of the port, it is possible to find the compute node, port and connection involved
in this read or write event. The line of the trace file contains further a value that is
equal to the delay of the internal events that were performed in the compute node before
this read or write event occurred. This value is used to update the local logical clock
of the compute node with the delay associated with the internal events that have been
executed so far in the compute node.

Consider the case that the event logged on this line of the trace is a write event. The
time-stamping mechanism creates an event object that contains a time-stamp equal to
the local logical clock. This event object is then written to the connection using the
write procedure of the connection. The event object is written as many times as there
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are data-elements involved in the write event to the connection. The connection adds to
the time-stamp of each of these Event objects the delay associated with the connection.
The event objects are then added in-order to the list that implements the connection.

In the case that a read event is logged on this line of the trace, the time-stamping
mechanism has to behave slightly different. It must first use the read procedure of the
connection object to read as many event objects from the connection, as there are data-
elements involved in the event. The time-stamp contained in the last event object must
then be used to decide how the local logical clock must be updated. The compute node
may have to add idle time to the local logical clock to respect the causality relations.

When all events are ordered, the event system of each compute nodes can be queried for
the number of read and write events that have occurred in the compute node. The delay
associated with these events and the internal events that have occurred in the compute
node can also be obtained through the event system. The different time measures of the
compute node can also be obtained using the event system of the compute node. The
event system of the port objects contains values for the number of times a read or write
was performed on the port. The event system of a connection object contains values
for the number of data elements read and written to this connection. The event system
contains now enough information to calculate the concurrency measures.

Computation Load

The computation load of the computational network is found by taking the average
over the computation load of the compute nodes in the computational network. CAST
computes therefore the computation load of all compute nodes, that are not primary
nodes, in the computational network and takes the average over them. The compute
nodes are found using the computnodes list. The values for the computation time and
execution time can be obtained through the event system of the compute nodes.

Execution Load

The execution load of the computational network can be computed in the same way as
the computation load. The only thing is that it requires the value of the longest run-
time of all compute nodes in the computational network. This value can be found by
traversing the list once and determining the maximum run-time of all compute nodes.

Restart

The restart measure is calculated in CAST by traversing all compute nodes in the
computenodes list once and determining the largest run-time. This maximum run-time
is then used to calculate the restart measure using Equation 4.14.

Synchronization

The synchronization measure is found using Equation 4.15. The required value for the
sequential execution time is found by traversing the computenodes list and taking the
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sum of the execution times of all compute nodes. The total execution time of the com-
putational network is calculated using Equation 3.2 and the values for the execution and
idle-time of a compute node. The first compute node in the list can be used for that. It
is then not necessary to find the largest local logical clock value of all compute nodes in
the computational network.

Structure

To compute the structure measure of the concurrency model, CAST must first find
all computational paths in the computational network. It will therefore first create a
list of all paths that are in the computational network. This is done by starting in
a compute node that is a primary node. Then, it finds all compute nodes that are
immediately reachable from this primary node. A compute node n; is immediately
reachable from a compute node n; if there is at least one connection from n; to n; and
this connection is a so-called data channel. A connection is a data channel if the number of
data elements transferred over the connection during the execution of the computational
network is a certain fraction (default 10%) of the maximum number of data-elements
communicated over a connection in the computational network. In this way, we try to
exclude connections between nodes that are used to send control information (e.g. image
size, number of color components) as these do not belong to the main data-streams
in the network. The structure measure should focus on the main data stream, data
channels, and not on the other connections. The communication fraction can be set
in the CAST project file using a param element with commfrac as the value of the
name attribute. For example, the element <param name="commfrac" value="0.01"/>
sets the communication fraction to 0.01. This means that a connection is selected as a
data channel if this connection communicates 1% of the data-elements communicated by
the connection that communicates the most data-elements during the execution of the
computational network.

For each compute node that can be reached from the primary node, CAST creates a
partial path containing this compute node. After that, it is determined which compute
nodes are immediately reachable from each of these compute nodes. Each compute node
that can be immediately reached from one of these compute nodes is added to the path
from that compute node. This process is continued for each path until a path cannot
continue from a compute node because there are no immediately reachable compute
nodes left taking into account the restriction in Definition 4.1 that a node can occur at
most twice in a path. If the last compute node reached is a primary node, then the path
is stored in the list of paths found in the computational network, else it is discarded.
The discovery of new paths ends as soon as all paths from all primary compute nodes
are found.

CAST has now created a list of all paths in the computational network that consist of
data channels. The next step is to remove all paths that only go through primary nodes,
as these paths do not belong to the computational network. After that, CAST creates
a list of all computational paths that can be found in the computational network. This
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is done by taking a path from the list of all paths. It is then checked whether this path
belongs to a computational path that is already in the list of computational paths. If
so, the path is added to that computational path. If not, a new computational path is
created with this path. If a new computational path is created, it is checked which of
the already grouped paths belongs to this computational path. If a path does belong to
this newly created computational path, it is added. This process is continued until all
paths are grouped into on or more computational paths.

This gives the analyzer a list of all computational paths that are present in the compu-
tational network. To compute the structure measure, it must know how many compu-
tational paths go through each compute node. To compute this, it is then counted how
many times each compute nodes occurs in different computational paths. This is used
to calculate the average number of computational paths through a compute node. With
that number and Equation 4.16, CAST calculates the structure measure.

Statistical Analysis

Assumption 4.2 says that the strings of data at the input ports of the computational
network are infinite concatenations of the strings of data for one input — execution of
the computational network. To get an idea of how the computational network behaves
in this streaming environment it is important that the supplied strings of data represent
the average input that the computational network will see. To support this, CAST has
an option to calculate the concurrency measures over a set of simulations. The input
of each simulation can be different, but the average over all inputs should represent the
average input that the computational network will see.

The statistical analysis module of CAST is run when CAST is executed with the option:
-a-statistics. It asks the user, which simulations should be analyzed. The program
computes for these simulations the average, variance, minimum and maximum of all
concurrency measures.

Note that this option can also be used to create averages over a computational network
that is simulated with different delay settings for the channels or read and write events.
This makes it possible to get an idea about the behavior of the computational network
for different communication delays.

5.5 Conclusion

This chapter has presented an implementation for the model of computation introduced
in Chapter 3 and the concurrency model of Chapter 4. The computational-network model
is implemented using the YAPI/KPN model and C++ library developed by Philips Re-
search. An advantage of reusing YAPI is that there is immediately a large set of code
that can be reused for the computational-network model. The time-stamping mecha-
nism in the model needs an implementation for the different delays functions in it. The
delay function for events was implemented through two different delay function. One
for the internal events, and one for the read and write events. The delay function for
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the internal events uses the number of machine instructions needed to execute a given
C++ statement to estimate the delay of the event. The delay function for the read and
write events uses a linear function that estimates the costs, delay, associated with the
communication. These costs are partially determined by the time needed to call the read
or write function and partially by the time needed for the memory transfer. It is dis-
cusses in Section 5.3.2 that these costs depend on the chosen architecture and the chosen
implementation for the communication primitives. The delay function for connections,
which is also a part of the time-stamping mechanism, uses a function that estimates the
delay based on the size of the data-element being communicated.

Section 5.4 presents a software implementation for the different delay functions and the
concurrency model. It discusses how the YAPI/KPN models must be modified before
using it with the Concurrency Analysis and Simulation Tool. This requires only minor
changes to the original program. The parser, simulator and analyzer used in CAST are
discussed, as well as the implementation of the different time-stamping functions. The
last part of this section discusses the statistical analysis function of the program.

The next chapter presents a design exploration method that uses the different concur-
rency measures. Values for these measures can be determined using CAST, as will be
shown in the design case of Chapter 7.
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Chapter 6

Design Exploration Method

6.1 Introduction

This chapter describes the design exploration method. This method is used to transform
a computational network that specifies the functional behavior of a computation to a
computational network that specifies the computation and explicitly specifies the avail-
able concurrency. The aim of the design exploration method is to create a computational
network that has a balanced execution load and communication behavior tailored to the
system.

The method consists of five different steps that are explained in detail in the following
sections. It starts with creating a computational network with as much task- and data-
parallelism as possible. This is done by splitting the compute nodes. The communication
behavior is then changed in the next step. In this step, the granularity of communication
is tuned to get a more balanced communication load. The last two steps of the method
consist of merging compute nodes. This removes some of the task- and data-parallelism,
but it balances the execution load of the compute nodes in the computational network.
Four of the five step of the method optimize one of the five concurrency measures. The
detailed measures that come with this measure are used to derive this optimum. The
other concurrency measures are used to prevent the optimization of the computational
network for only the concurrency property optimized in that step. The design exploration
method arrives in this way at a point where the computational network as a whole is
optimal considering the different concurrency properties.

6.2 Starting Point

The design exploration method starts with a computational network that functionally
specifies the computation. This computational network will contain some parallelism,
as it will contain different compute nodes for the coarse-grain tasks carried out in the
computation. It may also contain some data-parallelism that is already specified by the
designer. The exact level of granularity with respect to the specified concurrency is not
relevant for the method, as it will first split the computational network in a version
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that contains as much task- and data-parallelism as possible. Only then will it start
recombining the compute nodes in the computational network. The more parallelism
already specified, the less must be extracted in the first two steps of the method.

6.3 Task Splitting

In the first transformation, called task splitting, we increase the task-parallelism in the
computational network. This is done by splitting the slowest compute nodes — i.e.,
the longest running tasks — in a number of compute nodes that are grouped in a single
computational path. In terms of microprocessor design, this is equal to creating a pipeline
for the slowest operations/tasks. To select possible candidates for the task splitting, we
consider the compute nodes that have a low value for the restart measure. The most
important one to consider in this case is the compute node with the lowest value for the
restart measure, as this compute node is limiting the throughput of the computational
network. The effectiveness of this transformation is measured by the restart measure for
the computational network.

t ask

Figure 6.1: Task splitting.

6.4 Data Splitting

The result of the previous step is a computational network that exploits the task-
parallelism that is present in the application. The computation that is realized using
this computational network may contain also data-parallelism. Section 4.3.5 discussed
that this data-parallelism can be made explicit by creating different computational paths
for the strings of data that can be transformed in parallel.

The data-parallelism of every compute node must be made explicit by introducing sep-
arate compute nodes for the strings of data that can be transformed in parallel. That is
done by splitting every compute node which contains data-parallelism. A split compute
node is replaced by a set of compute node which perform in parallel the same transfor-
mation on different strings.

Figure 6.2: Data splitting.

Figure 6.2 shows a compute node n that is transformed in the data splitting step. It
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results in two compute nodes n; and ny. These perform the same transformation on the
strings of data as the compute node n. The compute node s, split node, writes the strings
of data originally intended for compute node n now partially to compute node n; and
partially to compute node ny. This split node must control to which connection it will
write the data. The transformation has also introduced a compute node j. This compute
node, called join node, is responsible for synchronizing the strings of data output by the
compute nodes n; and my. The join node must write to its output the same string of
data as the compute node n did before the data splitting transformation.

The split will - in a later step of the method - often be merged with the compute node
that is before it in the computational path. This compute node will as a result often
require more run-time. It must control to which connection it outputs the strings of
data. The same situation will hold for the join node. This node will often be merged
with the compute node that follows it on the computational path. This compute node
will also often require more run-time as it must synchronize the strings of data that are
communicated over the different connections.

The goal of the data splitting step is to extract the data-parallelism from the applica-
tion. The structure measure can be used to determine the amount of data-parallelism
in a given computational network. The closer the measure comes to one, the more data-
parallelism is present.

All compute nodes in the computational path must be considered during the data split-
ting step. It is namely important that the new computational paths that are created in
this step share as less compute nodes as possible. The system designer must concentrate
on the compute nodes through which a high number of computational paths go, as these
points require synchronization of the different strings of data in the computational net-
work. This synchronization takes time and may result in communication bottlenecks.
As a result, these nodes do not use the possibly available data-parallelism to the same
extent as the compute nodes that are on fewer computational paths.

6.5 Communication Granularity

The third transformation in the design exploration method is the communication granu-
larity step. The granularity of communication is tuned in this step to get a more balanced
communication load. This is done by decreasing the number of read and write calls of a
compute node. This requires that the number of data elements communicated per call
is increased.

This transformation is based on the observation that read and write calls are expensive
in software [18]. The exact costs for the read and write calls are determined by the sys-
tem architecture and communication primitives used (See Section 5.3.2). These numbers
may be unknown when the communication granularity step is performed. One can then
associate a delay with the read and write calls that expresses that these operations are
more expensive than a normal memory operation or function call and perform statistical
analysis for different delays.

The effect of communicating larger blocks of data is measured by the computation load.
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Figure 6.3: Communication Granularity.

This measure must increase to a point where the compute nodes are mainly busy with
the actual transformation and not with communication. The candidates for the commu-
nication granularity step are selected by selecting the compute nodes that have a low
computation load, as these compute nodes spend most of their time on communication
and not on computation.

6.6 Data Merging

The data merging step is the next transformation in the design exploration method. The
aim of this step is to get a collection of computational paths that all have to do the
same amount of work. This is realized by creating a computational network in which the
compute nodes of every computational path require the same amount of time to perform
the computation. Meeting this requirement will result in a raised execution load. It will
ideally also lead to a situation in which the execution of the compute nodes of different
computational paths before a join node takes the same amount of time. This leads to
a situation in which the join node does not have to wait long before the different data-
streams are synchronized. To get a better idea whether this situation holds, one should
calculate the average execution load for every computational path individually. This is
at the moment not supported by CAST, but the detailed measures output by CAST
allow one to do so.

The transformation performed in the data merging step is the inverse of the transforma-
tion in the data splitting step. It usually only involves different combinations of compute
nodes than the onces created in the data splitting step.

6.7 Task Merging

The last step in the design exploration method is called task merging. The goal of the
transformations performed in this step is to create a computational network in which
all compute nodes are all executing during as much time of the total execution time as
possible. Every compute node should be busy during most of the computation. To what
extent this is realized is indicated by the execution load of the computational network.

Merge candidates for the task merging step are the compute node that are neighbors
of each other on the computational path and that together have an execution load of
less than one, or marginally higher than one if no other options are available. The task
merging step merges the compute nodes along a computational path and reduced in this
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Figure 6.4: A design tree resulting from a design exploration.

way the available task-parallelism, but raises the execution load of the computational
network. The operation looks like the inverse of the task splitting step.

6.8 Conclusion

This chapter has presented a design exploration method that aims at creating a computa-
tional network that has a balanced execution load and communication behavior tailored
to the system. This is done using a five step approach. The task splitting, data split-
ting, communication granularity and task merging step aim at respectively optimizing
the restart, structure, computation load and execution load measure of the concurrency
model. Each of these steps requires both the main and detailed measures of the concur-
rency model. The data merging step is the only measure that not aims at optimizing
one of the five main concurrency measures.

The design exploration method starts with a computational network that functionally
specifies the computation. This design is transformed in the different steps of the design
exploration method. In most of these steps, one design is used as a starting point for
one new design. This new design is then used as the starting point for the next design.
It is however possible that a design serves as the starting point for multiple designs. For
instance in a situation in which the execution load can be optimized by either removing
or preserving all data-parallelism after the communication granularity step. To explore
both situations, two different designs must be made, one for each situation. These de-
signs use the final design created in the communication granularity step as a starting
point. The design exploration method results then in a design tree that relates all design
made during the exploration. Figure 6.4 shows an example of such a design tree. The
figure shows the different designs (dots) made in a design exploration and their relation.
Branches in the design tree can be made everywhere during the design exploration. There
are however some point at which it is very likely that a branch is created. The final de-
sign of the communication granularity step is one that is very likely to serve as a branch
point. The reason for this is that when a design contains both task- and data-parallelism
there will probably be different solutions to remove some of the parallelism and get a
good execution load. A second branching point is the final design created in the data
splitting step. This design contains much parallelism. The costs of communication will
determine to what extent this parallelism can be preserved, as it determines the com-
munication overhead. The communication granularity step changes the communication
overhead by reducing the parallelism. The balance between this communication overhead
and the parallelism is determined by the costs of communication. Different communi-
cation costs may therefore lead to different designs. The starting point of the design
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exploration can serve as a third branching point. A system architecture that contains
processors with an instruction set for specific task will have different restart measures
for some nodes than an architecture that does not have these processors. This situation
can lead to different decisions in the task splitting step and with that to different designs.

The design exploration method is used in the design case presented in the next chap-
ter. The design exploration in the case study gives a design tree as described in this
conclusion.



Chapter 7

Experimental Results

7.1 Introduction

This chapter presents a case study that uses the design exploration method. The case
study derives in a structured way an implementation of the JPEG decoder [12] that has a
balanced workload and good communication behavior. This structured approach results
in two computational networks that implement the JPEG decoder as a computational
network. The development is done independent of any architecture.

We mapped subsequently these computational networks on a multi-processor architec-
ture to demonstrate that the presented approach works. For this we used the CAKE
architecture and CAKE simulator [34]. We compare between the results using our ap-
proach and the results obtained in a case study performed at Philips Research [18], where
the JPEG decoder was manually mapped onto the CAKE architecture.

7.2 Case Study: JPEG Decoder

7.2.1 Introduction

The JPEG decoder has been selected as a case study for two reasons. First, this appli-
cation is used as a case study in the Dataflow Group of the Open SystemC Initiative
[36]. Their aim is to standardize the modeling of process networks. Process networks
and computational networks are closely related subjects that aim at making concurrency
explicit. It seems therefore logical to use the same example as this important research
group does. Second, this application is used in a case study of Philips Research [18].
The results and sources of the various designs created in that case study are available
at the university. This makes it possible to compare the results of both case studies
by analyzing both of them with the concurrency model. In the case study of Philips,
the designs were mapped onto the CAKE architecture [34]. This environment is also
available at the university. This makes it possible to also compare the results of both
case studies on a multi-processor platform. The possibilities to compare the results of
the two case studies make the JPEG decoder an interesting option to choose.
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JPEG images are stored and processed
either with or without data inter-leaving.
When there is no data inter-leaving, each
component is stored and processed sepa-
rately - a RGB image would be stored as
three separate images, one for red, one for
green and one for blue. For more efficient
storage and processing, the color compo-
nents can be interleaved. Inter-leaving
means that the data for the three color
components is not stored as three separate
images in the coded image, but they are
placed in parts after each other in the coded

image. Figure 7.1: Hierarchical image view.

An image consists of stripes, see Figure 7.1. A stripe consists of MCU’s. An MCU
consists of (sub-sampled) chrominance and luminance blocks and a block consists of 8
by 8 values. Each color component is partitioned into these rectangular blocks of 8 by
8 values. If one data block is selected from each of the color components, then they
form a minimum coded unit (MCU). That is the smallest group of interleaved data that
completely describes a region of the image.

Figure 7.2 shows a block diagram of a JPEG decoder. The input of the JPEG decoder
is a byte stream connected to the DMX block. The DMX block de-multiplexes the
byte stream into the tables required for the variable-length decoding, tables required for
the dequantization and the bytes that must be parsed by the decoder. The variable-
length decoder (VLD) decodes the run length and Huffman encoded minimum coding
units using the Huffman tables that were demultiplexed by the DMX block. The VLD
outputs decoded pixel blocks, which are dequantized by the inverse quantization (IQ)
block. The IQ block uses for that the quantization factors extracted from the input
byte stream by the DMX block. The blocks then undergo inverse zigzag (IZZ), and
two-dimensional inverse discrete cosine transformations (IDCT). The YUV2RGB block
converts the blocks to stripes, applies vertical and horizontal scan rate conversion and
color conversion from YUV to RGB.

input stream — dnx [ vid iq [ izz [P idct [~ yuv2rgb [>output stream

Figure 7.2: Block diagram of a JPEG decoder.

It is of no relevance to know the exact details of the different blocks of a JPEG de-
coder. The idea is that the concurrency measures indicate which compute nodes must
be transformed and that only those nodes are considered. This should require only basic
knowledge of how a JPEG decoder operates. For more details of JPEG, the book Image
and Video Compression Standards [4] is recommended.
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7.2.2 Design Exploration

A good starting point for the design exploration of the JPEG decoder would be a com-
putational network with a compute node for each of the blocks shown in Figure 7.2. The
JPEG decoder that is used as a starting point in the Philips case study implements a
number of these blocks as compute nodes, but other blocks have been split in a collec-
tion of compute nodes. The computational network used in the Philips case study was
chosen to be the starting point of the case study. The advantage is that we do not have
to implement a JPEG decoder from scratch. Furthermore, the comparison of the end
result of both case studies is fairer when the same code is taken as a starting point.
The computational network of this JPEG decoder is shown in Figure 7.3 and is referred
to as the reference decoder or design 0. The figure shows that the IDCT, YUV2RGB and
DMX block of the block diagram have been split in the computational network into sev-
eral compute nodes. The computational network contains further a frontend and backend
compute node. These compute nodes are connected to the input and output ports of the
computational network. They read a JPEG image from file and write the image to an
output file. The figure shows both the connections needed for the data-streams as the
connections needed for control information. Compute nodes that are needed to copy the
data output by one node to several connections, forks, are not shown as explicit nodes.
These are simplified as black dots.

Figure 7.3: Reference JPEG decoder (Design 0).

The concurrency model is based on the analysis of simulation runs. The input given
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Table 7.1: Characteristics of simulation data.

Image | Size (pixels) | #Color components
philips 50x67 3
safari 580x400 3
bbqg 600x398 3
intro 640x480 3
shuttle | 669x1004 3

to the computational network over these simulations should represent the average input
pattern that can be expected by the computational network. To create an input that
meets this requirement, we simulated all designs created in this case study with five
different images. All images have three color components, but are different in size. The
characteristics of the images are shown in Table 7.1. The main concurrency measures
were calculated using the statistical analysis option of CAST.

The design exploration method presented in the previous chapter is used in this case
study. This method describes a number of steps that must be performed in-order to get
computational network with a balanced execution load. The steps have strict separations
between the type of transformations performed in the different steps. In practice one
might want to deviate from that, as is shown in the case study. The design exploration
method is therefore used only as a coarse guideline.

Task Splitting

The first step in the design exploration method is the task splitting step as described in
Section 6.3. The idea is to split the compute nodes that have the smallest restart measure.
Table 7.2 shows the compute nodes with the lowest restart measure. The restart measures
are scaled as described in Example 4.4 with the maximum restart measure found in this
design. As this is the only design available at this moment of the design exploration, it
is not possible to normalize using more designs. The compute nodes listed in this table
are our first candidates in the task splitting step.

In the design 1 up to 4, we transform these compute nodes. The order in which the

Table 7.2: Restart measure for design 0.

Compute Node ‘

vld 4.0e-5
matrix 5.6e-4
idctcol 1.0e-4

idctrow 1.0e-4
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Figure 7.4: Concurrency measures for task splitting step.

nodes are transformed is chosen arbitrarily. We started with splitting the matrix node
into a network (design 1). This node was chosen because it was the first one for which
we found a way to split it. The matrix compute node is split in a network that computes
the color conversion of the three color components in parallel, instead of doing it all in
one node. The idctcol and idctrow compute nodes are the next compute nodes to be
split into a computational network. These compute nodes realize the two 1-dimensional
idct transformation required in the JPEG decoder. For this, the Loeffler algorithm is
used [24]. This algorithm describes how to compute a 1-dimensional idct in four sep-
arate steps. Following the algorithm, it is possible to subdivide the two 1-dimensional
idct compute nodes in a computational network. The computational networks contain a
compute nodes for each of the four steps. This transformation result in design 2 of the
JPEG decoder.

Figure 7.4 shows the values of the concurrency measures for design 0, 1 and 2 of the
JPEG decoder, as well as for some other designs discussed further-on. The goal of the
transformation from design 0 to 2 was to get a better restart measure. The figure shows
that this has not been realized. The restart measure has not changed. This is not sur-
prising as the vld node is the bottleneck. To get a better restart measure, we have to
concentrate on the variable-length decoder. The designs 3 and 4 concentrate on the vld
compute node, which implements the decoder. The problem is that the variable-length
decoder must go sequentially through the byte stream that it reads from the input. This
makes it very hard to split the node. There are however some improvements that can
be made on the code and that lead to a better restart measure. The transformation,
performed in the designs 3 and 4, do not require machine-dependent code changes. They
only use some basic properties of the JPEG decoder, such as the fact that the decoder
in most situations needs a single bit from a byte. Figure 7.4 shows that these trans-
formations in dead lead to a better restart and synchronization measure. The changes
made to the reference design in design 1 and 2 have not improved the restart measure,
but they did improve the structure measure. The execution load stays almost constant
during these transformations. As the vld node cannot be split in more nodes, we end
the task splitting with design 4. This design is shown in Figure 7.5.
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Figure 7.5: JPEG decoder (Design 4).
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Figure 7.6: Concurrency measures for data splitting step.

Data Splitting

The next step in the design exploration method is data splitting. The compute nodes are
considered in order of the number of computational paths that go through them. The
vld, iq, izz and raster compute nodes and all compute nodes of the sub-network that
implements the IDCT are part of 7 computational paths. This means that they are part
of all computational paths in the computational network. These compute nodes must
therefore be considered first in the data splitting step.

The vld compute node cannot be split. The izz and idct compute nodes are considered
next. Copies of them can be created for each of the color components. This requires
that a join and a split node is added to the computational network. The join node
is integrated into the iq node. The split node is integrated into the raster compute
node. The iq compute node must decide to which color component the transformed data
belongs and send the data to the correct output port. The raster compute node must
decide from which color component it needs data and read it from the correct input port.
These transformations in the computational network lead to design 5. The values of the
concurrency measure for this design are shown in Figure 7.6. This figure contains also the
concurrency measures for design 4, which is the starting point of the data splitting step.
The figure shows that the structure measure has improved by the applied transformation.
The transformation meets the goal of the data splitting step.

The raster compute node has input ports for the three color components. These have
connections with the output ports of the idct computational networks of the three color
components. The raster compute node has also three output ports for the three color
components. It seems therefore logical to consider the option to create three separate
raster compute nodes. One for each color component. The transformation performed
by the raster compute node allows this. The resulting JPEG decoder is design 6. The
structure measure shows again some improvement compared to the previous design.

The next compute node considered is the iq compute node. The transformation carried
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out by this compute node makes it possible to create three instances of it. Each of the
instances transforms the data for one color component. Again there is some improvement
in the structure measure. But there is also a considerable decrease in the restart measure.
The synchronization measure shows also a decrease. This is caused by the variable
length decoder. To make three separate iq compute nodes, we had to insert a split node
before these nodes. This split node is integrated in the vld compute node. This node
is as a result slower than in the previous design. The decrease in the value of these
two concurrency measures form an indication that the data splitting step of the design
exploration method should not be continued. Strictly following the rules of the design
exploration, we should choose design 6 and not design 7. However, we decide to continue
with design 7 in the next step of the design exploration. The reason for this is that we
have the idea that design 7 will produce better results in the task and data merging steps
than design 6. This is a case in which the design exploration method is used only as a
coarse guideline. The resulting computational network, design 7, is shown in Figure 7.7.

Communication Granularity

The communication granularity is the next step of the design exploration method. The
granularity of the communication used in the final system will depend strongly on the
costs of the communication. The reasons for this and implications have been discussed
when the delay function for read and write events was introduced. In the first two steps
of the design exploration method, we did not consider the costs of communication. This
can no longer be avoided when we focus on the granularity of communication.

To do this, we must choose values for the a and b constant of the delay function for
read and write events (see Section 5.3.2). At this point there is nothing known about
the communication structure that is used in the target architecture. This makes it
hard to estimate values for these constants. To overcome this problem, we assume
that it is possible to use semaphores in the communication primitives of the target
architecture. This implies that the b constant is 0. If the assumption is not valid, then
it is most likely that the communication primitives used allow fast transfer of data over
the physical communication medium, as a systems architect will try to provide efficient
communication primitives. This results in a small b constant and with that in a small
error in the estimated delay used in our analysis. This will probably not lead to decisions
in the design exploration that have a large impact on the final result.

We still have to estimate a value for the a constant. For that we use the observation
that calling a function that implements the communication primitives is more expensive
than a normal memory operation. As an estimation of these costs we take a value of
30 logical clock values. The a constant is thus equal to 30. This estimation is based on
the observation that a normal function call in software takes about 5 to 10 instructions.
To implement the function another 20 instructions will most certainly be needed to send
and receive the semaphores. To verify these numbers, we have performed a number of
simulations with design 7 and different values for the constants in the delay function.
These simulations were analyzed using the statistical analysis option of CAST. They
showed that our assumption is valid.
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Figure 7.7: JPEG decoder (Design 7).
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Figure 7.9: Concurrency measures for communication granularity step.

The impact of the costs of communication on the systems performance can be seen if we
look at Figure 7.8. This figures shows the values for the concurrency measures of design
7 and 8. The only difference between these two designs is that design 7 assumes that a
read or write event takes one logical clock value, while design 8 assumes that it takes 30
logical clock values. The computation load has dropped significantly in the latter case.
This indicates that with the new costs of communication, the compute nodes are most
of their time busy with communication and not with computation. This effect must be
reversed when the granularity of communication is optimized.

To do this, we create a set of designs (designs 9 to 14) in which gradually more compute
nodes communicate larger blocks of data in one time. The effect of these transformations
on the concurrency measures is shown in Figure 7.9.

The figure shows that up to design 12 all concurrency measures except the computation
load do not really change. Only the computation load goes up, as is intended with these
transformations. Design 13 shows a sudden decrease in the restart and synchronization
measure. This is caused by the newly created matrix compute node. This node replaces
the computational network created in design 1. It removes the changes in the computa-
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tional network introduced in the transformation from design 0 to design 1. The matrix
compute node communicates on a pixel-by-pixel basis. The costs of communication make
this so expensive, that the matrix node becomes the slowest node in the computational
network. There are two solutions to overcome this. First, we could decide not to re-merge
the computational network. In that case it is not possible to improve the granularity
of communication for the nodes in this computational network. Second, we could try
to improve the measures by increasing the granularity of communication in the matrix
node. The design exploration method is at the moment in the communication granularity
step. Therefore we choose the second solution. This approach is used in design 14. The
matrix compute node communicates on a line-by-line basis. The concurrency measures
show that this compensates to a large extent for the problems introduced in design 13
and further increased the computation load.

The transformation performed to get deswign 13 show again that the design exploration
method is only used as a coarse guideline.

Two solutions

When the detailed measures of the concurrency model are studied, it becomes clear that
the compute nodes on the computational paths for the two chrominance values have 25%
of the execution load of the compute nodes on the computational path that processes
the luminance values. This unbalanced execution load must be removed in the task and
data merging steps. There are three solutions to do this. First, we could remove all
data parallelism and then apply task merging to get a balanced execution load for the
compute nodes (solution 1). Second, we keep all data parallelism and apply only task
merging to get a balanced execution load (solution 2). Third, the two chrominance paths
are combined in the data merging step and the execution load is balanced in the task
merging step. The first two solutions are explored in this case study. The remainder of
this section discusses how these solutions are derived. The third solution is not explored
because of the limited time available for this project.

Solution 1: data merging

We remove in solution 1 the data-parallelism that is present in the computational net-
work. This is realized in design 17. To arrive at this point, we made a number of
intermediate designs (15 and 16). These designs demonstrate that the transformation
does not lead to a bad solution. Design 15 does not have separated paths for the iq,
izz and raster compute nodes and the idct computational network. In design 16, we
combined the horizontal and vertical scan-rate conversion compute nodes. This gives a
vhs compute node for each of the color components. These three vhs compute nodes
are merged in design 17. This transformation removes all data-parallelism from the
computational network. This can be seen from the values of the concurrency measures
shown in Figure 7.11. The value for the structure measure is zero, meaning that there
is data-parallelism in the structure. The computation load, synchronization and restart
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measure are almost constant over these design. This means that the concurrency prop-
erties measured by these measures do not really change. The execution load has doubled
but is still relatively low. There is no data-parallelism left that can be removed. This
ends the data merging step of the design exploration method.

Solution 1: task merging

The final step in the design exploration method is the task merging step. Compute nodes
are merged in this step to get an even further balanced execution load. This process gives
the designs 18 until 25. In each design a few compute nodes are selected that together
have an execution load of less then 1. These compute nodes are merged into a new
compute node.

We start with merging the four stages of the one dimensional idct computational network
in one compute node (design 18). The upscale and transform compute nodes of the idct
computational network are merged in design 19 into the idct compute nodes. Design 20
combines the dmx, sos and sof compute nodes. The resulting computational network has
now a large resemblance with the block diagram of Figure 7.2.

In design 21, we combine the iq and izz compute node. The resulting compute node is
combined with the idctrow compute node (design 22). The task merging step continues
in design 23 with the merge of the dmx and vld compute nodes in a new jfif compute
node. This transformation may seem strange, as the vld compute node is the longest
executing node in the JPEG decoder. The task merging step is supposed to not merge
this node with another node. However, the execution load of the dmx node is small. To
raise the execution load of the computational network, we must merge the dmx node
with another node. The dmx node is mainly busy with communication to the vld node,
it seems therefore reasonable to merge these two nodes. Furthermore, this merge reduces
the communication overhead. Figure 7.11 shows an increase of both the execution load
and computation load for design 23 compared to design 22. In design 24 and 25, we
merge the fork compute nodes in the other compute nodes. These fork compute nodes
are respounsible for copying data that they receive over their input port to all of their
output ports. These nodes are mainly idle. If they are executing, the spend most of
their time on communication and not on computation. The information communicated
is typically control information (e.g., size of image or number of color components). These
nodes are therefore characterized by a very low execution load. Design 25 is depicted in
Figure 7.10.

The result of all of these transformations is shown in Figure 7.11. The figure shows
that the computation load, synchronization and restart measure have not really changed
during these transformations. The execution load has gained much compared to the
starting point of the task merging step (design 17).

To get an overview of the result of this design exploration, we must look at Figure 7.12.
It shows that the execution load of our final design is much better than that of the
reference design. The computation load, synchronization and restart measure seems not
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Figure 7.10: JPEG decoder (Design 25).
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Figure 7.11: Concurrency measures for solution 1.
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to have changed during the design exploration. Remember however that the costs of
communication are different in design 0 and design 25. The drop in these measures when
the costs of communication were introduced (design 8) has completely been compensated
in design 25. The only measure that is really down is the structure measure. To raise the
execution load, we had to give up on the data-parallelism in the structure. Overall, we
can say that the computational network of design 25 implements a JPEG decoder that
has better concurrency properties than the reference design. The compute nodes have a
balanced workload load and good concurrency properties — most concurrency measures
close to one.
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Figure 7.12: Concurrency measures for solution 1.
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Solution 2: task merging

In the second solution, we do not change the data-parallelism that was found during the
data splitting step. This solution skips therefore the data merging step of the design
exploration method. It goes directly from the communication granularity step to the
task merging step. Design 14 is the starting point for this. The solution is derived in
designs 26 until 31. The same method as used in solution 1 is used here to arrive at
the final design. Therefore, we do not discuss all of these transformations here. The
concurrency measures for the different designs are shown in Figure 7.14. The structure
measure shows that most of the data-parallelism is preserved, as its value does not change
much from design 14 to design 31. The restart, synchronization and computation load
do also not change very much. This means that these concurrency properties are not
changed. The execution load goes up by almost a factor of 6. This cannot be further
improved as the jfif node is the bottleneck. The computational network that implements
the JPEG decoder in design 31 has a more balanced workload than in design 14. The
final design, design 31, is shown in Figure 7.13.

Figure 7.13: JPEG decoder (Design 31).
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Figure 7.14: Concurrency measures for solution 2.

The complete overview of the design trajectory used to get from the reference design to
solution 2 is shown in Figure 7.15. The figure shows that over each step in the design tra-
jectory only one measure changes. In the end, all measures are optimized. The difference
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Figure 7.15: Concurrency measures for solution 2.

in the execution load between the reference design (design 0) and our final design (design
31) is clearly indicated in the figure. The computation load, synchronization and restart
measure did not change when these designs are compared. It seems that the concurrency
properties measured by them are similar for these two design. This is however not true as
the cost of communication in design 0 and design 31 is different. These costs are 30 times
higher for design 31 than in design 0. The design exploration method has helped us in
finding transformations to the network that compensate for this. The structure measure
has also improved during the design exploration. From these observations, we conclude
that design 31 has better concurrency properties than the reference design. Design 31 is
a computational network with a balanced workload and it does not give up on the other
concurrency properties.

We now have two solutions that both implement the JPEG decoder in a computational
network. To compare these, we have to revert to Figure 7.16. It shows that the compu-
tation load and synchronization of both solutions are similar. The second solution has
a slightly higher restart measure than the first solution. This indicates that solution 2
needs less time between the input of two images that are decoded than solution 1 does,
i.e., solution 2 has a higher througput than solution 1. This comes however with a price,
as can be seen in the execution load. The execution load of this solution is not so good
as that of solution 1. The choice between these design will depend on the architecture
of the system on which it is mapped. Solution 2 might require more processors than
solution 1, but it has a higher throughput and more data-parallelism in the structure.
This data-parallelism can proof useful if there are in the physical communication medium
options to have communications in parallel.
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Figure 7.16: Comparison of solutions.

7.2.3 The Effect of the Compiler Used

The delay function for internal events assumed that the instruction set of the processors
in the implemented system has no large impact on the concurrency. The only constraint
is that the processors may not have an application-specific instruction set. CAST used
in the case study a GCC i686 compiler. To verify the assumption, we must redo all
experiments with a compiler for a different processor. For this, we assume that the target
architecture consist entirely of MIPS processors. They have no optimized instruction set
for a given application or application domain, but have a different instruction set than
the 1686 processor.

All designs created during the case study were analyzed again for their concurrency
properties using CAST. The only difference with the analysis during the design case is
that CAST no longer used the GCC 686 compiler, but a MIPS cross-compiler. The
values of the concurrency measures of the different design steps are shown in Figure 7.17
for solution 1 and in Figure 7.18 for solution 2. There is only one difference compared
to the results found during the design exploration. The execution load of solution 1 has
gone down and is now similar to with the execution load of solution 2. This demonstrates
that the instruction set has an impact on the result. However, solution 1, design 25, is
still not a bad solution if concurrency is concerned. From this we conclude that even if
we do not know the instruction set of the processors in the target architecture, we still
get good results from the design exploration.

We now look in more detail to the values of the concurrency measures found for the
various designs of solution 1 (see Figure 7.19). This figure shows that not design 25
but design 24 is optimal. This design has a higher execution load, synchronization and
restart measure. This shows again that the architecture has an influence on the measures
and the solution. This effect can however be found by simply re-simulating the created
designs when more information on the target architecture becomes available.
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Figure 7.17: Concurrency measures for MIPS architecture (solution 1).
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Figure 7.18: Concurrency measures for MIPS architecture (solution 2).
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Figure 7.19: Concurrency measures for all design of solution 1 using MIPS architecture.

7.2.4 Mapping on a Multi-Processor Platform

In [18], a JPEG decoder is implemented on a single tile of the CAKE multi-processor
architecture [34]. A tile consists of a heterogeneous set of processors and memories that
communicate through a snooping interconnection network. Each processor has its own
cache. The snooping protocol ensures that the caches have a coherent view on the single
uniform shared memory space. In the article, a tile configuration is used with a homoge-
neous structure of MIPS processors and four memory banks to implement the memory
space. All processors in the tile operate on a single queue of runable tasks. A small
operating system, called run-time system, dynamically assigns tasks to processors. If
one processor suspends a task, then another processor can resume this task. The YAPI
library has been implemented in software on top of this tile-run-time system. In this
library, each compute node is implemented as a separate task.

The article presents the implementation shown in Figure 7.20 as an optimal implemen-
tation of the JPEG decoder for this configuration of the CAKE architecture. This JPEG
decoder implements also the functions for reading and writing to a file in the frontend
and backend nodes. These operations have been separated in our design. This was done
with the idea that they belong to the test environment and not to the design. To make
a good comparison between our design and the design of Philips, we have to take those
functions out in the Philips design. This gives a computational network with two extra
compute nodes, one for reading and one for writing the data to a file.

To get a comparison on the performance of the designs found in the case study and the
design of Philips, we performed simulations of all of these designs on a CAKE archi-
tecture. For this we used the same configuration as in [18]. We simulated the designs
25, 31 and the modified Philips design for different numbers of MIPS processors on a
single tile. The results of these simulations are shown in Figure 7.21. The horizontal
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Figure 7.20: JPEG decoder Philips.

axes shows the number of MIPS processors used. The vertical axes shows the number of
instructions needed to execute the JPEG decoder and the compute nodes that perform
the input and output for it. The compute nodes for the input and output require in all
cases the same number of instructions. Therefore we can compare the performance of
the different designs by looking at the instruction counts.
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Figure 7.21: Mapping of solutions on CAKE.

The figure shows that the solutions derived in our case study have the same performance
characteristics as the Philips design. They are slightly faster when one or two MIPS are
used. It is interesting to note that when only 1 or 2 MIPS are used the design with
the most compute nodes (design 31) has the best performance. This shows that the
communication is implemented efficiently in the run-time system. The Philips design
has the best performance when 3 MIPS are used. The difference in performance between
the designs found in the case study and the Philips design is about 0.5 instructions per
pixel of the decoded image. This difference is most likely caused by differences in coding
style.

In the previous paragraph we made an analysis of all designs taking the MIPS compiler
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into account. This analysis showed that not design 25 but design 24 has better perfor-
mance when MIPS processors are used in the systems architecture. With CAKE it is
possible to check whether this conclusion is valid. Therefore we simulated design 24 on
the same CAKE architecture using 3 MIPS processors. Figure 7.22 shows the number of
instructions needed to decode the image on the CAKE architecture using 3 MIPS pro-
cessors. It shows that design 24 has better performance than design 25. The conclusion
made based on the CAST analysis is valid. The difference between the two design is
however small compared to the difference indicated by the execution load measure for
the two designs. An explanation for this might be the costs of communication. These
are probably not estimated accurately enough in the case study. This influence of com-
munication costs determines the difference in estimated performance using CAST and
measured performance using CAKE. A different explanation might be that the scheduler
of the run-time system finds a better schedule for executing the compute nodes than the
one we create when we merge these nodes. A final conclusion on why this difference is
smaller than estimated by CAST cannot be made.
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Figure 7.22: Mapping of designs 24 and 25 on CAKE.

We end this section with a remark on the simulation time required for simulations using
the CAKE simulator and CAST. Both simulation used the same dual Pentium III 1GHz
computer with 4GB internal memory. Only a single processor was used in both cases.
A simulation using CAKE and the shuttle image took 45 minutes to complete, while a
simulation with CAST and the same image took 4 minutes.

The CAKE environment simulates everything at a lower level of abstraction, making the
result more reliable. But during this part of the design trajectory, this amount of detail
is not needed. That makes CAST a more suitable solution, as it allows for fast design
exploration. It also leafs open more implementation options. Code optimized for CAKE
may not be optimal for another architecture.

7.3 Conclusion

The JPEG case study described in this chapter shows that the design exploration method
and concurrency model provide a method for deriving a computational network in which
all compute nodes have a balanced execution load and a communication behavior tai-
lored to the system. The case study shows that the design exploration method and
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concurrency measures indicate which transformation must be performed. The concur-
rency measures provide feedback on their effect on the performance of the system. This
helps the designer in deriving in a structured way a concurrent implementation of an
application. This structured approach enables us to identify different implementations
of the JPEG decoder. These implementations can be compared using the concurrency
model.

Using the CAKE simulation environment, we could demonstrate that the derived design
has a performance similar to a JPEG decoder made by an experienced designer without
an explicit fine-tuning step adapting the application to the architecture. This demon-
strates that simply following the design exploration method gives a result comparable to
that found by an experienced designer.

The case study demonstrates that the instruction set has an influence on the result. This
influence is however marginal if no application specific instruction set is targeted. The
effect of the instruction set can be further canceled out by simple re-simulation of the
created designs with the appropriate compiler.

Another important conclusion of the case study is that the costs of communication have
a large impact on the systems performance. The biggest change in the concurrency mea-
sures occurs at the point where the costs of communication were changed. This shows
that modeling these costs accurately is a very important step in the design trajectory.
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Chapter 8

Conclusion and Recommendations

Concurrency will play an important role in next-generation embedded multi-media sys-
tems. These multi-media systems will often be multi-processor systems, which are in-
herently concurrent. To exploit the concurrency in these architectures, it must be made
visible in the mapping of applications onto such architectures. This requires that it is
made explicit in the specification of an application. This in turn requires a model of
computation that can be used to specify a concurrent application and that allows formal
reasoning about the concurrency in it. Existing models of computation do not meet with
these requirements. To address this need, the research in this thesis was carried out with
the following three goals:

e To develop a model of computation for parallel computations that is based on
existing models of computation and allows formal reasoning about concurrency;

e To develop a concurrency model that allows formal reasoning about concurrency
in an application;

e To propose a design exploration method that improves the concurrency properties
of a parallel computation.

To state the outcome of the performed research, this chapter describes first the realized
goals; then it gives some recommendations for future developments.

8.1 Realized goals

In general, we can state that the research described in Sections 3.2, 4.3, 5.2 and 5.4
contributes to fulfill both the first and second goal. Chapter 6 contributes to fulfill the
third goal.

In Sections 3.2, we describe a model of computation for parallel computations, the
computational-network model. The computational-network model allows the modeling
of all kinds of different properties of systems in a very natural way. It introduces a nat-
ural way to explicitly specify concurrency in a system by introducing different compute

97
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nodes in a computational network. Section 5.2 provides a first implementation of this
model. This implementation is based on YAPI, a Kahn process networks implementation
developed at Philips Research. With the choice for YAPI, we immediately have a large
set of applications at hand that are modeled using YAPI and that can be re-used in our
work. The case study presented in Section 7.2 shows that the computational-network
model is suitable for modeling real applications and specifying the concurrency in it.

In Section 4.3, we describe a concurrency model that consists of five main measures and
is supported by a set of detailed measures. The main measures capture the different
concurrency properties of the computational network. The detailed measures provide an
insight in the concurrency properties of the components in the computational network.
The examples presented in Section 4.4 and the JPEG case study show that the five
concurrency measures are all meaningful. Each measure gives an insight in a different
concurrency property. The measures allow formal reasoning about the concurrency in
the specification as is shown in the case study. The results of the case study suggest also
that the measures of the concurrency model are sufficient for obtaining good results.

In Section 5.4, we present the Concurrency Analysis and Simulation Tool (CAST). This
program implements the analysis and simulation environment for computational net-
works. It takes a computational network and settings for the delay functions used in
the time-stamping mechanism as an input. CAST executes the computational network
and determines values for the concurrency measures. The statistical analysis option of
CAST allows for the abstraction from a given input. This makes it possible to reason in
a more abstract way about the concurrency in a computational network.

Chapter 6 describes a design exploration method. This method uses the concurrency
model to create in five steps a computational network that has a balanced execution
load and communication behavior tailored to the application. The case study described
in Section 7.2 shows that this approach works. The design exploration method and con-
currency measures indicate clearly which transformation must be performed and what
its effect is on the performance of the system. It helps the designer in deriving in a
structured way a concurrent implementation of an application.

The JPEG case study shows that the design exploration method is useful in finding in
a structures way an specification that optimizes concurrency. The design exploration
method helps in finding different specifications, solutions. These can be compared using
the concurrency model as is shown in the case study. The case study shows further that
it is possible to find a solution that is similar to a solution constructed by an experienced
designer by using the design exploration method. The CAST analysis makes it possible
to perform this optimization independent of the multi-processor architecture, while the
experienced designer created an optimal implemenation for a specific architecture. CAST
makes it possible to perform this optimzation also much faster than with a simulation
model of the architecture.
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The result from the JPEG decoder case study is very promising. It shows that the
computational-network model, concurrency model and design exploration method help
a system-designer in finding a system specification that has a good concurrent behavior.
The concurrency model makes it possible to reason in a formal way about the concurrency
in a system. This helps the system designer to derive in a structured way a concurrent
system. To conclude, we can that the case study shows that the proposed computational-
network model and concurrency model allow specification of and formal reasoning about
concurrency in an application. These models make it possible to optimize the concurrency
in a specification in an architecture independent way.

8.2 Recommendations

This section contains recommendations about future research into concurrency in compu-
tational networks. It gives recommendations for changes and extensions to the computa-
tional-network model, concurrency model and design exploration method as well as
changes and extensions to the implementation of them.

The results of the JPEG case study are very promising, but more experiments are needed.
These experiments must verify that the concurrency model captures all concurrency
properties of a computational network and that the measures always provide a good
insight in the concurrency. These experiments must include different applications and
architectures to verify all assumptions made in the concurrency model.

The structure and synchronization measure cannot be computed compositionally with
the definitions given in this thesis. This make it impossible to get an insight in the
concurrency properties captured by these measures for the individual compute nodes and
network components. This insight will be important when changes must be made to the
computational network. Therefore it is recommended that a compositional computation
for all 5 concurrency measures is created.

The value of the computation load dropped dramatically in the case study when the costs
of communication were changed. This shows that the costs of communication have a large
impact on the systems behavior. Therefore, it is important to model them accurately
when performing a concurrency analysis. The costs of communication are modeled in the
present concurrency model using a simple linear function. This linear function models
only in a very generic way the physical communication medium. More research is needed
to find a model that provides on an abstract level better information about the costs of
communication.

The concurrency model takes only very little information about the architecture into
account. It does not provide feedback on timing and energy in relation with the concur-
rency. The problem definition, Chapter 2, discussed that all of these aspects will become
important when a multi-processor mapping trajectory is developed. It must therefore be
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researched how the concurrency model can be extended to take all of these things into
account.

The computational-network model is not suited very well for capturing control type of
applications or reactive behavior. Research on how the computational-network model can
be extended to capture these things is recommended. This will give a generic framework
for specifying applications that are mapped onto multi-processor systems.

The concurrency model uses the structure of the computational network in the structure
measure. The structure plays also an implicit role in the other measures. The concur-
rency model does not link in a direct way the computational paths found in the structure
and the other concurrency measures. However, this relation between the structure and
the concurrent behavior of the system is important. Consider for instance the situation
in which two computational paths join in a compute node. The events in this compute
node will impose causality relations on the events of the compute nodes that are on these
two computational paths. There is in this situation a clear link between the structure
of the computational network and the event ordering. If this link is clear, one gets a
better insight in which computational path(s) must be considered when optimizing the
concurrency. It should therefore be investigated how to extend the concurrency model,
so that it provides a better insight in the concurrency of the different computational
paths.

The current implementation of the time-stamping mechanism in CAST uses text based
files. This makes the time-stamping mechanism slow. It is recommended that a binary
file format is used to speed-up the time-stamping.

A system designer that uses the design exploration method will get a set of designs,
which are individually evaluated using CAST. The goal of the design exploration method
is that the concurrency measures improve over this set of designs. To see this, the system
designer must compare the concurrency measures of the different CAST runs. Comparing
these values is not supported by CAST. It is however very important that these values
can be compared in an intuitive way. It is therefore recommended that a user interface
is developed that visualizes these measures and allows the system designer to compare
different designs.

The user interface should also guide the system designer through the different steps of
the design exploration method and suggest transformations in the network to the system
designer. A number of these transformations can be performed in a (semi-) automatic
fashion. It should be investigated which transformation can be performed under which
conditions in a (semi-) automatic way. This research should lead to a tool that supports
these transformations. Preferably, this tool is integrated with the user interface.

When a computational network is executed, a trace of all events in the computational
network is generated. This trace is used in the concurrency model to calculate measures
for the different concurrency properties of the system. Based on these result, a system
designer selects a set of compute nodes that will be modified. One of the possible
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modifications is to merge two (or more) compute nodes. The system designer must then
manually code a new compute node that combines the two compute nodes. After that,
the impact of this step can be evaluated with the concurrency model. For this evaluation,
a new trace is generated and analyzed. This new trace will be very similar to the original
trace. It will only no longer contain the communication between the merged compute
nodes. The merging of the compute nodes has also imposed an ordering, a schedule, on
the events that take place in the merged compute node.

It should be investigated whether it is possible to predict the ordering on the events in
the merged compute nodes using a scheduling algorithm. In that way it would become
possible to analyze the computational network with a number of compute node merged,
without writing the code for it. As this scheduling is an estimation of the behavior of
the merged compute nodes, this concept cannot be extended to merging a large set of
compute nodes. The new compute node has then very likely a different behavior then
predicted. However this method allows for automated design exploration around a given
design. This will probably result in the need to code less design by hand and with that
a faster design cycle.

The analysis of the computational network is now based on simulation models. This
requires that compute intensive simulations are performed before the actual analysis can
be performed. With systems getting bigger it may become very impractical, or even
impossible, to use these simulation models. Another disadvantage of the simulation
models is that they provide only insight on the behavior of the computational network
for a given input. It is not possible to reason about the behavior for an abstract input
of the network. These problems can be solved by using analytical models.
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Appendix A

Concurrency Analysis and
Simulation Tool

A.1 Introduction

This appendix contains information about using the Concurrency Analysis and Simula-
tion Tool. It describes the command line options and parameters used in the project and
delay settings files. The transcript of a run of CAST is also given.

A.2 Command line options

Type cast [options] [project] to execute the Concurrency Analysis and Simulation
Tool.
Options

e Options to control the CAST steps:

-p Run parse stage

-s Run simulation stage
-s-compile Run compile stage of simulation
-s-run Run simulation

-a Run analysis stage

-a-eventorder Create event ordering
-a-simulation Determine concurrency measures for simulation
-a-statistics Determine statistical concurrency measures

e Options to pass to the CAST parser:
-p-file <file> File to be parsed

e Options to pass to the CAST simulator:
-s-arg <arg> Arguments for simulator
-s-name <name> Name of simulation



e Options to set parameters:
--setparam <name> <value> Set a parameter

e Misc. options:
--clean Remove all data produced by CAST

-h Display the help message
-v Display the version
Project

project is the name and location of the project file. If no file is specified, CAST assumes
that the file cast.xml in the current directory must be used. The required content of
this project file is described below.

A.3 Parameters

e Project (<project> ... </project>)
<networkfile file=""/>
file Name of file containing structure information.

(default: cache/network.xml)
<castdir dir=""/>

dir Root directory of CAST
<yapidir dir=""/>

dir Root directory of YAPI
<gccoption option=""/>

option Option passed to GCC compiler.
Type g++ -h to get a list of all options.
<simulation arg=""/>

arg Command line argument passed to executable
during simulation.
<sourcefile file=""/>

file Name of source file containing code of YAPI process
network.

<param name="" value=""/>

name Name of the parameter.

value Value of the parameter.

<delayfile file=""/>

file Name of the file containing delay settings.
(default inside project file)

e Delay settings (<delaysettings> ... </delaysettings>)
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<delay type="rw|connection" d="" node|connection"default|name"/>

type Delay setting for read / write or connection.
d Value of delay constant(s).
node Hierarchical name of the node.
(default applies to all nodes)
connection Hierarchical name of the connection.

(default applies to all connections)
<primary node=""/>

node Hierarchical name of the primary node.

A.4 Example

This paragraph contains the transcript of a CAST run with the producer-consumer
example of YAPI. This example can also be found in the examples/pc directory of the
CAST release.

Begin of Transcript

[sander@co3 pclcast -p -s -a
Concurrency Analysis and Simulation Tool (v1.0)
Load project...

Parse...

File: consumer.cc

File: producer.cc

File: pc.cc

File: main.cc

Simulate (compiling)...

File: ./cxx/consumer.cc

File: ./cxx/producer.cc

File: ./cxx/pc.cc

File: ./cxx/main.cc

Simulate (linking)...

Simulate (running)...

Consumer started

Producer started

Producer pc.prod: 1000 values written
Consumer pc.cons: 1000 values read
Computation Workload:

|Process Instruction Count|

| pc.prod |
|pc.cons I

Communication Workload:
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| Wtokens Wcalls T/W Rtokens Rcalls T/R|
Ipc.fifo 1001 1001 1 1001 1001 1]

Analyze (simulation)...
Creating event ordering.
Concurrency measures:

measure

execution 1d 0.908309
computation 1d | 0.325676
synchronization| 0.449134
restart | 2.04e-05
structure | 0

End of Transcript
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