
5
th

 Mediterranean Conference on Embedded Computing MECO’2016, Bar, Montenegro

Virtualization and Emulation of a CAN Device on a

Multi-Processor System on Chip
Gabriela Breaban, Martijn Koedam, Sander Stuijk, Kees Goossens

 Department of Electrical Engineering

 Eindhoven University of Technology

 Eindhoven, The Netherlands

{g.breaban, m.l.p.j.koedam, s.stuijk, k.g.w.goossens}@tue.nl

Abstract— The increasing number of applications implemented

on modern vehicles leads to the use of multi-core platforms in the

automotive field. As the number of I/O interfaces offered by these

platforms is typically lower than the number of integrated

applications, a solution is needed to provide access to the

peripherals, such as the Controller Area Network (CAN), to all

applications. Emulation and virtualization can be used to

implement and share a CAN bus among multiple applications.

In this article we present how multiple applications can share a

CAN port, which can be on the local processor tile or on a remote

tile. We evaluate our approach with four emulation and

virtualization examples, trading the number of applications per

core with the speed of the software emulated CAN bus.

Keywords-virtualization; emulation; Controller Area Network

I. INTRODUCTION

The limited scalability of single-core ECU's in conjunction
with the increasing number of functionalities being integrated
in modern vehicles leads to a shift towards a domain controlled
architecture in the automotive field. This consists of
consolidating multiple software functionalities on the same
hardware platform based on their domain [1] and it leads to
increased computational requirements. To cope with this
demand, the use of multi-core platforms has been proposed in
literature [1]. Multi-core platforms can come as either
Commercial-Off-The-Shelf (COTS) platforms or as Systems
on Chip (SoCs).

A COTS platform features a given number of cores and I/O
interfaces. Since the number of I/O interfaces is typically lower
than the number of applications requiring them, when
integrating multiple software applications on such a platform,
the given resources have to be shared between applications
such that each one meets its requirements in terms of real-time
capabilities, safety, and security.

The implementation of the protocol governing an I/O interface
is usually done in hardware and therefore, sharing the I/O
interface translates into sharing the hardware controller that
drives the interface. When sharing a resource among
applications with strict and diverse requirements, as in
automotive, an important property of the sharing method is
isolation. Isolated resource sharing is equivalent to
virtualization and it means dividing the physical resource into
multiple separate virtual resources that don't interfere and
allocating each one to an application. On the other hand, when
deciding the I/O interfaces for a Multi-Processor System on

Chip (MPSoC), one can choose to include a hardware
controller and search for virtualization solutions, or, as an
alternative, a given communication service can be obtained by
implementing it in software on top of an existing interface. We
call the latter solution software emulation. The emulated
interface can then be further shared through virtualization.

Since the automotive industry currently only uses COTS
hardware platforms that typically include CAN controllers, a
considerable amount of research focuses on virtualization
solutions for such systems. To the best of our knowledge, the
possibility of designing a CAN interface on a MPSoC platform
that scales depending on the number of applications and cores
has not been addressed in literature.

In terms of virtualization, the latest proposed methods in
automotive systems are inspired by server environments where
Virtual Machines (VMs) define an isolated set of resources [2].
Consequently, since the mostly used network in server
environments is Ethernet, the virtualization methods for the
CAN interface are derived from state-of-the-art techniques
used for the Ethernet interface [3].

In terms of software emulation, the CAN interface has been
built on top of specific hardware architectures such as the Time
Triggered Architecture (TTA) [4]. However, this solution
targets non-critical non-real-time CAN applications and it does
not address the problem of providing isolated CAN interfaces
to multiple applications integrated on the same platform.

In this paper we evaluate four different emulation and
virtualization solutions as examples of a general method that
provide a trade-off between the number of applications sharing
a CAN port, which can be on the local or a remote processor
tile, with the speed of the software emulated CAN bus. This
offers to the user the possibility of choosing a different
implementation depending on the number of applications being
integrated on the platform and also the desired CAN bit rate.
Our prototype enforces full temporal isolation and offers
spatial isolation that is yet to be enforced in hardware. Hence,
this impacts the degree of safety criticality that can be
supported on our prototype. Our software CAN controller
achieves bit rates between 1 and 100 kbit/s in the experiments
done on our Field-Programmable Gate Array (FPGA) platform.

The paper is structured as follows: Section II presents the
related work, Section III gives an overview of the method,

5
th

 Mediterranean Conference on Embedded Computing MECO’2016, Bar, Montenegro

Section IV describes its implementation, Section V presents the
experiments and finally Section VI concludes the paper.

II. RELATED WORK

Herber et al. propose software CAN controller
virtualization methods inspired from server environments [3].
The software method consists of paravirtualization. However,
the presented results show the performance of the method only
in an interference-free scenario. Moreover, to avoid an increase
of the performance overhead involved by scheduling, only one
VM was mapped to each core, leading to a limited scalability.
As a comparison, in one of our four solutions we also use a
dedicated core as a CAN gateway. The main differences are
that we use the CoMik microkernel [5] to schedule multiple
applications on the CAN client cores and communicate the
CAN message to the CAN gateway using C-HEAP FIFOs [6]
via a contention-free Network on Chip (NoC). The C-HEAP
protocol ensures a safe synchronous communication. On the
CAN gateway core, the arbitration between the incoming
messages is done using a round-robin schedule.

To reduce the performance overhead, Sander et al. offer the
solution of hardware controller virtualization [7], based on
Single Root I/O virtualization (SR-IOV). SR-IOV is an
extension of the Peripheral Component Interconnect Express
(PCIe) protocol and it is the state-of-the-art hardware I/O
virtualization method for Ethernet. The implementation is done
by extending a CAN controller to add virtualization support
and connecting it to a multi-core processor via a PCIe interface.
Unlike the software method, the hardware one has the
downside that the PCIe interconnect affects the temporal
isolation between the serviced VMs leading to a performance
degradation. This is caused by the fact that all VMs share the
same interconnect and the contention on the bus cannot be
avoided. In comparison, our solution does not target the
enhancement of existing COTS platforms. It rather proposes a
combined software and hardware design method for a platform
based on a template hardware architecture, whose instance
could afterwards be taped out for a specific automotive system.

An orthogonal approach from Herber et al. introduces CAN
network virtualization [8]. The method is implemented in
hardware and it divides a physical network into multiple
virtually isolated networks of different priorities. CAN nodes
are then allocated to a certain network based on their criticality.
Our method does not target the virtualization of a CAN
network, but the emulation and virtualization of a CAN
controller.

In terms of emulation, the CAN interface has been
integrated in the TTA architecture by implementing it on top of
the TTP/C interface [9]. Apart from providing the functionality
of the CAN protocol, the emulated CAN adds new services
such as membership information, global time, temporal

composability and increased dependability. The reported
implementation uses the embedded real-time Linux operating
system to integrate CAN applications and real-time
applications. However, the CAN applications are allocated to
the non-real-time part of the kernel and are competing with
standard Linux applications for resources. In our case, we do
not implement the CAN protocol on top of another protocol,
but we simply lift the implementation of the CAN Media
Access Control (MAC) layer from the hardware to the software
on top of a hardware module that realizes the CAN physical
layer and use the CoMik microkernel to schedule real-time
CAN applications.

III. DESIGN FOR CAN EMULATION AND

VIRTUALIZATION

A. Overview

In the context of automotive applications, we propose a
method to design a CAN interface on a MPSoC that consists of
defining different platform configurations that trade-off the
number of supported applications and CAN ports with the bit
rate of the CAN bus. The security aspect was not addressed
within this implementation and it is planned as future work.The
MPSoC platform consists of a set of processor tiles, each one
embedding a processor, the local memories and the CAN
modules. Each CAN module provides a CAN port. The main
design parameters that we vary are:

1. the number of applications sharing each processor

2. the number of CAN ports per processor tile

3. the number of applications sharing a CAN port

4. the bit rate of the CAN bus

The CAN parameters (bit rate and number of ports) are
used for hardware synthesis, while the others are part of the
software design. Table I gives an overview of the exact values
of the parameters for each of the four example configurations.

Each configuration ensures a complete temporal isolation
between applications. Spatial isolation is logically ensured in
the sense that each application gets assigned its own stack,
heap and data memory, but the proposed configurations do not
include a memory protection unit to enforce this separation.

Each CAN port is connected to an individual hardware
module that implements the physical layer of the CAN
protocol. The MAC layer is implemented in software. We refer
to this implementation as a software emulated CAN device
since it achieves the functionality of a hardware CAN device in
software. Further, if the CAN port is to be used by multiple
applications such that the integrity of the data sent and received
on CAN by each one of them is not affected, we say that the
CAN device is virtualized.

5
th

 Mediterranean Conference on Embedded Computing MECO’2016, Bar, Montenegro

Given the design parameters presented above, we defined four
platform configurations: two configurations for which the CAN
device is emulated but not virtualized, denoted E1and E2 and
two others for which the CAN device is emulated and
virtualized, denoted V1 and V2. E1 and E2 differ on whether
the processor is shared between multiple applications or not.
V1 and V2 differ on whether the emulated CAN device shares
the processor with other applications or not. As the CAN
device is implemented in software, the maximum achievable
bit rate in each case depends on whether the processor on
which it runs is shared with other applications or not.

In the remainder of this section we will describe and evaluate
each of the four configurations.

A. Platform Configuration E1

This configuration is the simplest one, in the sense that the
value of each of the design parameters mentioned above is
equal to 1. We have one application on each processor using a
local CAN port. The bit rate of the CAN bus is 4 kbit/s.

We will refer to Fig. 1 to describe the system architecture
of E1 and E2, as they have a similar structure. This
configuration as well as the other ones, comprises four
processor tiles. The figure shows the tile architecture for the
case in which we have two applications and two controllers
running on a processor. For E1, the structure is the same, only
that it has one application and one controller. On the software
side, we can see that the sequence of function calls starts from
the application layer, where the message is created. Then the
AUTOSAR driver API [10] is called, that further calls a
version of the C-Heap library to safely transfer the message
into the controller's buffer. Finally the controller accesses the
CAN hardware module to transmit the message. On the bottom
software layer, the CoMik microkernel creates the TDM
partitions in which the tasks (application and controller) can
run without interference. Further details about the software
implementation are given in Section IV.

The main advantages of this configuration are the spatial
isolation between applications, as they are mapped one-to-one
to the processor cores and the use of the local data memory
onthe tile for the communication between the application and
the CAN device, which implies a low timing overhead. The
disadvantage is the low scalability in terms of number of
supported applications.

B. Platform Configuration E2

In this configuration, we increase both the number of
applications and CAN ports per core to two, such that each
application accesses its own emulated CAN device. Since the
number of software entities running on the same processor is
higher, the CAN bit rate decreases to 2 kbit/s.

The advantages of this configuration are the increased
number of applications running on each core, the physical
isolation between the CAN ports used by each application and,
as in the previous case, the use of the local memory for the
application to CAN device communication. The number of
increased applications and CAN ports come at the expense of
the reduced CAN bit rate, and, implicitly, extra area for the
second CAN module.

C. Platform Configuration V1

Configuration V1 is similar to E1, the main difference being
that the number of applications running on each core is equal to
two. This means that the emulated CAN device and the port
that it drives is shared between the two applications. Each
application has its own transmit and receive buffer and the
arbitration between them is done in software based on the
message ID. The bit rate of the CAN bus is 2 kbit/s. Fig. 2
illustrates the system architecture for this case. The multiplexer
inside the CAN Controller symbolizes the ID-based arbitration.

Compared to E1, the main advantage of this configuration is
the improved scalability of the CAN device, which comes at
the price of using the same physical CAN port for all
applications on the core.

D. Platform Configuration V2

Configuration V2 differs more from the previous ones. In
this case, we use a dedicated core to implement a CAN device,
which operates as a CAN gateway at 100 kbit/s bit rate. As this
core is not shared with other applications, the CAN controller
runs bare-metal. Each of the other cores runs two applications.
To send and receive CAN messages, the cores use the NoC for
the communication with the dedicated CAN core. Each CAN
application has a separate transmit and receive FIFO.
Moreover, the Daelite NoC [11] provides contention-free
communication; therefore the message communication time is
predictable and bounded and it can be used to offer timing
guarantees for the end-to-end transmission and reception of the
messages to be sent over the CAN bus.

Fig. 3 illustrates the system architecture for this
configuration. For simplicity, the arrows illustrate the sequence

Table I. VIRTUALIZATION AND EMULATION PLATFORM CONFIGURATIONS

Configuration E1 E2 V1 V2

CAN Bus Baud Rate [kbit/s] 4 2 2 100

(applications + controllers)
per core

Cores 1-4

1+1

Cores 1-4

2+2

Core 2

2+2

Core 3

2+2

Core 4

2+2

Cores 1-4

2+1

Cores 1-3

2+0

Core 4

0+1

CAN ports per tile Tiles 1-4

1

Tiles 1-4

2

Tile 2

0

Tile 3

0

Tile 4

1

Tiles 1-4

1

Tiles 1-3

0

Tile 4

1

applications per CAN port 1 1 2 6

5
th

 Mediterranean Conference on Embedded Computing MECO’2016, Bar, Montenegro

of function calls only for the transmission of messages from the
applications to the gateway through the NoC.

IV. IMPLEMENTATION

We have implemented the physical layer of the CAN

interface as a hardware module that functions as a

bidirectional bridge, receiving on one side the data to be

transmitted on CAN from the Microblaze processor and on the

other side putting it on the CAN port. The module can be

instantiated multiple times on each processor tile and the

resulting CAN line is a wired AND between all the CAN ports

present on the platform. The CAN bit rate is obtained by

dividing the processor clock frequency. All the tiles run

synchronously on the same clock domain.

A. Software Emulation of the CAN Controller

The CAN MAC layer was implemented in software in the

C programming language and it consists of creating the CAN

frame in the 2.0A format, as defined by the ISO 11898

standard [12], including bit stuffing, CRC computation and

filtering of the received messages. We call the software

implementation of the CAN MAC layer emulation since it acts

as a CAN controller, which transmits the CAN frames sent by

the application and returns back to it the received frames

according to the configuration of the reception filter. To

ensure a safe transfer of the data between the application and

the controller, a simplified version of C-Heap is used. Further,

we have implemented the driver \API according to the

AUTOSAR standard.

B. Implementing a CAN Controller on the Virtual Processor

To be able to run the software CAN controller together with

other applications on the same processor, we use the CoMik
microkernel. CoMik divides the physical processor into
multiple virtual processors scheduled in TDM fashion. Each
virtual processor gets a fraction of the processor capacity based
on the number of allocated TDM slots and it is fully temporally
isolated from the other virtual processors. The TDM table
duration determines the maximum sustainable CAN bit rate, as
the software controller has to be fast enough to write or read
every CAN bit in its allocated slot.

Each software controller accesses a unique physical CAN
port. In order to provide CAN access to multiple applications,
we need to either instantiate in hardware the same number of

CAN ports as the number of applications, or share a lower
number of CAN ports. Both options imply creating a TDM
table that accommodates all the applications and their software
CAN controllers and defining the maximum CAN bit rate
based on the maximum delay between two successive TDM
slots allocated to the same controller, among all controllers.
Thus, in this case, the minimum CAN bit duration, TbitMin is:

𝑇𝑏𝑖𝑡𝑀𝑖𝑛 = max0<𝑖≤𝑁{max0<𝑗<2𝑀𝑖
(𝑡𝑖𝑗+1

− 𝑡𝑖𝑗
)} (1)

 where N refers to the total number of CAN controllers
running on the platform, Mi represents the number of TDM
slots allocated to the controller i and 𝑡𝑖𝑗

 𝑡𝑖𝑗+1
denote the start

time of slots j and j+1 of controller i. To detect the maximum
delay between any two successive slots of controller i, we need
to consider two successive TDM frames, which is why the
upper bound for the second max operator is 2 ∙ 𝑀𝑖. Hence, the
maximum CAN bit rate, Rmax for this case is

 𝑅𝑚𝑎𝑥 = 𝑇𝑏𝑖𝑡𝑚𝑖𝑛

−1 (2)

Fig.4 shows the TDM schedule for configuration E1 and

the CAN signals. A TDM frame consists of two slots, one

allocated to the application and one to the CAN controller.

Each TDM slot contains a CoMik sub-slot and an

application/CAN sub-slot. In the CoMik sub-slot the context

switch operations are performed. In the figure, the maximum

delay between any two consecutive CAN slots is two slots and

the chosen CAN bit period, Tbit is higher than the minimum

and it is equal to three slots. We can see that each application

writes a transmit message in its corresponding buffer at times

twrMsg1 and twrMsg2 respectively. The C-Heap library is not

shown in the figure for the sake of simplicity. Each CAN

controller detects the message in the following slot, at times

twrMsg1 and twrMsg2 respectively and it starts to drive the

Figure1. CAN Configuration E2

Figure 2. CAN Configuration V1

Figure 3. CAN configuration V2

5
th

 Mediterranean Conference on Embedded Computing MECO’2016, Bar, Montenegro

Figure 4 Timing Diagram for Configuration E1

 allocated CAN output port immediately. The resulting CAN

line, CAN_IN changes and the start of every CAN bit period

and it reflects the result of all the CAN output lines on the

platform. The CAN controller synchronizes with the CAN bus

at the beginning of each bit period, Tbit. When the controller is

shared, as in configuration V1, separate buffers are allocated to

each client application and the incoming messages are

arbitrated based on their IDs.

C. Bare-metal Implementation of the CAN Controller

Configuration V2 illustrates the possibility of allocating the

entire processor to the CAN controller. As mentioned before,

we use the C-HEAP library to send the CAN messages across

the NoC. Each sending application has its own FIFO transmit

buffer in the local memory of the CAN gateway tile. A FIFO

contains a number of predefined data tokens. In our case, a

token is a CAN message. When writing a token into a remote

FIFO, the sender first sends the token and then the value of the

updated write counter via the NoC. A NoC path between 2

tiles includes a number of routers. The NoC is scheduled using

a pipelined TDM table. This means that across the path, each

router forwards the data from one of its inputs to one of its

outputs in a given TDM slot, such that for a TDM frame

having n slots, router i forwards the data during slot j and

router i+1 forwards the same data in the following slot, (j+1)

mod n. After the write counter has left the last router, it

reaches the gateway tile. Here, when the CAN bus is idle, at

the start of every CAN bit period, Tbit, the transmit FIFO of

each CAN client is polled. If a new token is found, it is read

during TCheapRdFifo and the transmission of the message starts

right away on the CAN_OUT line. Since in this case the

processor is not virtualized, the performance bottleneck

determining the CAN bit rate is no longer given by the TDM

table, but by worst case execution time needed to send one

CAN bit, which can be determined by accessing the

communication FIFOs or computing the CRC.

I. EXPERIMENTS

We synthesized the four platforms according to the

configurations described in the previous sections on a ML605

Xilinx FPGA platform. Each of the four configurations

includes five processor tiles, out of which four are used for

running CAN applications and the fifth tile is used as a CAN

monitor, which prints the value of every CAN bit.

The applications within all configurations are synthetic,

meaning that their only purpose is to send and receive CAN

messages periodically.

Fig.5 shows the message latencies and software cost for

each of the proposed configurations using a logarithmic scale.

In configuration E1 three applications send messages

periodically with a dynamic offset and a fourth application is

receiving them. The sending period is 0.1 s and it was chosen

to fit three worst-case CAN messages coming from the three

applications. The offset is varying between 0 and 40.9µs (the

TDM slot duration) with a step of 0.1µs. The message offset

was set in the same manner in all four configurations and the

messages are created simultaneously in all applications. The

plots show the global

minimum, maximum and average software cost and the

maximum message latency among all sending applications for

all possible CAN message payloads. The software cost is the

sum of the sending cost on the sending tile and the receiving

cost on the receiving tile. The sending cost comprises the

duration between the moment the sending application has

created the CAN message and the moment when the controller

sends the first message bit on the bus. Analogously, the

receiving cost comprises the duration between the moment the

last message bit was received on the other side by the

controller and the moment when the receiving application gets

the message. The sending cost is illustrated in Fig. 4 as the

time between twrMsg1 and tstartMsg1 for Tile 1. The maximum

message latency is determined by the software cost plus the

transmission time on the bus. The large values obtained for

Payload = 2,3,6,7 bytes come from sporadic cases in which

one application creates a message just after the controller

enters the reception mode. The minimum overhead is given by

the added duration of the CoMik slots on the sending and

receiving side that run between the application and controller

slots. Thus, the software cost reflects the execution time of the

controller, the communication time between the application

and the controller and the TDM schedule in CoMik, but it can

occasionally include the blocking time caused by the reception

of CAN messages.

In configuration E2, the number of sending applications and

CAN controllers are doubled on each core. The minimum cost

scales consequently from 100 to 200 µs. The maximum cost,

on the other hand, is given by the alignment between the CAN

bit period, the start time of each CAN controller slot and the

CAN message offset. In the worst case, the controllers running

in the earlier TDM slots detect the new messages and start

sending them and the ones running in the later slots enter

directly into reception mode before detecting the new

messages.

For configuration V1, the obtained results are almost the

same as for E2, the only difference is in the average cost. In

5
th

 Mediterranean Conference on Embedded Computing MECO’2016, Bar, Montenegro

this case it is much higher due to the fact that there is only one

controller on each core that arbitrates between two senders.

Therefore, the sender with the lower priority will always

experience the worst case delay, while in the previous

configuration, the varying offset determined this delay only

when the messages were created later in the CAN bit period.

Hence, using a separate controller for each application leads to

a better average performance.

In configuration V2 we have six sending applications

sending messages with a period of 8.35 ms. As we have no

external CAN device connected, the results shown

characterize only the sending software cost and the

corresponding maximum message latency. Here, the minimum

cost is around 12 µs and is basically given by the message

communication time on the NoC. We implemented a time-

based round robin schedule which iterates between the six

senders based on the order of their CAN message ID and each

time slot is equal to the CAN bit duration (10 µs). Thus the

maximum cost is obtained when the sending application has

just missed its time slot in the CAN gateway and has to wait

until the messages coming from all the other applications have

been sent.

II. CONCLUSIONS

In this paper we proposed how multiple applications can

share a CAN port in a MPSoC platform. The shared CAN port

can be on the local processor tile, or on a remote one. As part

of our hardware and software design process, we tune the

number of applications per CAN port, we explore the

possibility of using local and remote CAN ports and we

dimension the bit rate of the CAN bus accordingly. We

evaluate each solution and we show the obtained software cost

and end-to-end latency for the CAN messages. All the four

configurations are practically usable, as long as each of the

achieved bit rates are sufficient for the real applications being

mapped and there are no security and spatial isolation

requirements.

[1] D. Reinhardt et al., "Domain Controlled Architecture - A new approach

for large scale software integrated automotive systems" PECCS, 2013.

[2] P. Barham et al. , "Xen and the art of virtualization," SIGOPS, vol. 37,
2003.

[3] C. Herber et al. , "HW/SW Trade-offs in I/O Virtualization for Controller

Area Network," in DAC, 2015.

[4] H. Kopetz et al., "The time-triggered architecture," Proceedings of the

IEEE, vol. 91, 2003.

[5] A. Nelson et al. "CoMik: A predictable and cycle-accurately composable
real-time microkernel," in DATE, 2014.

[6] A. Nieuwland et al., "C-HEAP: A Heterogeneous Multi-Processor

Architecture Template and Scalable and Flexible Protocol for the Design
of Embedded Signal Processing Systems," Design Automation for

Embedded Systems, vol. 7, no. 3, 2002.

[7] O. Sander et al., "Hardware virtualization support for shared resources in

mixed-criticality multicore systems," in DATE, 2014.

[8] C. Herber et al., "A network virtualization approach for performance

isolation in controller area network (CAN)," in RTAS, 2014.

[9] R. Obermaisser, "CAN emulation in a time-triggered environment," in

ISIE , 2002.

[10] Autosar. Release 4.2, "SWS CANDriver," AUTOSAR.

[11] R. Stefan et al., "daelite: A tdm noc supporting qos, multicast, and fast

connection set-up," Computers, IEEE Transactions on, vol. 63, no. 3,
2014.

[12] ISO11989-1, "road vehicles – Controller area network (CAN) - Part 1:

Data link layer and physical signalling," ISO11989-1, 2015.

Figure 5. CAN message and sofware overhead latency for the proposed configurations

