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Abstract— The increasing number of applications implemented 

on modern vehicles leads to the use of multi-core platforms in the 

automotive field. As the number of I/O interfaces offered by these 

platforms is typically lower than the number of integrated 

applications, a solution is needed to provide access to the 

peripherals, such as the Controller Area Network (CAN), to all 

applications. Emulation and virtualization can be used to 

implement and share a CAN bus among multiple applications. 

In this article we present how multiple applications can share a 

CAN port, which can be on the local processor tile or on a remote 

tile. We evaluate our approach with four emulation and 

virtualization examples, trading the number of applications per 

core with the speed of the software emulated CAN bus. 
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I.  INTRODUCTION 

The limited scalability of single-core ECU's in conjunction 
with the increasing number of functionalities being integrated 
in modern vehicles leads to a shift towards a domain controlled 
architecture in the automotive field. This consists of 
consolidating multiple software functionalities on the same 
hardware platform based on their domain [1] and it leads to 
increased computational requirements. To cope with this 
demand, the use of multi-core platforms has been proposed in 
literature [1]. Multi-core platforms can come as either 
Commercial-Off-The-Shelf (COTS) platforms or as Systems 
on Chip (SoCs). 

A COTS platform features a given number of cores and I/O 
interfaces. Since the number of I/O interfaces is typically lower 
than the number of applications requiring them, when 
integrating multiple software applications on such a platform, 
the given resources have to be shared between applications 
such that each one meets its requirements in terms of real-time 
capabilities, safety, and security. 

The implementation of the protocol governing an I/O interface 
is usually done in hardware and therefore, sharing the I/O 
interface translates into sharing the hardware controller that 
drives the interface. When sharing a resource among 
applications with strict and diverse requirements, as in 
automotive, an important property of the sharing method is 
isolation. Isolated resource sharing is equivalent to 
virtualization and it means dividing the physical resource into 
multiple separate virtual resources that don't interfere and 
allocating each one to an application. On the other hand, when 
deciding the I/O interfaces for a Multi-Processor System on 

Chip (MPSoC), one can choose to include a hardware 
controller and search for virtualization solutions, or, as an 
alternative, a given communication service can be obtained by 
implementing it in software on top of an existing interface. We 
call the latter solution software emulation. The emulated 
interface can then be further shared through virtualization. 

Since the automotive industry currently only uses COTS 
hardware platforms that typically include CAN controllers, a 
considerable amount of research focuses on virtualization 
solutions for such systems. To the best of our knowledge, the 
possibility of designing a CAN interface on a MPSoC platform 
that scales depending on the number of applications and cores 
has not been addressed in literature. 

In terms of virtualization, the latest proposed methods in 
automotive systems are inspired by server environments where 
Virtual Machines (VMs) define an isolated set of resources [2]. 
Consequently, since the mostly used network in server 
environments is Ethernet, the virtualization methods for the 
CAN interface are derived from state-of-the-art techniques 
used for the Ethernet interface [3]. 

In terms of software emulation, the CAN interface has been 
built on top of specific hardware architectures such as the Time 
Triggered Architecture (TTA) [4]. However, this solution 
targets non-critical non-real-time CAN applications and it does 
not address the problem of providing isolated CAN interfaces 
to multiple applications integrated on the same platform. 

In this paper we evaluate four different emulation and 
virtualization solutions as examples of a general method that 
provide a trade-off between the number of applications sharing 
a CAN port, which can be on the local or a remote processor 
tile, with the speed of the software emulated CAN bus. This 
offers to the user the possibility of choosing a different 
implementation depending on the number of applications being 
integrated on the platform and also the desired CAN bit rate. 
Our prototype enforces full temporal isolation and offers 
spatial isolation that is yet to be enforced in hardware. Hence, 
this impacts the degree of safety criticality that can be 
supported on our prototype. Our software CAN controller 
achieves bit rates between 1 and 100 kbit/s in the experiments 
done on our Field-Programmable Gate Array (FPGA) platform. 

The paper is structured as follows: Section II presents the 
related work, Section III gives an overview of the method, 
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Section IV describes its implementation, Section V presents the 
experiments and finally Section VI concludes the paper. 

II. RELATED WORK 

Herber et al. propose software CAN controller 
virtualization methods inspired from server environments [3]. 
The software method consists of paravirtualization. However, 
the presented results show the performance of the method only 
in an interference-free scenario. Moreover, to avoid an increase 
of the performance overhead involved by scheduling, only one 
VM was mapped to each core, leading to a limited scalability. 
As a comparison, in one of our four solutions we also use a 
dedicated core as a CAN gateway. The main differences are 
that we use the CoMik microkernel [5] to schedule multiple 
applications on the CAN client cores and communicate the 
CAN message to the CAN gateway using C-HEAP FIFOs [6] 
via a contention-free Network on Chip (NoC). The C-HEAP 
protocol ensures a safe synchronous communication. On the 
CAN gateway core, the arbitration between the incoming 
messages is done using a round-robin schedule. 

To reduce the performance overhead, Sander et al. offer the 
solution of hardware controller virtualization [7], based on 
Single Root I/O virtualization (SR-IOV). SR-IOV is an 
extension of the Peripheral Component Interconnect Express 
(PCIe) protocol and it is the state-of-the-art hardware I/O 
virtualization method for Ethernet. The implementation is done 
by extending a CAN controller to add virtualization support 
and connecting it to a multi-core processor via a PCIe interface. 
Unlike the software method, the hardware one has the 
downside that the PCIe interconnect affects the temporal 
isolation between the serviced VMs leading to a performance 
degradation. This is caused by the fact that all VMs share the 
same interconnect and the contention on the bus cannot be 
avoided. In comparison, our solution does not target the 
enhancement of existing COTS platforms. It rather proposes a 
combined software and hardware design method for a platform 
based on a template hardware architecture, whose instance 
could afterwards be taped out for a specific automotive system.  

An orthogonal approach from Herber et al. introduces CAN 
network virtualization [8]. The method is implemented in 
hardware and it divides a physical network into multiple 
virtually isolated networks of different priorities. CAN nodes 
are then allocated to a certain network based on their criticality. 
Our method does not target the virtualization of a CAN 
network, but the emulation and virtualization of a CAN 
controller. 

In terms of emulation, the CAN interface has been 
integrated in the TTA architecture by implementing it on top of 
the TTP/C interface [9]. Apart from providing the functionality 
of the CAN protocol, the emulated CAN adds new services 
such as membership information, global time, temporal 

composability and increased dependability. The reported 
implementation uses the embedded real-time Linux operating 
system to integrate CAN applications and real-time 
applications. However, the CAN applications are allocated to 
the non-real-time part of the kernel and are competing with 
standard Linux applications for resources. In our case, we do 
not implement the CAN protocol on top of another protocol, 
but we simply lift the implementation of the CAN Media 
Access Control (MAC) layer from the hardware to the software 
on top of a hardware module that realizes the CAN physical 
layer and use the CoMik microkernel to schedule real-time 
CAN applications. 

III. DESIGN FOR CAN EMULATION AND 

VIRTUALIZATION 

A. Overview 

In the context of automotive applications, we propose a 
method to design a CAN interface on a MPSoC that consists of 
defining different platform configurations that trade-off the 
number of supported applications and CAN ports with the bit 
rate of the CAN bus. The security aspect was not addressed 
within this implementation and it is planned as future work.The 
MPSoC platform consists of a set of processor tiles, each one 
embedding a processor, the local memories and the CAN 
modules. Each CAN module provides a CAN port. The main 
design parameters that we vary are: 

1. the number of applications sharing each processor 

2. the number of CAN ports per processor tile 

3. the number of applications sharing a CAN port 

4. the bit rate of the CAN bus 

The CAN parameters (bit rate and number of ports) are 
used for hardware synthesis, while the others are part of the 
software design. Table I gives an overview of the exact values 
of the parameters for each of the four example configurations. 

Each configuration ensures a complete temporal isolation 
between applications. Spatial isolation is logically ensured in 
the sense that each application gets assigned its own stack, 
heap and data memory, but the proposed configurations do not 
include a memory protection unit to enforce this separation. 

Each CAN port is connected to an individual hardware 
module that implements the physical layer of the CAN 
protocol. The MAC layer is implemented in software. We refer 
to this implementation as a software emulated CAN device 
since it achieves the functionality of a hardware CAN device in 
software. Further, if the CAN port is to be used by multiple 
applications such that the integrity of the data sent and received 
on CAN by each one of them is not affected, we say that the 
CAN device is virtualized. 
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Given the design parameters presented above, we defined four 
platform configurations: two configurations for which the CAN 
device is emulated but not virtualized, denoted E1and E2 and 
two others for which the CAN device is emulated and 
virtualized, denoted V1 and V2. E1 and E2 differ on whether 
the processor is shared between multiple applications or not. 
V1 and V2 differ on whether the emulated CAN device shares 
the processor with other applications or not. As the CAN 
device is implemented in software, the maximum achievable 
bit rate in each case depends on whether the processor on 
which it runs is shared with other applications or not. 

In the remainder of this section we will describe and evaluate 
each of the four configurations. 

A. Platform Configuration E1 

This configuration is the simplest one, in the sense that the 
value of each of the design parameters mentioned above is 
equal to 1. We have one application on each processor using a 
local CAN port. The bit rate of the CAN bus is 4 kbit/s.  

We will refer to Fig. 1 to describe the system architecture 
of E1 and E2, as they have a similar structure. This 
configuration as well as the other ones, comprises four 
processor tiles. The figure shows the tile architecture for the 
case in which we have two applications and two controllers 
running on a processor. For E1, the structure is the same, only 
that it has one application and one controller. On the software 
side, we can see that the sequence of function calls starts from 
the application layer, where the message is created. Then the 
AUTOSAR driver API [10] is called, that further calls a 
version of the C-Heap library to safely transfer the message 
into the controller's buffer. Finally the controller accesses the 
CAN hardware module to transmit the message. On the bottom 
software layer, the CoMik microkernel creates the TDM 
partitions in which the tasks (application and controller) can 
run without interference. Further details about the software 
implementation are given in Section IV. 

The main advantages of this configuration are the spatial 
isolation between applications, as they are mapped one-to-one 
to the processor cores and the use of the local data memory 
onthe tile for the communication between the application and 
the CAN device, which implies a low timing overhead. The 
disadvantage is the low scalability in terms of number of 
supported applications. 

B. Platform Configuration E2 

In this configuration, we increase both the number of 
applications and CAN ports per core to two, such that each 
application accesses its own emulated CAN device. Since the 
number of software entities running on the same processor is 
higher, the CAN bit rate decreases to 2 kbit/s. 

The advantages of this configuration are the increased 
number of applications running on each core, the physical 
isolation between the CAN ports used by each application and, 
as in the previous case, the use of the local memory for the 
application to CAN device communication. The number of 
increased applications and CAN ports come at the expense of 
the reduced CAN bit rate, and, implicitly, extra area for the 
second CAN module. 

C. Platform Configuration V1 

Configuration V1 is similar to E1, the main difference being 
that the number of applications running on each core is equal to 
two. This means that the emulated CAN device and the port 
that it drives is shared between the two applications. Each 
application has its own transmit and receive buffer and the 
arbitration between them is done in software based on the 
message ID. The bit rate of the CAN bus is 2 kbit/s. Fig. 2 
illustrates the system architecture for this case. The multiplexer 
inside the CAN Controller symbolizes the ID-based arbitration. 

Compared to E1, the main advantage of this configuration is 
the improved scalability of the CAN device, which comes at 
the price of using the same physical CAN port for all 
applications on the core. 

D. Platform Configuration V2 

Configuration V2 differs more from the previous ones. In 
this case, we use a dedicated core to implement a CAN device, 
which operates as a CAN gateway at 100 kbit/s bit rate. As this 
core is not shared with other applications, the CAN controller 
runs bare-metal. Each of the other cores runs two applications. 
To send and receive CAN messages, the cores use the NoC for 
the communication with the dedicated CAN core. Each CAN 
application has a separate transmit and receive FIFO. 
Moreover, the Daelite NoC [11] provides contention-free 
communication; therefore the message communication time is 
predictable and bounded and it can be used to offer timing 
guarantees for the end-to-end transmission and reception of the 
messages to be sent over the CAN bus. 

Fig. 3 illustrates the system architecture for this 
configuration. For simplicity, the arrows illustrate the sequence 

Table I. VIRTUALIZATION AND EMULATION PLATFORM CONFIGURATIONS 

Configuration E1 E2 V1 V2 

CAN Bus Baud Rate [kbit/s] 4 2 2 100 

#  (applications + controllers) 
per core 

Cores 1-4 

1+1 

Cores 1-4 

2+2 

Core 2 

2+2 

Core 3 

2+2 

Core 4 

2+2 

Cores 1-4 

2+1 

Cores 1-3 

2+0 

Core 4 

0+1 

# CAN ports per tile Tiles 1-4 

1 

Tiles 1-4 

2 

Tile 2 

0 

Tile 3 

0 

Tile 4 

1 

Tiles 1-4 

1 

Tiles 1-3 

0 

Tile 4 

1 

# applications per CAN port 1 1 2 6 
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of function calls only for the transmission of messages from the 
applications to the gateway through the NoC.  

IV. IMPLEMENTATION 

We have implemented the physical layer of the CAN 

interface as a hardware module that functions as a 

bidirectional bridge, receiving on one side the data to be 

transmitted on CAN from the Microblaze processor and on the 

other side putting it on the CAN port. The module can be 

instantiated multiple times on each processor tile and the 

resulting CAN line is a wired AND between all the CAN ports 

present on the platform. The CAN bit rate is obtained by 

dividing the processor clock frequency. All the tiles run 

synchronously on the same clock domain. 

A. Software Emulation of the CAN Controller 

The CAN MAC layer was implemented in software in the 

C programming language and it consists of creating the CAN 

frame in the 2.0A format, as defined by the ISO 11898 

standard [12], including bit stuffing, CRC computation and 

filtering of the received messages. We call the software 

implementation of the CAN MAC layer emulation since it acts 

as a CAN controller, which transmits the CAN frames sent by 

the application and returns back to it the received frames 

according to the configuration of the reception filter. To 

ensure a safe transfer of the data between the application and 

the controller, a simplified version of C-Heap is used. Further, 

we have implemented the driver \API according to the 

AUTOSAR standard. 

B. Implementing a CAN Controller on the Virtual Processor 

 
To be able to run the software CAN controller together with 

other applications on the same processor, we use the CoMik 
microkernel. CoMik divides the physical processor into 
multiple virtual processors scheduled in TDM fashion. Each 
virtual processor gets a fraction of the processor capacity based 
on the number of allocated TDM slots and it is fully temporally 
isolated from the other virtual processors. The TDM table 
duration determines the maximum sustainable CAN bit rate, as 
the software controller has to be fast enough to write or read 
every CAN bit in its allocated slot. 

Each software controller accesses a unique physical CAN 
port. In order to provide CAN access to multiple applications, 
we need to either instantiate in hardware the same number of 

CAN ports as the number of applications, or share a lower 
number of CAN ports. Both options imply creating a TDM 
table that accommodates all the applications and their software 
CAN controllers and defining the maximum CAN bit rate 
based on the maximum delay between two successive TDM 
slots allocated to the same controller, among all controllers. 
Thus, in this case, the minimum CAN bit duration, TbitMin is: 

𝑇𝑏𝑖𝑡𝑀𝑖𝑛  =  max0<𝑖≤𝑁{max0<𝑗<2𝑀𝑖
(𝑡𝑖𝑗+1

− 𝑡𝑖𝑗
)}                     (1) 

        where N refers to the total number of CAN controllers 
running on the platform, Mi represents the number of TDM 
slots allocated to the controller i and 𝑡𝑖𝑗

 𝑡𝑖𝑗+1
denote the start 

time of slots j and j+1 of controller i. To detect the maximum 
delay between any two successive slots of controller i, we need 
to consider two successive TDM frames, which is why the 
upper bound for the second max operator is 2 ∙ 𝑀𝑖. Hence, the 
maximum CAN bit rate, Rmax for this case is   

                                  𝑅𝑚𝑎𝑥 = 𝑇𝑏𝑖𝑡𝑚𝑖𝑛

−1                                (2) 

 

Fig.4 shows the TDM schedule for configuration E1 and  

the CAN signals. A TDM frame consists of two slots, one 

allocated to the application and one to the CAN controller. 

Each TDM slot contains a CoMik sub-slot and an 

application/CAN sub-slot. In the CoMik sub-slot the context 

switch operations are performed. In the figure, the maximum 

delay between any two consecutive CAN slots is two slots and 

the chosen CAN bit period, Tbit is higher than the minimum 

and it is equal to three slots. We can see that each application 

writes a transmit message in its corresponding buffer at times 

twrMsg1 and twrMsg2 respectively. The C-Heap library is not 

shown in the figure for the sake of simplicity. Each CAN 

controller detects the message in the following slot, at times 

twrMsg1 and twrMsg2 respectively and it starts to drive the 

 

Figure1.   CAN Configuration E2 

 
 

Figure 2.    CAN Configuration V1 

 

 

Figure 3.  CAN configuration V2 
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Figure 4 Timing Diagram for Configuration E1 

 allocated CAN output port immediately. The resulting CAN 

line, CAN_IN changes and the start of every CAN bit period 

and it reflects the result of all the CAN output lines on the 

platform. The CAN controller synchronizes with the CAN bus 

at the beginning of each bit period, Tbit. When the controller is 

shared, as in configuration V1, separate buffers are allocated to 

each client application and the incoming messages are 

arbitrated based on their IDs. 

C. Bare-metal Implementation of the CAN Controller 

Configuration V2 illustrates the possibility of allocating the 

entire processor to the CAN controller. As mentioned before, 

we use the C-HEAP library to send the CAN messages across 

the NoC. Each sending application has its own FIFO transmit 

buffer in the local memory of the CAN gateway tile. A FIFO 

contains a number of predefined data tokens. In our case, a 

token is a CAN message. When writing a token into a remote 

FIFO, the sender first sends the token and then the value of the 

updated write counter via the NoC. A NoC path between 2 

tiles includes a number of routers. The NoC is scheduled using 

a pipelined TDM table. This means that across the path, each 

router forwards the data from one of its inputs to one of its 

outputs in a given TDM slot, such that for a TDM frame 

having n slots, router i forwards the data during slot j and 

router i+1 forwards the same data in the following slot, (j+1) 

mod n. After the write counter has left the last router, it 

reaches the gateway tile. Here, when the CAN bus is idle, at 

the start of every CAN bit period, Tbit, the transmit FIFO of 

each CAN client is polled. If a new token is found, it is read 

during TCheapRdFifo and the transmission of the message starts 

right away on the CAN_OUT line. Since in this case the 

processor is not virtualized, the performance bottleneck 

determining the CAN bit rate is no longer given by the TDM 

table, but by worst case execution time needed to send one 

CAN bit, which can be determined by accessing the 

communication FIFOs or computing the CRC. 

I. EXPERIMENTS 

We synthesized the four platforms according to the 

configurations described in the previous sections on a ML605 

Xilinx FPGA platform. Each of the four configurations 

includes five processor tiles, out of which four are used for 

running CAN applications and the fifth tile is used as a CAN 

monitor, which prints the value of every CAN bit. 

The applications within all configurations are synthetic, 

meaning that their only purpose is to send and receive CAN 

messages periodically. 

Fig.5 shows the message latencies and software cost for 

each of the proposed configurations using a logarithmic scale. 

In configuration E1 three applications send messages 

periodically with a dynamic offset and a fourth application is 

receiving them. The sending period is 0.1 s and it was chosen 

to fit three worst-case CAN messages coming from the three 

applications. The offset is varying between 0 and 40.9µs (the 

TDM slot duration) with a step of 0.1µs. The message offset 

was set in the same manner in all four configurations and the 

messages are created simultaneously in all applications. The 

plots show the global  

minimum, maximum and average software cost and the 

maximum message latency among all sending applications for 

all possible CAN message payloads. The software cost is the 

sum of the sending cost on the sending tile and the receiving 

cost on the receiving tile. The sending cost comprises the 

duration between the moment the sending application has 

created the CAN message and the moment when the controller 

sends the first message bit on the bus. Analogously, the 

receiving cost comprises the duration between the moment the 

last message bit was received on the other side by the 

controller and the moment when the receiving application gets 

the message. The sending cost is illustrated in Fig. 4 as the 

time between twrMsg1 and tstartMsg1 for Tile 1. The maximum 

message latency is determined by the software cost plus the 

transmission time on the bus. The large values obtained for 

Payload = 2,3,6,7 bytes come from sporadic cases in which 

one application creates a message just after the controller 

enters the reception mode. The minimum overhead is given by 

the added duration of the CoMik slots on the sending and 

receiving side that run between the application and controller 

slots. Thus, the software cost reflects the execution time of the 

controller, the communication time between the application 

and the controller and the TDM schedule in CoMik, but it can 

occasionally include the blocking time caused by the reception 

of CAN messages. 

In configuration E2, the number of sending applications and 

CAN controllers are doubled on each core. The minimum cost 

scales consequently from 100 to 200 µs. The maximum cost, 

on the other hand, is given by the alignment between the CAN 

bit period, the start time of each CAN controller slot and the 

CAN message offset. In the worst case, the controllers running 

in the earlier TDM slots detect the new messages and start 

sending them and the ones running in the later slots enter 

directly into reception mode before detecting the new 

messages. 

For configuration V1, the obtained results are almost the 

same as for E2, the only difference is in the average cost. In 
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this case it is much higher due to the fact that there is only one 

controller on each core that arbitrates between two senders. 

Therefore, the sender with the lower priority will always 

experience the worst case delay, while in the previous 

configuration, the varying offset determined this delay only 

when the messages were created later in the CAN bit period. 

Hence, using a separate controller for each application leads to 

a better average performance. 

In configuration V2 we have six sending applications 

sending messages with a period of 8.35 ms. As we have no 

external CAN device connected, the results shown 

characterize only the sending software cost and the 

corresponding maximum message latency. Here, the minimum 

cost is around 12 µs and is basically given by the message 

communication time on the NoC. We implemented a time-

based round robin schedule which iterates between the six 

senders based on the order of their CAN message ID and each 

time slot is equal to the CAN bit duration (10 µs). Thus the 

maximum cost is obtained when the sending application has 

just missed its time slot in the CAN gateway and has to wait 

until the messages coming from all the other applications have 

been sent. 

II. CONCLUSIONS 

In this paper we proposed how multiple applications can 

share a CAN port in a MPSoC platform. The shared CAN port 

can be on the local processor tile, or on a remote one. As part 

of our hardware and software design process, we tune the 

number of applications per CAN port, we explore the 

possibility of using local and remote CAN ports and we 

dimension the bit rate of the CAN bus accordingly. We 

evaluate each solution and we show the obtained software cost 

and end-to-end latency for the CAN messages. All the four 

configurations are practically usable, as long as each of the 

achieved bit rates are sufficient for the real applications being 

mapped and there are no security and spatial isolation 

requirements. 
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