
Analyzing Concurrency in Computational Networks
(ExtendedAbstract)

SanderStuijk andTwanBasten
EindhovenUniversityof Technology, P.O. Box 513,NL-5600MB Eindhoven,TheNetherlands.�

s.stuijk,a.a.basten� @tue.nl

Abstract

We presenta concurrencymodelthat allows reasoning
aboutconcurrencyin executablespecifications.Themodel
mainly focuseson data-flow and streaming applications
and at task-level concurrency. Theaim of the modelis to
provide insight in concurrencybottlenecks in an applica-
tion andto providesupportfor performingimplementation-
independentconcurrencyoptimization.

1. Introduction

Multi-processorsystemsare rapidly becominga stan-
dardsolutionfor implementingembeddedmulti-mediasys-
tems. They provide relatively high computepower at a
low energy cost. To exploit the concurrency inherently
presentin multi-processorsystems,the parallelismavail-
ablein anapplicationmappedontosucha systemmustbe
madevisible in the mappingandprogrammingtrajectory.
This abstractbriefly presentsa concurrency modelthat al-
lows architecture-independenttask-level concurrency opti-
mizationin executablespecifications.Themainfocusis on
streamingapplications.Theconcurrency optimizationleads
to a specificationthat formsa goodstartingpoint for map-
ping theapplicationontoa multi-processorsystem.Thefi-
nalimplementationrequiresanarchitecture-dependentstep,
which is not coveredin this abstract.Theoptimizationcri-
teriaareinspiredby thoseusedin performanceanalysisbut
they aretargetedtowardsstreamingandconcurrency. The
novelty is that we performtarget-architecture-independent
optimizationat the executable-specification(source-code)
level. Theresultof this optimizationis a specificationthat
caneasilybeoptimizedfor many differentimplementation
platforms. In otherwords,our techniqueshelp in making
re-usablespecifications.For details,see[3].

2. Model of Computation

Our model of computation,the computational-network
model,assumesthat an applicationis organizedasa hier-
archicalcollectionof autonomouscomputenodesthat are

a b

d

c

e

eventdelays:1
exceptevent2 of d
whichhasdelay2

communicationdelays:0
excepttheb-dconn.
whichhasdelay1

event

idle time

b

e
1 2 3 4 5 6 7 8 9 101112131415

d

c

a

16171819

Figure 1. A network with a partial event diagram.

connectedto eachotherby meansof point-to-pointconnec-
tions correspondingto datastreams. A given nodecom-
puteson datait receivesalongits inputsto produceoutput
on someor all of its outputs. The actionsperformedby a
nodearemodeledasa totally orderedsequenceof events,
and the actionsof a network as a partial order of events.
To reasonaccuratelyabouttiming aspectswithout referring
to concreteimplementations,we useanadaptedversionof
Lamport’slogicalclocks[2], associatingadelaywith events
andwith communication.Figure1 shows a computational
network with a partial eventdiagram. The computational-
network model is usedto model applicationsfor image,
video andgraphicsprocessing(e.g.,an MPEG decoderor
a still-texture decoder). It capturesthe core of parallel
(streaming)applications,and nothing more. Well known
examplesof computational-network modelsareKahnpro-
cessnetworksandthesynchronousdata-flow model.

3. Concurrency Model

Our concurrency model aims at performing a target-
architecture-independentconcurrency optimization. Its
concurrency measuresabstractfrom the environment in
whichacomputationalnetwork operates,andarecalculated
from thecomputational-network structureandaneventdia-
gramof anexecution.Themeasuresareusedin conjunction
with a designmethodthatconsistsof four steps.Eachstep



tries to optimizeonedifferentaspectof task-level concur-
rency; it optimizesoneof theconcurrency measures,while
the othermeasuresareusedto balancethe overall concur-
rency optimization.Themeasuresarecomputedfor thenet-
work andfor theindividualnodesin thenetwork. Themea-
suresfor the computenodesprovide insight into the con-
currency bottlenecks. The measuresfor the network can
provideglobalguidancewhenoptimizingconcurrency.

Task-splitting. The computenodewith the longestrun-
time is determiningtherateatwhichnew computationscan
be startedin the network. In other words, this nodede-
terminesthethroughputof thenetwork. Thethroughputis
an importantpropertywhen a systemdesigneris design-
ing a streamingapplication. The restartmeasureprovides
an abstractnotion of it. To optimizethe restart,the slow-
estcomputenodemustbe split in a setof computenodes
with bettervaluesfor therestart.Goodvaluesfor therestart
canbe obtainedthroughvery fine-grainedcomputenodes.
However, thisgivescommunicationoverhead(andpossibly
schedulingoverhead).Therestartmeasureshouldtherefore
bebalancedwith othermeasures.

Data-splitting. The structureof a network reveals the
chainsof computenodesthatbelongto differentpartsof the
computationtakingplacein thenetwork. In otherwords,it
revealsthe differentdata-streamsthat areprocessedin the
network. The more data-streamscanbe distinguisedin a
network, themoredata-parallelismis present.However, if
many differentdata-streamsgo throughonenode,thenthis
nodemay be a synchronizationbottleneckfor thosedata-
streams.Thestructuremeasureis usedto quantifythiscon-
currency property. The (task-level) data-parallelismthat is
presentin thespecificationshouldbemadeexplicit to opti-
mizethisconcurrency property.

Communication granularity. In a parallelexecution,we
want to minimize theoverheadof communicatingdatabe-
tweennodes.Thenodesshouldspendasmuchtimeaspos-
sible on computationandnot on communication,ascom-
putation,i.e.,datatransformation,is themaingoalof every
computationalnetwork. The ratio betweentime spenton
computationandtime spenton bothcomputationandcom-
municationis expressedin thecomputationload. This ratio
canbecalculatedfor thenetwork asawholeandfor individ-
ualnodesandshouldbeashighaspossible.Thegranularity
of communicationmustbalancetime spenton communica-
tion andtime thatnodeshave to wait for inputdata.

Merging. During an execution,a computenodeis either
busy, performingevents,or it is idle. It canbeidle because
it is waiting for dataor becauseit hasfinishedits execution
while othernodeshave not yet finished.To geta balanced
workloadover nodes,we mustbalancetheexecutiontimes
(computationpluscommunicationtime)andrun-times(ex-
ecutiontime plus idle time) of thedifferentnodes.This is

importantto optimizestreamingbehavior. To get a notion
of the workloadbalance,the executionload considersthe
ratio betweenthe executiontime andthe run-time. Nodes
that have a low executionload mustbe mergedwith each
otherto getabetteroverallexecutionloadfor thenetwork.

A parallelcomputationwill in mostcasesbefasterthan
a sequentialimplementationof that computation. This is
often referredto asspeed-up.The realizedspeed-upfor a
computationalnetwork dependsonthesynchronizationthat
is requiredbetweenthedifferentnodesin thenetwork, the
introducedcommunicationoverhead,andthebalanceof the
computationover thedifferentnodes.Thesecondandthird
aspectarecoveredby the computationload andexecution
load respectively. The influenceof synchronizationis not
yet fully capturedin thesemeasures,althougha poor syn-
chronizationdoesaffect the executionload. Synchroniza-
tion is importantwhen consideringconcurrency, because
synchronizationis limiting theexecutionof computenodes
andwith that thenumberof nodesthat canrun in parallel.
Synchronizationconstraintsmayimposetherestrictionthat
two nodescanonly executein sequence.This concurrency
propertyis capturedin thefinal measureof our model,the
synchronizationmeasure.Thedesignmethoddoesnotcon-
tain a specialstepin which this propertyis optimized. It
mustbetakeninto accountin all steps.

4. Results

Theconcurrency modelhasbeentestedon, amongoth-
ers,a JPEGdecoder. We usedthe tool CAST [4] that im-
plementsour modelandthatoperateson a C++ library for
specifying Kahn processnetworks. The performanceof
our optimizedJPEGdecoder, whenmappedonto a homo-
geneousmulti-processorplatform, turnedout to be similar
to theperformanceof a JPEGdecodermanuallyoptimized
for this platform [1]. The resultsillustrate that the con-
currency model enablesarchitecture-independentanalysis
of task-level concurrency in streamingapplicationsat the
executablespecificationlevel.

References

[1] E. A. deKock. Multiprocessormappingof processnetworks:
A jpeg decodingcasestudy. In 15thSystemSynthesisSymp.,
Proc., pages68–73.ACM, 2002.

[2] L. Lamport. Time, clocks, and the orderingof events in a
distributedsystem.Communicationsof theACM, 21(7):558–
565,1977.

[3] S. Stuijk. Concurrency in computationalnetworks. Master’s
thesis,TU Eindhoven, 2002. http://www.ics.ele.
tue.nl/˜sander .

[4] S. Stuijk, J. Ypma,andT. Basten.CAST - a task-level con-
currency analysistool. In ASCI2003,9thAnnualConf. of the
AdvancedSchool for ComputingandImaging, Proc., 2003.


