A Scenario-Aware Data Flow Model for Combined
Long-Run Average and Worst-Case Performance Analysis*

B.D. Theelen!, M.C.W. Geilen®, T. Basten', J.P.M. Voeten''2, S.V. Gheorghita1 and S. Stuijk1
'Eindhoven University of Technology, Department of Electrical Engineering; >Embedded Systems Institute
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
b.d.theelen@tue.nl

Abstract

Data flow models are used for specifying and analysing
signal processing and streaming applications. However, tra-
ditional data flow models are either not capable of expressing
the dynamic aspects of modern streaming applications or they
do not support relevant analysis techniques. The dynamism in
modern streaming applications often originates from differ-
ent modes of operation (scenarios) in which data production
and consumption rates and/or execution times may differ. This
paper introduces a scenario-aware generalisation of the Syn-
chronous Data Flow model, which uses a stochastic approach
to model the order in which scenarios occur. The formally de-
fined operational semantics of a Scenario-Aware Data Flow
model implies a Markov chain, which can be analysed for
both long-run average and worst-case performance metrics
using existing exhaustive or simulation-based techniques. The
potential of using Scenario-Aware Data Flow models for per-
formance analysis of modern streaming applications is illus-
trated with an MPEG-4 decoder example.

1. Introduction

Data flow models are often used for specifying the be-
haviour of signal processing and streaming applications as
a set of tasks, actors or processes with data and control de-
pendencies. The differences between various data flow mod-
els can be characterised by their expressive power and the
availability of techniques for analysing correctness and per-
formance properties like absence of deadlock and through-
put. Such analysis is becoming very important for hard-
ware/software co-design of modern streaming systems. Kahn
Process Networks (KPN) [10], for example, can capture many
of the dynamic aspects of these systems, but evaluating their
correctness and performance is in general undecidable. On the
other hand, Synchronous Data Flow (SDF) [12] models do al-
low analysis of many correctness and performance properties
but they lack support for expressing any form of dynamism.

This paper proposes a design-time analysable generalisa-
tion of SDF called Scenario-Aware Data Flow (SADF), which
can capture several dynamic aspects of modern streaming ap-
plications by incorporating the concept of scenarios. Such
scenarios denote distinct modes of operation (like processing
I, P or B frames in MPEG), in which a process may have vary-
ing execution times. Furthermore, processes may exchange
varying amounts of data in different scenarios. Conforming
to terminology for SDF, we use foken to denote a unit of in-
formation that is communicated between processes, whereas
(production/consumption) rate refers to the number of tokens
that is produced/consumed by a process. In SADF, these pro-
duction and consumption rates can be 0 in certain scenarios to

* This work was partly supported by the European Commission through
the Betsy project IST-004042 and partly by the PROGRESS program of
the Dutch Technology Foundation STW through the PreMaDoNa project
EES.6390.

Figure 1. Scenario-aware data flow.

specify that data dependencies are absent or that processes are
inactive. The key novelty of SADF is that it expresses the be-
haviour of all scenarios in a succinct model using a stochas-
tic approach to capture the scenario occurrences in an abstract
way. Moreover, analysis of correctness as well as long-run av-
erage and worst-case performance are decidable. The advan-
tage of using SADF instead of SDF is therefore the potential
to obtain more accurate performance results due to taking the
dynamic aspects of the system into account.

To exemplify what we propose, consider the SADF model
in Figure 1. We use similar notation as for SDF to depict (the
structure of) an SADF model. We distinguish two types of
processes; kernels and (scenario) detectors. Kernels represent
the data processing part of a streaming application, whereas
detectors model the control part of the application that dy-
namically detects scenarios. Detectors E and F' determine in
which scenario the kernels they control (B, C and D for de-
tector E and A for detector F’) operate by sending control to-
kens via control channels. Such control channels are indicated
with open arrowheads, while closed arrowheads denote ordi-
nary (data) channels. When E executes or fires (which is the
case if A has produced 1 token on the channel to E after fir-
ing), it determines the scenario in which B, C, D and F itself
will operate based on a stochastic model. This results in fix-
ing the values for the parameterised rates p, ¢ and r and upon
firing completion, F sends control tokens indicating the de-
tected scenario to B, C and D. These kernels fix rates a, b, c,
d and e by interpreting the received control tokens before ac-
tually processing the data tokens. The execution time of ker-
nels (and detectors) is determined based on the scenario in
which they operate, while possible variations within a sce-
nario are taken into account based on a stochastic model.

This paper is organised as follows. After discussing related
work in Section 2, Section 3 formally defines SADF and its
operational semantics. Section 4 elaborates on useful correct-
ness properties that enable deriving a Markov chain for the
evaluation of both long-run average and worst-case perfor-
mance metrics in Section 5. Section 6 presents experimental
results for an MPEG-4 decoder and Section 7 concludes.

2. Related Work

When comparing SADF with other data flow models, the
most notable differences are the support for varying rates and
more specifically rates of 0, the explicit support of correlated
execution time distributions for different processes (by means

of the scenarios) and the use of a stochastic approach to model
the occurrence of scenarios.

Many generalisations of SDF have been proposed before,
often focussing on support for varying rates. For example,
Cyclo-Static Data Flow (CSDF) models [3] allow rates to
change according to a recurring pattern. SADF can express
this behaviour by considering the differences in rates as dis-
tinct scenarios and fixing the occurrence sequence in the
stochastic model associated with each detector. In Scalable
Synchronous Data Flow (SSDF) [16], integer multiples of the
rates in a consistent SDF can be used, where these multiples
are fixed by an external scheduler. An SADF model can cap-
ture the occurrence of the different rates (scenarios) by mod-
elling the scheduler in the detectors. The Parameterised Syn-
chronous Data Flow (PSDF) model is a meta-modelling ap-
proach [2] that enables extending dataflow models like SDF
with varying rates. PSDF is less expressive than SADF since
it requires the parameterised consumption and production
rates for a channel to be equal and does not support rates of 0.

Boolean Data Flow (BDF) [4] and Integer Controlled Data
Flow [5] follow the approach of restricting KPN models such
that the control part of an application is captured by certain
predefined process types. Well-behaved forms like the one in
[8] even allow analysis of some properties. They can capture
scenarios by using subgraphs that are enabled by control to-
kens, similarly as in control flow graphs. However, these mod-
els will, in general, have many more processes than an equiv-
alent SADF model, which avoids including copies of a pro-
cess that participates differently in multiple scenarios.

Several other authors also proposed to use probabilities for
modelling dynamism in an abstract way as well as to support
long-run average performance analysis. The suggestion to use
(independent) discrete execution time distributions for SDF
was declared infeasible for practical applications in [18] be-
cause it was considered to suffer too much from state-space
explosion problems. SADF combines discrete execution time
distributions with scenarios, thereby capturing that execution
times of different processes in real-life systems are correlated.
Such correlations also limit the state space, which brings per-
formance analysis of practical applications within reach.

To circumvent state-space explosion problems, [18] sug-
gested to use (independent) exponentially distributed execu-
tion times for SDF. These distributions have also been exten-
sively studied in the context of stochastic process algebras
like PEPA [9] and EMPA [1] and the more control-oriented
approach of stochastic Petri Nets [14] as well as queueing
networks [11], which all implicitly define Markov chains as
SADF does. The generalised form of stochastic Petri Nets in
[13] and EMPA are comparable to SADF in the sense that
they decouple actions and time. Nevertheless, they support
only exponential distributions, which excludes for example
worst-case execution time analysis as the sample spaces of
exponential distributions are unbounded. On the other hand,
there exist several queueing network based approaches that
assume general distributions. We are however not aware of
approaches that allow taking correlations between such dis-
tributions associated to concurrent processes into account.

3. Formal Definition
3.1. Preliminaries

We start with defining IN = {0, 1, ...} to indicate the nat-
ural numbers and]R(J)r (R™) to denote the non-negative (pos-

itive) real numbers. Similarly as for SDF models, processes
(kernels and detectors) in SADF are connected by channels
through ports. The finite sets of input and output ports of a
process p are denoted by Z,, and O, respectively, while the
finite set of control ports for a kernel k is indicated by Cy.
A channel that connects an output port to an input port of
the same process is also called a self-loop channel. Without
loss of generality, we assume all port sets to be pairwise dis-
joint and define Z, O and C to be the union of all input, out-
put and control port sets respectively. For every channel c,
Y. denotes the finite set of all possible values of the tokens
that it can transfer (channel alphabet). ¥ indicates the set
of all finite sequences of the tokens in .. For a sequence
0 = 0y...0,1n X7, the i token in o is indicated with o,
whereas |o| denotes the number n of tokens in o. For o, 7,
v € X7, we use 0 + 7 to indicate the concatenation of ¢ and
7.In case v = o + 7, we also write v — o to refer to 7.

The non-empty finite set of scenarios in which a process
p can operate is denoted by S,,. Formally, a scenario refers to
a set of values for parameterised rates in an SADF and ex-
ecution time distributions for the processes. For a kernel &,
the function Ry, : Sk x (Zr U O U Cr) — IN assigns the
rates to the ports of k for each scenario, whereas the function
Ry : 8% (ZqgUO4) — NN assigns the rates to the ports of a
detector d. The discrete random variables specifying the exe-
cution times in a scenario s € S, for a process p are denoted
by E, . They range over a finite subset of Ry . The probabil-
ity that £, , equals a value e in its sample space is denoted
by P(E, s = e). Using random variables with finite sam-
ple spaces ensures the existence of lower and upper bounds,
which is required for best/worst-case performance analysis.
Future research includes an investigation on using continu-
ous distributions with bounded sample spaces instead.

A discrete-time Markov chain [6] is in this paper defined
by a triple (S,:,P), where S is the non-empty finite state-
space of the Markov chain and state « € S denotes the ini-
tial state from which the Markov chain departs with proba-
bility 1. The matrix P is defined such that P(S,T) € [0, 1]
denotes the one-step transition probability from state S to
state 7', where » . P(S,T) = 1 forall S € S. An impor-
tant property of Markov chains is ergodicity [6, 20]. The state
space of an ergodic Markov chain includes a single strongly
connected component of (positive) recurrent states and possi-
bly several components of transient states. A recurrent state
of an ergodic Markov chain is reachable from any other state
with probability 1 and has a positive equilibrium probability.
Transient states have an equilibrium probability of 0.

3.2. Scenario-Aware Data Flow

For a compact formal notation, we assume in this paper
that kernels have exactly one control port. Kernels without
control ports are considered to always operate in the same
scenario. Without affecting any performance property, such a
kernel can be equipped with a trivial detector for this assump-
tion to hold. Conversely, the results of this paper can be gen-
eralised for a kernel k that has multiple control ports by defin-
ing Sy, as the Cartesian product of the sets of scenarios of the
detectors connected to all its control ports, where all require-
ments regarding the control port of a kernel that we discuss in
this paper should then hold for all control ports of k.

Definition 1 introduces functions ¢ for an SADF, which
enable capturing the status of all its data channels.

Detector E/ Detector F'
PE(S1) = s1
@p(S2) = s2 Qp(S)=s
@E(Sg) = 82

Figure 2. Specification of detectors.

Definition 1 (Channel Status) Ler B be the set of all chan-
nels, where B. C B is the set of control channels. A channel
status is a function ¢ : B\ B. — IN that returns the num-
ber of tokens stored in the buffer of each data channel.

We are now ready to define SADF models.

Definition 2 (SADF) An SADF model is described by a tu-
ple (KK, D, B, ¢*), where

o [C is the non-empty finite set of kernels and D is the finite
set of detectors with K N\'D = &. For each kernel k € K,
Sy, equals the set of scenarios of the detector connected
to its unique control port c. The rate Ry (s, c) = 1 for all
scenarios s € Sy. For each input port i € I, of a detec-
tor d € D, the rate Rq(s, 1) is the same positive constant
for all s € Sy. For each output port o € Oy that con-
nects d to the control port of a kernel, Rq(s,0) > 0 for
all s € S,. Associated with d is furthermore a Markov
chain (Sq, tq4,Pq) and a function ®4 : Sq — Sy that re-
turns the scenario corresponding to each state in Sg;

e BC O x (ZUQC) is the set of directed channels (each
including an unbounded" FIFO buffer), where B, = B\
(O x I) is the set of all control channels. Every port is
uniquely connected to one channel and every channel to
two ports;

o ¢* : B\ B. — NN is the initial channel status, while the
number of tokens initially stored in the control channels
in B, is equal to 0.

A kernel k € IC starts its firing with reading one token
from its control port when it becomes available. That token
determines the scenario s € Sy, in which £ will operate. Then
k waits until Ry,(s,) tokens are available at every input port
1 € 7. At the moment that sufficient tokens are available,
k performs its data processing behaviour, which takes Ej, ,
units of time. The firing of k& ends with removing the Ry(s, %)
tokens from the input ports and writing Ry(s,0) tokens to
each output port o € Oy.

The firing of a detector d € D starts with waiting until
Ra(s, 1) tokens (which is independent of s € Sy, see Defini-
tion 2) are available at every input port ¢ € Z;. At the mo-
ment that sufficient tokens are available, the Markov chain
(Sq, ta, Py) associated with d makes one transition and the
scenario s € Sy in which d will operate is determined in ac-
cordance with the state that is entered due to the transition.
After d performed its behaviour, taking Fy ¢ units of time, fir-
ing of d ends with removing the R,(s,) tokens from its input
ports and writing R4(s, 0) tokens to each output port o € Oy.

1 Like in SDF, a bounded buffer can be modelled by using a reverse chan-
nel with a number of initial tokens equal to the buffer size [18].

Notice that in reality, the execution times of a kernel or de-
tector as well as the determination of the scenario by a de-
tector may depend on the values of the consumed tokens. In-
stead of interpreting data tokens to, for example, trigger tran-
sitions in a finite state machine or automaton that represents
the behaviour of the involved process, an SADF model ab-
stracts from the actual value of data tokens (similarly as in
SDF) to limit its state space. To model data-dependent vari-
ations in execution time, SADF relies on the use of scenar-
ios combined with the corresponding execution time distribu-
tions, whereas determining the occurrence of scenarios relies
on the Markov chains associated to detectors. Such a Markov
chain reflects knowledge about the order in which scenarios
occur. Consider for example the specification of detector E in
Figure 2. Together with ® i, the Markov chain specifies that
an occurrence of scenario s; is either followed by one occur-
rence of scenario sy with probability % or by two occurrences
of scenario s, with probability %

Another dynamic aspect of real-life systems is that con-
suming/producing tokens may actually happen at any time
during firing. This could be captured by stochastically dis-
tributing the consumption and production of tokens for a pro-
cess over its execution time. However, in this paper we choose
for the distribution where tokens are consumed and produced
at the end of a firing. This allows for conservative analysis of
the time-average occupancy of the buffers by taking into ac-
count the reservation of buffer space at the start of a firing.

3.3. Operational Semantics

The operational semantics of an SADF is defined in terms
of a Timed Probabilistic Labelled Transition System (TPLTS)
[17]. To introduce the TPLTS of an SADF, we first give some
more definitions to capture the configuration of an SADF.

Definition 3 (Control Status) A control status for an SADF
(K, D, B, ¢*) is a function ¢ : B. — X* with X* the union
of the sets 3% for all ¢ € B., which returns the sequence of
scenarios stored in each control channel.

Definition 4 (Kernel Status) A kernel status for an SADF
(K,D,B,¢*) is a function k that assigns to each kernel
k € K a pairin (Sp U {-}) x (R§ U {-}) denoting the
current scenario in which k operates and the remaining exe-
cution time for firing k or (—, —) if k is not firing.

Definition 5 (Detector Status) A detector status for an
SADF (K, D, B, ¢*) is a function ¢ that assigns to each de-
tectord € Datriplein Sy x (SqU{—}) x (R U{-1}) de-
noting the current state S of the Markov chain (Sq, ta,Pq),
the scenario ®4(S) in which d operates and the remain-
ing execution time for firing d or (S,—,—) if d is not fir-
ing.

Definitions 4 and 5 implicitly exclude the possibility of
multiple simultaneous firings of a process (also called auto-
concurrency in the context of SDF). The reason is that si-
multaneous firings of processes operating in different scenar-
ios may “overtake” each other due to the potential differences
in execution times (resulting in consuming tokens in another
scenario than in which they were produced). This undesirable
effect complicates ensuring determinacy and hence, it is ex-
cluded. Multiple simultaneous firings can still be captured by

2 Although this is the approach used to obtain the results in Section 6.2, it
actually requires a small extension of the semantics in Section 3.3.

Process Scenario E P(E =e)

2 72
Scenario A s 2.1 12
Rate 5 g, . 3 5
—a 2 1 B o1 28 4/5
b 3002 So 4 1
c 1 1 < T 72
d 2 1 C ! 12 12
e 3 1 So 3 1
P 1 2 51 4 1
q 3 4 D so 25 1
r 2 4 51 0 T
So 0 1
F s 0 T

Figure 3. Rates and execution times.

using a number of copies of a process and properly distribut-
ing and gathering the tokens to be consumed/produced.

Definition 6 (Configuration) A configuration of an SADF is
atuple (¢, K, §) denoting the channel status, control status,
kernel status and detector status respectively. Every SADF
(K, D, B, ¢*) has an initial configuration (¢*,*, k*, %),
where the initial control status 1* is defined by |p*(c)| = 0
for all ¢ € B, the initial kernel status k* is defined by
k*(k) = (=, =) for all k € K and the initial detector sta-
tus 0* is defined by 6*(d) = (tq, —, —) forall d € D.

In the remainder of this paper, we use © to denote the set
of all reachable configurations of an SADF. Moreover, D(O)
indicates the set of probability distribution functions over O,
which is defined by

D©)={m:0—[0,1]] > =(C)=1}

Ceo

We are now ready to define the different transitions for the
TPLTS of an SADF, which include five types of action transi-
tions and time transitions. We give the intuition behind their
definitions based on our running example of Figure 1. To this
end, the tables in Figure 3 complete its specification by giv-
ing the values for the parameterised rates and the execution
time distributions. Notice that the right-hand table shows the
typically small variations in execution times within a scenario
and the typically larger variations for different scenarios.

Figure 4 depicts a part of the TPLTS for our running ex-
ample, departing from the initial configuration Cy. A transi-
tion is shown as a double directed (multi) arrow, where the
first part is labelled with the involved action or time step and
the second part denotes the probabilistic fan-out given by the
corresponding distribution function in D(©). The only pos-
sible action from (Y is a detect action for detector F', which
captures starting its firing (other processes cannot initiate fir-
ing since no tokens are available on some of their input ports).
Since the Markov chain of F’ remains in state S (implying de-
tection of default scenario s) and its execution time is 0, there
is only one possible resulting configuration C';. Hence, C' is
entered with probability 1 in accordance with Definition 7.

Definition 7 (Detect Action Transition) Detect action tran-

.. detect(d . .
sitions stect(d) C O x D(O) refer to detecting the scenario in

which a detector d and the kernels controlled by d are going
to operate. The relation (¢,), Kk, 5)dete—>Ct(d)7r holds if 6(d) =
(S,—,—) for some S € Sq and ¢p(z;) > Ra(P4(S),4)?
for each channel x; connected to an input port i € 1.
The distribution function 7 is defined by 7(¢, v, k,0r,.c) =

3 Recall that this consumption rate is scenario independent.

Figure 4. Partial TPLTS.

Py(S,T)-P(Eqa,1) =€) forall T € Sy and e in the sam-
ple space of E4 & (1, where 61 = 6[d — (T, ®4(T), e)].

Since F' has execution time 0, it can immediately end its
firing. This is captured by a detector end action. When F' fi-
nalises its firing, it consumes the token on its input and pro-
duces a token to its output. The TPLTS transfers to configu-
ration C'y with probability 1 as specified in Definition 8.

Definition 8 (Detector End Action Transition) Detector

. . d(d)
end action transitions "2 C O x D(©) denote finalis-

ing the firing of a detector d. Relation (¢, v, r,0)" "

with w(¢', ', k,8") = 1 holds if 6(d) = (S, s,0) for some
S € Sq and s € Sk. Configuration (¢, ', k,8") is de-
fined by ¢'(x;) = ¢(a;) — Ra(s,i) for each non self-
loop channel x; connected to an input port v € 1, and
&' (Yo) = &(Yo) + Ra(s,0) for each non self-loop chan-
nel y, € B\ B. connected to a corresponding output port
0 € Oy, while ¢'(z) = ¢(z) for all other non self-loop chan-
nels z and ¢'(z) = ¢(z) — Rq(s,i) + Ra(s,o0) for each
self-loop channel z connecting an o € Ogtoani € Zy. In ad-
dition, for each control channel ¢ € B, connected to a cor-
responding output port o € Og, Y'(c) = P(c) + v with
v a sequence of tokens (all valued s) of length R4(s,0),
while ' = 1 for all other control channels. Finally,
8 =0[d — (S,—,)]

In configuration C, kernel A is ready to fire since a token
(valued s) is now available on its control port. Starting the fir-
ing of a kernel is performed in two steps. A control action in-
terprets the control token to determine the scenario, and hence
to act according to the appropriate consumption/productions
rates and execution time distribution in the second step. As
specified in Definition 9, after performing the control action,
configuration Cs is entered with probability 1.

Definition 9 (Control Action Transition) Control action

transitions control(k) C O x D(O) reflect fixing the sce-
nario in which a kernel k is going to operate. The rela-
tion (6,4, 5, 8) P with 7(¢, 0, 1,8) = 1 holds if
k(k) = (=, —) and |[¢(c)| > 1 with c € B, the control chan-
nel connected to k, where k' = [k — (¢¥(c)1, —)].

The second step in starting the firing of a kernel is cap-
tured by a start action. A start action is enabled for A, since

sufficient tokens are available for scenario s. In scenario s, A
can have an execution time of 2 or 2.1, both with probabil-
ity % Hence, there are two resulting configurations possible
after the start action as shown in Figure 4. The only differ-
ence between Cy and (' is the remaining execution time for
A. Definition 10 formalises the start action.

Definition 10 (Start Action Transition) Start action transi-

start(k)

tions — C O x D(O) indicate starting the processing

of data by a kernel k. Relation (¢,, &, 5)btdr—t(>k)7r holds if
k(k) = (s,—) for some s € S and ¢(x;) > Ry(s,i) for
each channel x; connected to an input port © € Ty. Func-
tion T is defined by w(¢p,,kL,0) = P(Eys = e), where
k., = K[k — (s, €)] for all e in the sample space of Ej, s.

In configurations Cy4 and C’, no further action transitions
can occur since A must first complete its firing. Only then,
sufficient tokens become available on its outputs to enable
the firing of E and F. The completion of firing A requires
that its execution time has passed. Consuming the minimal
time that enables action transitions again is captured by time
transitions. Although this minimal amount of time differs for
Cy and Cj, the resulting configuration after performing the
time transition is the same (both only enable A to end its fir-
ing while nothing else changes). As specified in Definition
11, configuration Cj is entered with probability 1.

. time(t)
Definition 11 (Time Transition) Time transitions — C
© x D(O©) denote progress in time with t time units. Relation

time(t)

(,0,K,0) — 'm withw(p, v, K',0") = 1 holds if no action
transitions are enabled and t is the smallest remaining execu-
tion time of all processes. Configuration (¢,,k’,0") is de-
fined by /' (k) = (s,n —t) if k(k) = (s,n) for some s € S,
andn € R, and §'(d) = (S,s,n —t) if §(d) = (S, s,n) for
some S €Sy, s € Sqgandn € RT.

We remark that Definition 11 implicitly assumes maximal
progress, which ensures that at most one time transition can
be enabled. In configuration Cg, kernel A can finalise its fir-
ing. This is captured by a kernel end action, which includes
consuming and producing the appropriate amount of tokens.
Definition 12 formalises this last type of action transition.

Definition 12 (Kernel End Action Transition) Kernel end

. .. d(k . .
action transitions e2d(®) C O x D(0O) reflect finalising the

firing of a kernel k. Relation (qﬁ,w,m,d)cnd—(}f)ﬂ with

(¢ W' k', §) = 1 holds if k(k) = (s,0) for some s € Sk.
Configuration (¢',0',k',0) is defined by ¢'(x;) =
¢(x;) — Ry(s,i) for each non self-loop channel x; con-
nected to an input port i € Iy, and ¢' (y,) = ¢(yo) + Ri(s,0)
for each non self-loop channel vy, connected to an out-
put port o € Oy, while ¢'(z) = ¢(z) for all other non
self-loop channels z and ¢'(z) = ¢(z) — Ri(s,1) + Ry(s, 0)
for each self-loop channel z connecting an o € Oy to an
i € Iy. Moreover, ' = plc — (c) — ¥(c)1] with ¢ € B,
the channel connected to the control port of k. And fi-
nally, k' = klk — (—, —)].

When residing in configuration C7, two detect actions are
enabled. There are sufficient tokens available on all inputs of
both detectors £ and F'. After non-deterministically choos-
ing between these options, the TPLTS can go to configura-
tions Cg, Cg or Cpg. The latter two show the probabilistic

fan-out after choosing for performing a detect action for FE.
They represent that the next state of its Markov chain can be
Sy (with probability) or S5 (with probability 2), where for
both there is only one execution time possible. The only dif-
ference between Cg and (' is that the Markov chain of E en-
tered a different state. From Cg, Cy and C¢, the system can
make further transitions that are not detailed in Figure 4.

4. Useful Properties

An execution of an SADF refers to a sequence of transi-
tions through its TPLTS, starting from the initial configura-
tion. To investigate boundedness, absence of deadlock and
determinacy for such executions, we first give some addi-
tional definitions. Notice that a detector d and all the kernels
ki, ...k, it controls always operate in the same scenario of
Sg4. Processes d and kq, . . ., k, are therefore said to be mutu-
ally scenario synchronous, which simplifies defining the rep-
etition vector for an SADF as follows.

Definition 13 (Repetition Vector) A repetition vector for an
SADF (K, D, B, ¢*) is a function ~y that assigns to all pro-
cesses p1,ps in P = K UD and all their scenarios, an ele-
ment of IN such that if output port o € O, is connected to
input or control port i € Ly, UCp,;

o if p1 and py are scenario synchronous, then R, (s,0) -
Y(p1,8) = Rp,(8,1) - v(p2, s) forall s in S, = Sp,;
e if py and py are not scenario synchronous, then
Rpl (81,0) . ’Y(pla 51) = sz (827i) . 7(p27 82) for all
51 € Sp, and 52 € Sp,.
Repetition vector - is said to be non-trivial in case y(p, s) >
0 for all processes p € P and s € S,,.

The existence of a non-trivial repetition vector is impor-
tant for boundedness and absence of deadlock as clarified be-
low. We remark that SADF models with a non-trivial repeti-
tion vector only allow rates of 0 for input and output ports of
kernels if both the consumption and production rate for the
connecting channel is 0 in the involved scenario. On the other
hand, having a non-trivial repetition vector does not necessar-
ily imply that the behaviour is meaningful. Consider for ex-
ample a detector d with a repetition vector entry larger than
1 for some scenario, while the states of its Markov chain vis-
ited in successive firings always imply different scenarios. If
in this case, the production and consumption rates between
two kernels controlled by d differ in the different scenarios,
tokens might be consumed in a scenario different from the one
in which they were produced. To avoid this undesirable situ-
ation, the property of strong* consistency is introduced.

Definition 14 (Strong Consistency) An SADF is called
strongly consistent iff it has a non-trivial repetition vec-
tor «y such that for each detector d, y(d, s) = 1 for all sce-
narios s € Sy. For a strongly consistent SADF, there is a
unique smallest non-trivial repetition vector, which is desig-
nated as the repetition vector of the SADF.

Recalling Definition 13, it can be observed that strong con-
sistency requires that the rate R4(s,0) of each output port
0 € Oy of a detector d connected to the control port ¢ of a
kernel k£ must equal the repetition vector y(k, s) of k for all
scenarios s € Sy (since Ry(s,c) = 1). Furthermore, the rate

4 Itis possible to define a weaker form of consistency that relaxes the re-
quirement for detectors to have an equivalent repetition vector entry.

R4(s,0) of each output port 0 € Oy connected to an input
port of another detector must be the same for all s € Sg.

We now continue with another important property affect-
ing boundedness and absence of deadlock. It concerns the
persistency of dependencies between processes. Although the
structure of how channels connect processes is fixed for an
SADF, the possibility of rates equal to 0 allows differences
in the dependencies for different scenarios. To enable captur-
ing the persistency of dependencies, we extend the notion of
reachability in traditional graphs (including SDF) as follows.

Definition 15 (Dependability) Process p,, depends on pro-
cess p1 for scenario combination si,...,s, with s; € Sp,
for 1 <1 < niffapath of channels exists, which connects p,
to pn, via processes pa, . .., pn—1 such that all rates encoun-
tered for the ports along the path are positive for s1, . .., Sy.

We now introduce the concept of strong dependency,
which is similar to strong connectivity in traditional graphs.

Definition 16 (Active Process) Process p is said to be inac-
tive for a scenario s € S, iff R, (x, s) = 0 forall v € I,U0O,,.
Otherwise, p is active in s.

Definition 17 (Strong Dependency) Let the detectors of an
SADF be denoted by d, . . . ,d,. The SADF is called strongly
dependent iff for each scenario combination si, . .., S, with
s; € Sg; for 1 < i < n, each active process depends on all
other active processes.

The essence of strong dependency is that no cyclic depen-
dencies between active processes are broken when switching
scenarios, even though the cyclic dependency between two
specific active processes may differ for different scenarios.
Notice that detectors are always active and hence, an inac-
tive kernel always depends on the detector controlling it. On
the other hand, no other processes depend on inactive ker-
nels, which means that there exists no cyclic dependency. Fi-
nally, we can investigate the property of boundedness.

Definition 18 (Boundedness) An SADF is called bounded iff
there exists a B € IN such that for all reachable configura-
tions (¢,1, K, 9), ¢(x) < Bforallx € B\B.and |y(c)| < B
for all ¢ € B,. It is unbounded otherwise.

Executing an unbounded SADF may lead to an unbounded
increase in the number of tokens stored in the buffers. To ex-
clude this undesirable situation, the next theorem identifies
conditions that ensure boundedness. The detailed proofs of
all the theorems in this paper are omitted for space reasons,
but sketches of the proofs can be found in the appendix.

Theorem 1 (Boundedness) A strongly consistent and
strongly dependent SADF is bounded if for each ker-
nel k the inequality Eq s > ~(k,s) - Ey s holds with prob-
ability 1 for all scenarios s in which k is inactive, where d
denotes the detector that controls k.

The last condition in Theorem 1 ensures boundedness of
control channels to kernels that may become inactive, see the
appendix. If an SADF model is bounded, then the set O is fi-
nite (all sets affecting the cardinality of © are finite, including
the sample spaces of the execution time distributions).

An SADF may deadlock, which means that there exists a
configuration in © without outgoing transitions. Conversely,
any execution of a deadlock-free SADF includes an infinite
number of control, start and detect action transitions. The next
theorem gives conditions for absence of deadlock.

Theorem 2 (Absence of Deadlock) A strongly consistent
and strongly dependent SADF is deadlock-free if, for all sce-
nario combinations, there are sufficient initial tokens in each
cyclic dependency between active processes such that ev-
ery process in the cycle can fire a number of times equal to
its repetition vector entry.

From Definitions 2 and 13, it can be derived that the sce-
nario in which a process p operates may only change af-
ter firing y(p,) times for each scenario s € S,. Verifying
whether an SADF is bounded and deadlock-free could there-
fore be based on repeated application of existing techniques
for analysing these properties in SDF models as mentioned in
for example [12, 18] (with a few minor modifications to antic-
ipate for rates of 0) for each scenario combination. Future re-
search includes a detailed investigation on more efficient ap-
proaches. By using the SDF techniques, the reader may ver-
ify that the SADF in Figure 1 is bounded and deadlock-free.

As shown in Figure 4, the TPLTS of an SADF may include
two types of choices; non-deterministic choices originating
from the concurrency in the model and probabilistic choices
due to variations in scenarios and execution times. The pol-
icy for making these choices may affect the functionality (and
performance). With the functionality of a dataflow model, one
typically considers the sequence of tokens on the channels.
Since an SADF abstracts from the actual values of data to-
kens, we only consider the number of tokens and their tim-
ing. The following theorem states that non-determinism does
not affect the functionality; only the probabilistic choices do.

Theorem 3 (Determinacy) The functionality represented by
an SADF only depends on the probabilistic choices that deter-
mine the sequence of scenarios successively detected by each
detector and not on the non-deterministic choices.

5. Performance Analysis

Before discussing performance analysis with SADF, we
first remark that many of the performance metrics that are
of interest (such as throughput and time-average buffer occu-
pancy) have no meaning in an untimed context. An SADF is
said to be untimed if for all processes p, E,, ; = 0 with prob-
ability 1 for all s € S,,. It is timed otherwise.

We discuss two approaches for SADF-based performance
analysis. The first approach allows evaluation of any long-run
average or worst-case performance metric, which is based on
deriving a Markov chain from the involved TPLTS and re-
lies on a similar approach as in [21]. The first step concerns
resolving any non-determinism. In general, the policy used
for resolving non-determinism may affect the results for cer-
tain performance metrics. An example is the maximum occu-
pancy of a buffer, which depends on the order of scheduling
the possibly non-deterministic actions regarding the reading
and writing of tokens. Theorem 4 states that many long-run
average performance metrics are not affected by the policy
used for resolving non-determinism. Examples of such met-
rics are throughput and time-average buffer occupancy.

Theorem 4 (Long-Run Equivalence) Any long-run aver-
age for a timed SADF model that merely depends on the
status of the system in configurations of the TPLTS just be-
fore and after time transitions converges to the same result
regardless how non-determinism is resolved.

After resolving non-determinism, a new TPLTS is ob-
tained (reflecting a subset of all possible behaviours of the

original one) [21]. In case the SADF is deadlock-free, then
this new TPLTS can be interpreted as a discrete-time Markov
chain by shifting the information on the occurrence of actions
and progress of time into the configurations. The state space
of this Markov chain is finite if the SADF is bounded. The fi-
nal step in this Markov chain based approach concerns defin-
ing reward functions to express the metrics of interest [21].

Explicitly constructing the Markov chain from the TPLTS
allows for analytical computation of any (complex combina-
tion of) long-run average(s) by applying the ergodic theorem
[6, 20]. The formal relation between an SADF and its im-
plied Markov chain also provides the foundation for proper
simulation-based performance estimation, without the need
to explicitly construct the TPLTS or Markov chain. Accuracy
analysis of (complex combinations of) long-run averages can
in this case be accomplished by using the central limit theo-
rem based techniques proposed in [7, 19]. Nevertheless, to ap-
ply the mentioned existing exhaustive and simulation-based
techniques, the Markov chain must be ergodic. In the litera-
ture this is often simply assumed to be true. With Theorem 5,
we identify however an example class of SADF models for
which ergodicity is ensured. The reader may verify that the
SADF in Figures 1 satisfies the conditions of Theorem 5 (see
also Figure 2).

Theorem 5 (Ergodicity) If the Markov chain for each detec-
tor of a bounded and deadlock-free SADF is ergodic and has
only (positive) recurrent states, then the Markov chain im-
plied by the SADF is ergodic.

Next to detrmining long-run average performance metrics,
the approach of deriving a Markov chain from the TPLTS
of an SADF is also suitable for evaluating worst-case perfor-
mance metrics. Both analytical computation and simulation-
based estimation of worst-case metrics are fairly straightfor-
ward® in this case, though no information on the accuracy
of results can be given when using simulation. An alterna-
tive approach to evaluate certain specific worst-case metrics
(like the worst-case execution time or maximum buffer occu-
pancy) is the possibility to convert an SADF model into a set
of SDF models; one for each possible scenario combination
using the largest possible execution time for each process in
that scenario combination. The overall worst-case result can
then easily be derived from the results for the individual sce-
narios (by taking their maximum). Future research includes
comparing the efficiency of applying the Markov chain based
and SDF based approaches for evaluating worst-case metrics.

6. Experimental Results
6.1. Prototype Tool Flow

Analysis of modern streaming applications requires effi-
cient tools. Unfortunately, a specialised tool for analysing
SADF models according to the approaches discussed in sec-
tions 4 and 5 is not yet available. To investigate the potential
of using SADF models for performance analysis, we devel-
oped however a prototype tool flow that relies on an SADF
modelling style for the modelling language POOSL [15].
The operational semantics of a POOSL model also defines
a discrete-time Markov chain as a basis for exhaustive and

5 Computation of a worst-case metric based on a Markov chain boils down
to identifying the state for which the involved reward is maximal. In sim-
ulation, one would track the maximum of all occurring rewards.

Scenario
I Py Py
0 0 1
0 0 T
99 1 T
1 0 1
99 0 T

Figure 5. SADF model of an MPEG-4 decoder.

simulation-based performance analysis [19] according to sim-
ilar concepts as used for SADF models, see [21]. We are how-
ever aware of the fact that the TPLTS of a POOSL model has
a much smaller grain of execution steps compared to that of
an SADF model, which makes this approach inherently inef-
ficient compared to a future specialised SADF analysis tool.
Another disadvantage is that currently no tools for exhaus-
tive performance analysis of POOSL models exist.

The current tool flow has three phases. The first phase con-
cerns determining the scenarios of a streaming application to-
gether with the accompanying rates and execution time dis-
tributions. Information on the occurrence of scenarios, which
is needed to specify the Markov chains associated with de-
tectors, may originate from standards (for example, common
implementations of MPEG use certain fixed sequences of I, P
and B frames) or can be obtained using a profiling tool. Af-
ter organising the information in an XML specification of an
SADF model, a tool called sadf2poos1 automatically con-
structs a POOSL model according to the SADF modelling
style. It also adds performance monitors using the approach
of [19]. The final phase relies on the simulator for POOSL
models rotalumis [15], which obtains performance esti-
mation results with a predetermined accuracy.

6.2. MPEG-4 Simple Profile Decoder

In this section, we consider an MPEG-4 decoder for the
Simple Profile. This decoder supports video streams con-
sisting of I and P frames. Such frames consist of a num-
ber of macro blocks, each requiring operations like Variable
Length Decoding (VLD), Inverse Discrete Cosine Transfor-
mation (IDCT), Motion Compensation (MC) and Reconstruc-
tion (RC). Figure 5 depicts the SADF model of the considered
MPEG-4 decoder. The VLD and IDCT kernels in this model
fire once per macro block that is decoded for a frame, while
the MC and RC kernels fire once per frame. The Frame De-
tector (FD) represents the part of the actual VLD determin-
ing the frame type. The initial token on the channel from RC
to MC models the exchange of the previously decoded frame,
while the three initial tokens on the channel from RC to FD
model that the decoder is capable of performing VLD and
IDCT for macro blocks of 3 frames in a pipelined fashion.

When detecting an I frame, all macro blocks must be de-
coded using VLD and IDCT, while the resulting image is re-
constructed by RC straightforwardly. Assuming an image size
of 176 x 144 pixels (QCIF), there are 99 macro blocks to de-
code for an I frame, which explains the values of the parame-
terised rates ¢, d and e in this scenario. Conversely, there are
no motion vectors to be taken into account for an I frame and
hence, MC does not receive any motion vectors from VLD.

Decoding P frames requires MC to take motion vectors
into account for retrieving the correct position of macro

k Tk
VLD 0.063 £ 0.04%
IDCT 0.063 £+ 0.04%
MC 0.00106 + 0.19%
RC 0.00106 + 0.19%

k av[Ly] var[Ly] Ly
VLD 15.99 £ 0.03% 75.38 £ 0.82% 710
IDCT 15.99 + 0.03% 56.45 + 1.09% 698
MC 940.3 £ 0.02% 2.4-10° + 3.46% 3305
RC 940.3 £+ 0.02% 1.5-10° + 4.99% 2216

b av[Oy] var[Oyp] Oy
VLD - IDCT 1.910 + 0.06% 0.528 £+ 1.99% 9
IDCT - RC 60.19 £+ 0.18% 671.8 + 4.55% 154
VLD - MC 34.73 £ 0.52% 698.4 + 4.39% 133

MC -RC 0.577 £ 0.56% 0.244 £+ 3.27% 1

All accuracy results are for confidence levels of 0.95.

Table 1. Performance Results.

blocks from the previous frame. The resulted image is then
corrected, if needed, with the pixel data contained in freshly
decoded macro blocks. The number of motion vectors and
the number of macro blocks to decode may differ for differ-
ent P frames. The MPEG-4 decoder in Figure 5 assumes an
equal number (0 or x € {30, 40, 50, 60, 70, 80,99}) of mo-
tion vectors and macro blocks to be decoded, each implying
a different scenario. The possible values for = represent con-
servative approximations for a range of different numbers of
motion vectors that may occur in reality. The special case of 0
motion vectors may reflect decoding still video (in which case
the VLD and IDCT kernels are inactive), where MC simply
copies the previously decoded frame.

To evaluate the performance of the MPEG-4 decoder, we
determined the execution time distributions of the kernels
for each scenario using a profiling tool. This tool was also
used for determining the occurrence probability of the sce-
narios. The latter straightforwardly resulted in a fully con-
nected Markov chain with nine states (one for each possible
scenario) for detector FD, which has an equilibrium distribu-
tion given by the scenario occurrence probabilities.

By applying the prototype tool flow discussed in Section
6.1, we obtained the performance results shown in Table 1.
The time unit for the model is a kCycle. The top table shows
the throughput 7}, of each kernel k& (in number of firings per
kCycle). It can be observed that RC finalises decoding a frame
about every MCycle on average. The middle table gives the
average av[Ly|, variance var[Ly] and maximum Lj of the
time Lj between successive firings of k. The first observa-
tion is that the reciprocal of the average time between succes-
sive firings correctly matches with the throughput numbers
as expected. Nevertheless, the large variance in the time be-
tween successive firings of RC (and MC) shows that decoded
frames become available in bursts. Because this is unaccept-
able in practice, an explicit play-out buffer is needed to com-
municate frames to a display with fixed rate. This observa-
tion may inspire a designer to extend the SADF model cor-
respondingly and investigate how large this play-out buffer
should be in order to obtain a certain minimal percentage of
deadline misses. This percentage is in fact a long-run aver-
age that could be evaluated based on the results of this paper.
The bottom table depicts the time-average av[Op] and time-
variance var[Op] buffer occupancies Oy, for some channels b
(i.e., the average/variance occupation when taking the dura-
tion of each individual occupation into account) as well as
their maximum occupancy Oy. These results can for example
be used to dimension the memory that realises these buffers.

7. Conclusions

This paper introduces a generalisation of the Synchronous
Data Flow model to succinctly express dynamic changes in
execution times and rates by means of scenarios. A Scenario-
Aware Data Flow (SADF) model can take the correlation be-
tween the execution time distributions of different processes
into account. With rates of 0, it can express that a data depen-
dency is absent or that a process is inactive in a certain sce-
nario. Another key feature is the use of a stochastic approach
to capture the occurrence of scenarios in an abstract way.
The SADF model enables design-time analysis of both long-
run average and worst-case performance metrics using exist-
ing exhaustive or simulation-based techniques. Future work
includes a detailed investigation on the properties of SADF
models and on an efficient analysis tool.

References

[1] M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Con-
current Processes with Nondeterminism, Priorities, Probabilities and
Time. Theoretical Computer Science, vol 202 (1-2), pp 1-54, 1998.

[2] B. Bhattacharya and S.S. Bhattacharyya. Parameterized Dataflow
Modeling for DSP Systems. IEEE Transactions on Signal Processing,
vol 49 (10), pp 2408-2421, 2001.

[3] G. Bilsen, M. Engels, R. Lauwereins and J.A. Peperstraete. Cyclo-
Static Dtata Flow. Proceedings of ICASSP’95, vol 5, pp 3255-3258,
IEEE, 1995.

[4] J.T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Mem-
ory using the Token Flow Model. Ph.D. Thesis, University of Califor-
nia, Berkeley, 1993.

[5] J.T. Buck. Static Scheduling and Code Generation from Dynamic
Dataflow Graphs with Integer-Valued Control Streams. Proceedings
of SSC’94, vol 1, pp 508-513, IEEE, 1994.

[6] K.L. Chung. Markov Chains with Stationary Transition Probabilities.
Springer-Verlag, 1967.

[71 M.A. Cranes and A.J. Lemoine. An Introduction to the Regenerative
Method for Simulation Analysis. Lecture Notes in Control and Infor-
mation Sciences, vol 4, 1977.

[8] G.R. Goa, R. Govindarajan and P. Panangaden. Well-Behaved
Dataflow Programs for DSP Computation. Proceedings of ICASSP’92,
vol 5, pp 561-564, IEEE 1992.

[9] J. Hillston. Compositional Markovian Modelling Using a Process Al-
gebra. Proceedings of NSMC’95, pp 177-196. Kluwer, 1995.

[10] G. Kahn. The Semantics of a Simple Language for Parallel Program-
ming. Proceedings of IFIP’74, pp 471-475, North-Holland, 1974.

[11] L. Kleinrock. Queueing Systems, Volume 1: Theory. Wiley Inter-
science, 1975.

[12] E. Lee and D. Messerschmitt. Synchronous Data Flow. IEEE Proceed-
ings, vol 75 (9), pp 1235-1245, 1987.

[13] M.A. Marsan, G. Conte and G. Balbo. A Class of Generalised Stochas-
tic Petri Nets for the Performance Evaluation of Multiprocessor Sys-
tems. ACM Transactions on Computer Systems, vol 2 (2), pp 93-122,
1984.

[14] M.K. Molloy. Performance Analysis using Stochastic Petri Nets. [EEE
Transactions on Computers, vol 31 (9), pp 913-917, 1982.

[15] http://www.es.ele.tue.nl/poosl

[16] S. Ritz, M. Pankart and H. Meyr. High-Level Software Synthesis for
Signal Processing Systems. Proceedings of ASAP’92, pp 679-693,
IEEE, 1992.

[17] R.Segala. Modelling and Verification of Randomized Distributed Real-
Time Systems. Ph.D. Thesis, Massachusetts Institute of Technology,
1995.

[18] S. Siram and S.S. Bhattacharyya. Embedded Multiprocessors;
Scheduling and Synchronization. Marcel Dekker, 2000.

[19] B.D. Theelen. Performance Modelling for System-Level Design. Ph.D.
Thesis, Eindhoven University of Technology, 2004.

[20] H.C. Tijms. Stochastic Models; An Algorithmic Approach. John Wiley
& Sons, 1994.

[21] J.P.M. Voeten. Performance Evaluation with Temporal Rewards. Per-
formance Evaluation, vol 50 (2/3), pp 189-218, 2002.

Appendix: Proofs

This appendix sketches the proofs of the theorems in this
paper. Some of these sketches rely on properties of SDF mod-
els of which a detailed definition can be found in [12, 18].

Boundedness

Proving Theorem 1 involves considering three major as-
pects: boundedness in case all processes always operate in a
fixed scenario, the effect of scenario changes on boundedness
and boundedness of control channels to kernels that may be-
come inactive. For discussing these aspects, a definition of an
iteration of an SADF is helpful.

Definition 19 For a certain scenario combination, an iter-
ation of an SADF refers to the firing of each process p for
~v(p, s) times, where s is the scenario in which p operates.

The conditions of strong consistency and strong depen-
dency in Theorem 1 are identical to those ensuring bound-
edness for SDF models [12, 18]. Strong dependency for SDF
means that all actors are strongly connected, which guaran-
tees that each actor has a cyclic dependency with all other
actors. Consistency in SDF ensures that the number of to-
kens in each channel after an iteration of the SDF is the same
as before. The proof that consistency and strong connectiv-
ity make an SDF bounded is similar to the one in [25] for
computation graphs. Turning back to SADF, strong depen-
dency ensures that active processes always have a cyclic de-
pendency with all other active processes. From Definitions 2
and 13, it follows that the number of tokens in channels be-
tween active processes after an iteration of the SADF is the
same as before. Based on the proof in [25], we therefore con-
clude that the number of tokens in channels between active
processes is bounded for each individual scenario combina-
tion if the SADF is strongly consistent and strongly depen-
dent (for each scenario combination individually, an SADF
behaves like an SDF).

An SADF may have control channels to kernels that are in-
active in certain scenarios. An inactive kernel does not have
a cyclic dependency with the detector controlling it (nor with
any other process). Strong consistency is insufficient to en-
sure that the number of tokens in the control channel does not
increase unboundedly for an infinite number of iterations for
the involved scenario combination. In other words, firing the
kernel does not limit the pace with which the detector pro-
duces control tokens. Satisfying the inequality in Theorem 1
ensures however that the kernel is sufficiently fast with re-
moving the tokens from the control channel when it is inac-
tive.

So far, we only showed that Theorem 1 is plausible for
each individual scenario combination.

Lemma 6 In a strongly consistent SADF, a process p can
only change its scenario dafter firing v(p, s) times if it oper-
ates in scenario s € S,.

Proof Trivial if p is a detector since then v(p, s) = 1 forall s €
Sp. If p is a kernel that is controlled by a detector d via output port
0 € Og, then p operates for y(p, s) = Ra(s, o) firings in scenario
s € Sq as a consequence of being consistent and Definition 8. ||

Although Lemma 6 proofs that scenario changes can only
occur after completing an iteration, such iterations may over-
lap in a pipelined fashion. The crux for proving Theorem 1
is that the individual firings of processes can be partitioned
into individual scenario iterations, each having no nett effect
on the number of tokens in the channels, while the number
of scenario iterations that is active (in a pipelined fashion) is
bounded due to each detector being always dependent on all
other detectors.

Absence of Deadlock

For proving Theorem 2, we follow a similar approach as
for Theorem 1. Deadlock in an SADF can only originate from
the cyclic dependencies between active processes. The key to
absence of deadlock is therefore to ensure that an iteration can
always be completed, despite the cyclic dependencies. Recall-
ing Definition 19, this implies that each (active) process can
fire a number of times equal to its repetition vector entry. The
condition in Theorem 2 ensures that sufficient initial tokens
are available to complete an iteration for each individual sce-
nario combination. Because an SADF behaves like an SDF
for each scenario combination, absence of deadlock can be
verified using a similar approach as for SDF based on the re-
sults of [25]. The crux of proving Theorem 2 is that after com-
pleting an iteration, the number of tokens in all channels is the
same as before and hence, another iteration can always be per-
formed. Using again that scenario changes and the pipelined
overlapping of iterations do not affect the nett result of each
individual iteration completes the proof.

Determinacy

The proof of Theorem 3 is based on extending existing
proofs for determinacy of other data flow models, like the
one for KPN in [26], to accommodate for the probabilistic
choices. The essential property that makes the policy for re-
solving non-determinism irrelevant is that non-determinism
only occurs between independent concurrent actions, which
leads to satisfying the so-called diamond property. It states
that when two actions are enabled, it does not matter for the
functionality in which order these two actions are performed.
Although transitions for an SADF do not yield configurations
as in [26] but rather (finite) distributions, the proof of Theo-
rem 3 still follows a similar approach. To this end, we first lift
the transition relation — defined in Definitions 7 through 12
to a relation on D(O).

Definition 20 Let wo , € D(O) denote the probability dis-
tribution over © after performing an action or time transition
o from a configuration C' if it exists. Relation 71>y holds
if for all configurations C with positive 71 (C') transition o
can be performed and w3 (C') = Y o ™1(C) - T, (C')
for all possible resulting C' € ©.

Figure 6 shows an extension of the TPLTS in Figure 4,
which focusses on the non-deterministic choice between the
detect(E) and detect(F) actions that can be performed from
configuration C7. After choosing for one of them, the other
can be performed in the next execution step. Let 71 denote the
distribution where the transition system arrived in configura-

tion C7. Performing the detect(F) action gives wldeteigF)ﬂ'g
with w2(Cs) = 1. On the other hand, also WldeteiEE)ﬂ'g
with w3(Cy) = % and 73(Chp) = % The diamond prop-
erty for SADF models states that there exists some 74 such

detect(E detect(F . .
that 7o eﬂ)71'4 and 7r3 eg)71'4. Figure 6 illustrates that

such 7 with 7v4(C11) = 1 and 74(C12) = 2 exists indeed.

Lemma 7 (Diamond Property) Let o and 3 be two enabled
actions. If #57' and nn! with m, ', w" € D(O), then
there exists some " € D(O) such that ' Lo and " S,

The diamond property in Lemma 7 states that the policy
for resolving the non-deterministic choice between two ac-

Figure 6. Diamond property in TPLTS.

tions that are performed immediately after each other is ir-
relevant. In a particular execution, two enabled actions may
however not be performed immediately after each other be-
cause other actions can be enabled as well. For example, from
Cs in Figure 6, an end(F) action can be performed (it becomes
enabled after the detect(F) action), which postpones perform-
ing the detect(E) action. The crux to proving Theorem 3 is
that taking one of the enabled actions does not disable any of
the others, while the others will be performed before a time
transition such that the nett effect is equal to performing any
of the others first. This property allows to convert any pol-
icy for resolving non-determinism into any other policy using
a similar approach as in [26], without changing the sequence
of tokens produced on the channels. The conversion involves
interchanging the order of executing concurrent actions be-
fore the next time transition. At a time transition, no actions
are enabled anymore and hence, all differences between poli-
cies have been cancelled up to this barrier. Using time tran-
sitions as a barrier allows to consider finite pieces of an exe-
cution of a timed SADF, thereby simplifying the proof. The
same proof can however be extended for executions of un-
timed SADF models, which do not have time transitions.

Long-Run Equivalence

Section 5 discussed how non-determinism affects some
performance properties. In case non-determinism is not re-
solved, the TPLTS actually implies a Markov decision pro-
cess [23] for which a performance metric gives rise to a col-
lection of results [21]. The approach discussed in Section
5 is however to derive a Markov chain by resolving non-
determinism explicitly such that a single result is obtained
for a metric. Theorem 4 contributes that the result for a long-
run average metric that merely depends on the status of the
TPLTS in configurations just before and after time transitions
is always the same for any policy that can be used to resolve
the non-determinism.

The proof of Theorem 4 mainly relies on the result of The-
orem 3 and on the way how the involved performance metrics
are specified for the Markov chain implied by an SADF using
temporal rewards [21] and conditional rewards [19]. The for-
malism of temporal rewards extends the notion of traditional
atomic reward functions to enable specifying delay-type mea-
sures [22], which may express an accumulation of atomic re-

wards over a number of states. An example is the amount of
time that has passed between two designated states. Condi-
tional reward functions are atomic rewards indicating whether
a certain event has occurred that affects the result of a perfor-
mance metric. An example is the occurrence of actions re-
garding the writing and reading of tokens in a buffer, which
are events that may affect the time-average buffer occupancy.
The property of determinacy ensures that although multiple
events affecting a performance metric may occur between two
time transitions, the nett effect is equal to taking only the dif-
ferences between the states just before and after time transi-
tions into account. The time-average buffer occupancy is for
example not affected by (the order of) timeless actions regard-
ing the reading/writing of tokens, while only the difference in
the occupancy between two time transitions is relevant.
Ergodicity

The requirement of absence of deadlock (and bounded-
ness) in Theorem 5 mainly ensures that an SADF indeed de-
fines a Markov chain (with finite state space) and not some
sub-stochastic process (with infinite state space). The other
conditions enable to lift a result for SDF presented in [24]
to SADEF. [24] proofs that the transition system defined by a
bounded and deadlock-free SDF implies a Markov chain con-
sisting of a transient and recurrent part for which all one-step
transition probabilities are equal to 1. The transient part origi-
nates from starting up the pipelined fashion of executing con-
current iterations, while the recurrent part reflects the peri-
odicity of the behaviour of an SDF. This periodicity (which
can be considered as a very strong form of ergodicity) orig-
inates from the guaranteed reoccurrence of actor firings and
from the assumption of self-timed execution [18]. The lat-
ter assumption is equivalent to assuming maximal progress,
where the firing of actors is not further postponed after suffi-
cient tokens have become available on all input ports.

Turning back to SADF, which has maximal progress in-
corporated in its operational semantics, we need to show that
the conditions in Theorem 5 imply the state space to include
a single strongly connected component of (positive) recurrent
states. To this end, we first observe that the state space of a
kernel is completely determined by the state space of the de-
tector that controls it. The conditions in Theorem 5 ensure
that the Markov chains associated with detectors only con-
sist of a strongly connected component of (positive) recurrent
states. Since detectors determine their state independently of
each other, the product of the state spaces of all detectors also
consists only of such a component. Hence, the behaviour ex-
hibited by all processes together ensures that the states vis-
ited after starting up the pipelined fashion of executing con-
current iterations are all (positive) recurrent. Combining this
with the result in [24] forms the crux for proving Theorem 5.

References

[22] G. Clark. Formalising the Specification of Rewards with PEPA. Pro-
ceedings of PAPM’96, pp 139-160, Carleton Scientific, 1996.

[23] C. Derman. Finite State Markovian Decision Processes. Academic
Press, New York, 1970.

[24] A.H. Ghamarian, M.C.W. Geilen, S. Stuijk, T. Basten, A. Moonen,
M. Bekooij, B.D. Theelen and M.R. Mousavi. Throughput Analysis
of Synchronous Dataflow Graphs. In: Proceedings of ACSD’06, IEEE,
2006.

[25] R.M. Karp and R.E. Miller. Properties of a Model for Parallel Com-
putations: Determinacy, Termination, Queueing. SIAM Journal of Ap-
plied Mathematics, vol 14 (6), pp 1390-1411, 1966.

[26] N.A. Lynch and E.W. Stark. A Proof of the Kahn Principle for In-
put/Output Automata. Information and Computation, vol 82(1), pp 81-
92, 1989.

