
Modeling Resource Sharing using FSM-SADF
João Bastos1, Sander Stuijk1, Jeroen Voeten1,3, Ramon Schiffelers1,2, Johan Jacobs2, and Henk Corporaal1

1Eindhoven University of Technology, Eindhoven, The Netherlands
2ASML, Veldhoven, The Netherlands

3TNO-ESI, Eindhoven, The Netherlands
Email: {j.p.nogueira.bastos,s.stuijk,j.p.m.voeten}@tue.nl, {ramon.schiffelers,johan.jacobs-jacj}@asml.com, h.corporaal@tue.nl

Abstract—This paper proposes a modeling approach to capture
the mapping of an application on a platform. The approach is
based on Scenario-Aware Dataflow (SADF) models. In contrast
to the related work, we express the complete design-space in a
single formal SADF model. This allows us to have a compact
and explorable state-space linked with an executable model
capable of symbolically analyzing different mappings for their
timing behavior. We can model different bindings for appli-
cation tasks, different static-orders schedules for tasks bound
in shared resources, as well as naturally capturing resource
claiming/unclaiming using SADF semantics. Moreover, by using
the inherent properties of dataflow graphs and the dynamic
behavior of a Finite-State Machine, we can model different levels
of pipelining, such as full application pipelining and interleaved
pipelining of consecutive executions of the application. The size
of the model is independent of the number of executions of the
application. Since we are able to capture all this behavior in a
single SADF model we can use available dataflow analysis, such
as worst-case and best-case throughput and deadlock-freedom
checking. Furthermore, since the model captures the design-space
independently of the analysis technique, one can use different
exploration approaches to analyze different sets of requirements.

I. INTRODUCTION

In a traditional approach to system design, the first ex-
ploration phase focuses on iterating over different design
alternatives to find the best solution that satisfies a given set of
requirements and constraints. For example, real-time embed-
ded systems have to perform under strict timing guarantees,
or high-performance production systems focus on maximizing
resource utilization to achieve maximal throughput. However,
exploring different design alternatives is highly dependent on
an efficient binding and scheduling of the application in order
to analyze the performance of each design. Therefore, several
approaches have been proposed to model and explore different
mapping options. However, current modeling approaches for
the binding and scheduling are not transparent, use different
models for application and platform or rely on later transfor-
mations to different models and formalisms to solve the actual
state-space exploration problem.

In this paper1 we present a modeling approach based
on Scenario-Aware Dataflow (SADF) that provides a single,
compact and formal model of the system which reflects the
complete state-space for all binding and scheduling options
of an application to be mapped on a given platform. Our
approach allows for the modeling of both application and
platform constraints, keeping all deterministic behavior of the
application within static dataflow graphs and model explicitly
the different choices of scheduling and binding decisions in
a Finite-State Machine. The approach uses a rich formalism
capable of capturing different applications or different levels
of application pipelining. The resulting model uses an under-
lying symbolic executable flow to analyze the performance or

1The extended version of this paper can be found in [3]

specific scenario sequences or perform state-space exploration
for timing analysis.

Our model captures the following cases: 1) Resource Shar-
ing, e.g., if two tasks are bound to the same resource; 2)
Resource Binding, e.g., if one task is allowed to execute in
two different resources; 3) Application flow/Pipelining, e.g.,
if the system allows for interleaved consecutive executions of
the application, or if the system can have different bindings
throughout application execution.

II. RELATED WORK

Resource modeling has been explored in several works
for different dataflow models. For SDFGs, a binding-aware
model for task binding is proposed in [7]. It requires graph
annotations to encode the binding and schedule and therefore
a new model is required per scheduling or resource binding
option. In contrast, we capture all options in a single model.

In [1], a modeling approach to find the maximal throughput
for the problem of scheduling of SDFGs by converting the
graph into a Timed Automata [2] model is presented. In con-
trast to our approach, it relies on a transformation of dataflow
models to other models of computation for the analysis.

In [11], [10] an extended SDFG model, Resource-Aware
Synchronous Dataflow (RASDF), is proposed to account for
resource binding and scheduling decisions during the design
flow. The work is extended for dynamic scheduling decisions
using game-theory and SADF to synthesize controllers that
meet timing and resource constraints. However, since these
models are extensions of SDF and SADF models, existing
analysis are no longer applicable. In our approach, we use
a combination of SDFG models and finite-state automata.
However, instead of embedding the annotations in the original
graph, we define different scenarios to reflect the possible
bindings and static-order schedules. This allows us to have a
single model that reflects the whole mapping state-space and
to orthogonally explore it using different analysis approaches.

III. PRELIMINARIES

The semantics of dataflow models, such as Synchronous
Dataflow Graphs (SDFGs), naturally capture the behavior
of concurrent and dependency-driven applications, such as
embedded or production systems. It allows the modeling of
direct, cyclic, and pipelined dependencies. Several works have
focused on the scheduling and timing analysis of streaming
applications using SDFGs, such as [6], [5], [9]. We briefly
introduce SDFG in this section (see [4] for details). Consider
the example of Fig. 2(a), which depicts an application modeled
as an SDFG. The application has 5 tasks, each of which
has 1 time unit of execution time. Tasks are modeled as
actors. Dependencies amongst tasks are modeled as directed
edges between actors. Tokens are represented as black dots



S1 S2
A
1

B
1

C
1

D
1

F
1

E
1

procstart end

A
2

B
1

C
2

D
1

F
2

E
1

procstart end

S1 S2

(a) (c)(b)

Fig. 1. Example FSM-SADF application graph: (a) Scenario S1 (b) Scenario S2 and (c) Finite-State Machine that models scenario flow

placed on edges between actors. An actor fires, i.e. executes its
computation, when all its input edges have a number of tokens
equal to the specified rate for that channel. For simplicity,
throughout this paper we assume actors with a single-rate of
1. When an actor fires, it consumes all its input tokens and
produces a number of tokens on its output edges equal to
its defined rate. The act of firing takes a fixed amount of
time called the execution time of the actor. The execution
of 4 iterations of the example application is depicted in Fig.
2(b). In this case, since we are not assuming an execution
platform for the example application, actors can fire as soon
as possible. Execution of dataflow graphs can be captured by
looking at the start and execution times of actor firings (Gantt
Chart) or by analyzing the token production/consumption
timeline (Token Timeline). The Token Timeline shows the
production and consumption times of tokens throughout the
graph execution. For each labeled token we define a timeline to
register each consumption/production of that token. It provides
less information in terms of the execution of the application
graph, we do not see the individual firings of actors, but it
allows us to visualize the transition between iterations of the
application graph in time. We consider that an iteration of the
graph is terminated once all the initial tokens are re-produced,
and the graph returns to its initial state. Binding and scheduling
of actors in a static dataflow graph is usually done by encoding
the information on the graph by using extra actors and edges,
or by performing separate analysis techniques, which often
leads to building different graph models or transformations
to other MoCs. In our work we use a richer dataflow MoC:
Scenario-Aware Dataflow.

A. Scenario-Aware Dataflow
Scenario-Aware Dataflow is a MoC that combines SDFGs

with finite-state automata. The dynamic behavior of a system
can be captured using multiple scenarios, where each individ-
ual scenario (a SDFG) models a specific mode of operation
of the system/application. Therefore, a possible execution of
the application can be analyzed with a sequence of different
scenarios. The possible orderings of scenarios are explicit in
a Finite-State Machine (FSM). SADF exploits a combination
of deterministic behavior in the scenario while allowing non-
deterministic behavior in the selection of scenario sequences.

B. Example
We can use the example of Fig. 2 to define two different

application scenarios as depicted in Fig. 1. In Fig. 1(a) we
have an application scenario with a static-order for actors
D and E, (D → E), and all actors have an execution time
of 1 time unit. In Fig. 1(b) we have a different scenario

t

A
B

C
D

F
E

A
B

C
D
E

F

A
B

C
D
E

F

A
B

C
D
E

F

start
proc
end

A
1

B
1

C
1

D
1

F
1

E
1

procstart end

(b)

(a)

Fig. 2. (a) Example application graph modeled as an SDFG graph (b) Gantt
chart execution of 4 iterations of the example application

t

A
B

C
D

F
E

A
B

C
D

E
F

start
proc
end

A
B

C
D

F
E

Fig. 3. Gantt Chart of Scenario Sequence: S1 → S2 → S1

where the static-order is (E → D) and the execution times
of A, C, and F are of 2 time units. These represent two
possible modes of operation of the initial application of Fig.
2, for example, representing different power modes of an
embedded application where actors A, C, and, F have different
execution times. The possible orderings of scenario sequences
are defined in the FSM (Fig. 1(c)). The states represent the
possible application scenarios, while edges represent possible
scenario transitions which result in the next scenario to exe-
cute. The flow of execution of scenarios is based on the token
production/consumption of labeled persistent tokens. These
tokens are represented by labeled black dots. The label is used
to identify common tokens synchronizing between scenarios.
This construct is fundamental to understand the execution and



scenario transitions. Fig. 3 depicts the execution of scenario
sequence S1 → S2 → S1. If we look at the Gantt chart we
can follow the scenario execution by using the coloring, green
for S1 and blue for S2. We see that scenario executions overlap
in time, however in some cases firings of actors between
different scenarios get delayed. In a scenario sequence, a
scenario starts executing as soon as the persistent tokens of
the actors of that scenario become available. This means that
multiple scenarios can overlap in time. For example, in the
first transition S1 → S2, scenario S2 starts executing as
soon as the persistent token of actor AS2 start is produced
by actor AS1. In the same fashion, the execution of actors in
a scenario might get delayed due to pending production of
certain persistent tokens. For instance, in the second transition
S2 → S1, the execution of actor FS1 is delayed. Actor AS1

can start executing immediately after the firing of AS2 but
actor FS1 is still dependent on the production of token end.
Therefore, even-though FS1 could fire at time 9, it only fires
at time 10, because it is the new production time of token end.
This is the fundamental mechanism behind scenario transitions
in an FSM-SADF graph and it allows us to model resource
availability by using production and consumption of tokens as
unclaiming and claiming of resources.

t

A B C D F

E

A
B

C
D

F
E

A
B

C
D
E

F

A
B

C
D
E

F

A
B

C
D
E

F

end
proc

start

b)

a)

Fig. 4. Example with natural static-order between actors B and D

IV. CHALLENGES IN MODELING RESOURCE SHARING

In this section, we explain in more detail the challenges in
modeling resource sharing we want to capture in our model.
For this purpose we will use the application of Fig. 2, as
a running example. Assume a platform with 5 resources, 3
specific resources start, proc and end and 2 shared resources
R1 and R2. Assume the binding of A, C and F to start, proc
and end, respectively, while B, D and E are unbounded.

A. Resource Sharing
A resource sharing situation is the case when D and E, with

no direct dependencies, are bound to the same resource. In this
situation the order of execution of the actor is not static and
can be either (D→E) or (E→D). Although throughput-wise
there is no difference between the orders, there can be latency
or deadline constraints applied to one of the actors. Therefore,
we want to explicitly capture and explore both of these choices
in a single model.

B. Resource Binding

Another case we might encounter when exploring the map-
ping options of an application concerns alternative bindings of
actors. For instance, we may allow that actor B can be bound
either to resource R1 or R2. Again, this can be expressed
by using two different models where the binding choices are
different. However, this approach poses two main issues: 1) we
are required to create two distinct models and 2) in a binding-
aware model the binding is static, while modern applications
can exhibit behavior that allows the mapping to be changed
dynamically throughout the execution. Therefore, we want to
capture dynamic binding options in an explicit way.

C. Application Flow/Pipelining

A simple example is pipelining of different instances of the
system application, which we call interleaved pipelining. This
behavior is usually present in production or manufacturing sys-
tems, where throughput optimization focuses on the pipelining
multiple processing steps of products. This cannot be captured
in a static dataflow model, nor by using a traditional modeling
approach with SADF since it requires the application to be
executed in a partial fashion and not based on full graph
iterations. Fig. 4 depicts a situation where actors B and D
are sharing resource R1. In this case, since B and D have a
direct dependency in the graph structure, we can impose a
static-order. We can do so by adding a back edge from actor
D to actor B with a single token. This enforces that B fires
before D and that both actors cannot fire concurrently. If we
observe the Gantt chart produced by this application graph,
this indeed reflects the constraints imposed with the static-
order schedule. However, if the modeled system allows for the
pipelining of multiple data (or products), such is not captured
with this static model. For example, notice that after the first
firing of B we could have a second firing of B concurrently
with the first firing of C, but due to the imposed static-order
this is not possible. If this level of pipelining were captured
then we could have an application execution as depicted in
Fig. 5.

t

A
B

C
D

F
E

A
B

C
D
E

F

A
B

C
D
E

F

A
B

C
D
E

F

Fig. 5. Gantt chart of the execution of sequence 4 times of (A-B-C-D-E-F)

A B1 C

D

A B C D F

EB2

F

E

Fig. 6. Splitting of the original graph into deterministic (green) and non-
deterministic (blue) parts into scenarios



V. SOLUTIONS TO THE MODELING CHALLENGES

In this section we present our proposed modeling solution
for each of the challenges presented previously by using SADF
models to capture both application and platform resources.
Traditional modeling using SADF would require the designer
to build a unique scenario graph for each alternative in the
system (binding or scheduling). Moreover, an execution of a
scenario graph in SADF requires a full iteration of the graph,
which does not allow the modeling of interleaved pipelining.
Therefore, we propose a modeling approach where we split
the application graph into multiple scenarios and use a Finite-
State Machine (FSM) to model the application flow.

A. Splitting the Application
Fig. 6 depicts the division of the application graph into

sets of actors that represent either static and deterministic
executions (green) and sets of actors that can have scheduling
freedom within their assigned binding (blue). This is the
case of actors D and E, as well as, different bindings for
actors, as is the case of actor B (B1 and B2). The actual
splitting of the original graph to a set of scenario graphs
requires the transformation of direct dependencies, modeled
in the original application as edges between actors, as added
persistent tokens. Fig. 8 depicts this transformations, where
each individual dashed box in Fig. 6 is now fully described
with dependencies as persistent labeled tokens.

In this transformation we use persistent tokens to model
both the original direct dependencies of the original graph as
well as binding decisions. For instance, in this transformation
we assume actors B and D are mapped on resource R1, E on
R2, and the remaining actors on start, proc and end. Note that
the splitting of the original application graph does not have
necessarily to be done per actor in the graph. Ideally any set
of actors that represent a static and deterministic behavior in
the original application can be grouped in the same scenario.

Let us consider scenario A, where the behavior of actor
A is described. As in the original application, actor A has a
resource self-dependency with a labeled token start, but, due
to the dependency with actor B, also an added dummy actor
dAB, with a labeled token dAB that represents the dependency
with actor B. If we now look at scenario B, we see that this
dependency is also present by the means of a dummy actor
dAB and a labeled token dAB that precedes the firing of actor
B. This way the correct execution of the graph is preserved,
if the scenario sequence A-B is imposed. Notice that for each
direct dependency we add a pair of dummy actors in each of
the corresponding scenarios, however, these have no impact on
the timing analysis of the model since their execution time is
0 s. The same principle is then applied to all the scenarios
regarding its original dependencies. Crucial to the correct
model of the system and its behavior is the FSM that accom-
panies the set of scenarios graphs, depicted in Fig. 7 (a). For
simplicity, we keep the same coloring in the states of the FSM
as in the scenarios. Green states represent static deterministic
parts of the application, while blue states represent scenario
graphs that model options in both binding and scheduling.
The FSM-based SADF graph model can then capture the
initial application flow of the original graph. See that the FSM
transitions enforce the original application flow (A-B-C-D-E-
F). A fundamental construct of our modeling approach is the
ability to do symbolic executions of scenario sequences that
reflect the actual binding and scheduling choices per scenario
sequence. Fig. 5 depicts 4 iterations of the scenario sequence

(A-B-C-D-E-F), given the scenario graphs of Fig. 8 and the
FSM of Fig. 7(a). In this Gantt chart we see how the persistent
tokens influence the execution of the application. All the
dummy tokens representing the direct dependencies impose the
sequentialization (e.g., A-B transition) or parallelization (e.g.,
D-E transition) of scenario executions. Furthermore, we see
how modeling resource bindings as persistent labeled tokens
allow us to naturally capture the resource utilization on the
system. This is clear on the execution gap between firings of
actor B, since at the third firing resource R1 is being used
by actor D of the previous firing. Therefore, the claiming
and unclaiming of tokens is correctly captured as well as the
mutual exclusion of shared resources.

A CB D F

A CB
D

F
E

E D

A C
B1 D

F
E

E DB2

a))

b))

c))

E

Fig. 7. FSM representing different stages of the modeling: a) Application
flow with set bindings and actor order, b) Resource-Sharing (Orderings) and
c) Resource Binding

B2

B

1s

R1

dBC

dBC

0s

dAB

dAB

0s

B1

B

1s

R2

dBC

dBC

0s

dAB

dAB

0s

Fig. 9. Scenarios for each of the possible bindings of actor B

B. Resource Binding
Let us apply our approach to address the case where an

actor has multiple bindings. Assume that actor B can have
two bindings, R1 and R2, we can model this creating two
different scenario graphs. Fig. 9 depicts these new scenarios
to add to our state machine, depicted in Fig. 7(b). Each
scenario includes a different binding for actor B, by using
a different persistent token labels, in this case R1 and R2
labels. Generalization: Fig. 10 depicts an actor a with a self-
edge and a labeled token r. In our modeling approach we
use such a construct to model resource binding. The label on
the token represents the resource where the actor has been



A FD

A

1s

dAB

dAB

0s

C

1s

dCD

dCD

0s

dBC

dBC

0s

dCE

dCE

0s

D

1s

R2

dDF

dDF

0s

dCD

dCD

0s

dEF

dEF

0s

dDF

dDF

0s

F

1s

C

B

1s

R1

dBC

dBC

0s

dAB

dAB

0s

B1

dBC

END

START

PROC

E

E

1s

R2

dEF

dEF

0s

dCE

dCE

0s

Fig. 8. Adaptation of the splitting of the SDFG of Fig. 6 into scenarios of the SADF model

bound and the self-edge imposes a non-concurrent claiming
and unclaiming of the resource. Once the actor fires the labeled
token is consumed. When a labeled token is consumed no other
scenario actor can consume that same token. Once the token
is produced again, the resource is released and therefore, the
token is again available for any other scenario actor. We can
also model the capacity of the resource (e.g. a resource that
can simultaneously process two products), depicted in Fig. 10
by actor b by having multiple tokens in the self-edge, as long
as each persistent token is labeled differently. For each binding
a scenario graph has to be added to the FSM-SADF graph.

a

r

…. …. b

r1

…. ….

r2

Fig. 10. Modeling resource binding in actors: (a) actor a is bound to resource
r (b) actor b is bound two resource r with as a capacity of 2

C. Modeling Scheduling Options
If in our system application we have open scheduling

options, such as the case of D and E, we can then use the
FSM states as a mean to model both the options for the static-
orders of actors D and E by using state duplication. This is
captured in the FSM of Fig. 7 (b), where we duplicate the
states to model the different execution orders. However, notice
that when we duplicate a state we do not duplicate a scenario
graph. This means that we move the decision point from the
application model to the FSM exploration.

Generalization: If in the original application graph there
are groups of actors bound on the same resource with no
direct dependencies, then they have different static-orders. As
a generalization rule, for each possible order for the group of
actors we model it as a different path in the FSM, with the
same initial and ending states. This is done by duplicating the
states in the FSM, which represent the same scenario graph.

D. Modeling Application Pipelining
Finally, we can use the FSM-based SADF model to rep-

resent different application flows. This is done by adding
transition edges in the FSM. Looking at all the FSM’s depicted
in Fig. 7 we see that the transition edge from (F-A) is
always present. This is the transition edge that implies the

full application pipelining, which is present in the original
application. However, we would like to exploit pipelining in
some systems. Therefore, we can add extra edges that reflect
this behavior. For instances we can add the edges of Fig. 7(d),
such that we allow the interleaving of scenario sequences of
(A-B-C) and (D-E-F). This means that we allow the system to
do partial executions of different instances of the application.
If the system exhibits different modes of operations, such as
power modes or execution times for certain tasks, we model
these as different scenarios within the FSM-SADF model, as
it is done on traditional FSM-SADF modeling approaches [8].

A1 C1B1

D1

F1

E1

E1 D1

A2 B2 C2 D2 E2

E2 D2

F2

Fig. 11. FSM that holds all the behavior of our example application mapped
on a 2-Homogenous resource platform

VI. MODELING APPROACH

In this section we collect the solutions for each of the
modeling challenges and present them in a unified approach
and define a set of construction rules. As an example of all
the concepts presented so far, consider the FSM in Fig. 11.
This describes the state-space of the application of Fig. 2 on a
platform with two resources, R1 and R2, where we allow all
the actors to be bound to either resource. We see that for each
binding, every actor has a duplicate scenario. Furthermore, we
also have actors D and E, that can be enabled simultaneously
and therefore have to have specified all the allowed static-order
schedules and binding combinations.

A. Construction Rules for the System Model
If we know the possible bindings for each resource (which

can be done by matching actor type with resource type) we
can then define the following rule:



Rule 1: For every binding of an actor we define an
individual scenario graph, where the label of the persistent
token in the self-edge of the actor is the label of the resource
binding, and all the direct dependencies are transformed into
inter-scenario dependencies using of persistent token labels.

However, we still need to define the possible orders and
transitions to be allowed and explored by the FSM. For this
purpose, we need to gather information from the application
structure regarding its natural static order schedules. In other
words, we need to identify the actors that may be fired si-
multaneously with no direct dependencies (unordered actors).
Such that every unordered group of actors has explicitly in the
model its different static order schedules. However, since we
do not change the underlying scenario graph (for each actor)
we duplicate the states of the FSM and force the static order
schedules as different paths in the FSM transition sequences.
This allows us to define the following rules:

Rule 2: For each unordered group of actors in the applica-
tion and for each possible static-order of that group, a path in
the FSM is created by duplicating existing states in the FSM.

Rule 3: If an ordered group of actors in the application
is composed only of bound actors then they can be concate-
nated in a single scenario that represents the fully static and
combined ordered set of actor firings.

Once all the scenarios and scheduling transitions have been
added to the FSM, we can add the extra set of edges that reflect
the execution of the application, that it can be instantiated as
full application pipelining, or interleaved pipelining.

B. Scenario Sequences and Analysis

Once we have the system model built as explained above,
we reach a FSM-SADF model such as the one composed by
the set of scenario graphs of Fig. 8 combined with the FSM
of Fig. 11 (to avoid overloading the Fig., we do not show
the interleaved pipelining transition edges (C-A), (F-E) and
(F-D) in the image). With this model we can now explore
the state-space for several executions of the application. We
do so by doing symbolic executions of scenario sequences.
For example, if we explore scenario sequence (A1-B1-C1-D1-
E1-F1) we are symbolically executing a full execution of the
original application graph, where all the tasks are mapped on
R1, and the static-order for D and E is D → E. Furthermore,
we can also explore scenario sequences for multiple consecu-
tive executions of the application flow by using the transition
edges which represent levels of pipelining in the system. In this
case, it could be (A1-B2-C1-A1-B2-C1-D2-E2-F1-D2-E2-F1),
which represents the interleaved pipelining of two products in
the system. We then use SADF semantics to get a symbolic
execution of this sequence that generates the Gantt Chart of
Fig. 12. We can use the Gantt chart to follow the execution of
different scenarios and use the Token Timeline for the resource
utilization. When a token is consumed by an actor of a running
scenario, the resource with that label is claimed. The duration
of the claim is represented by the corresponding color bar on
the timeline. When the actor terminates its firing, the token
is produced again and the resource unclaimed. We can follow
this trend throughout all the execution of the scenario sequence
to view which resources are in use for the that sequence.
Moreover, we see that the second firing of scenario B2 is
executed interleaved with the still on-going first execution
of scenario C1. For example, using this symbolic execution
we can use analysis techniques to explore the state-space to
find maximal throughout solutions. In this case, a solution to

provide maximal throughput, would be to opt for a sequence
where the second firing of scenario D is executed in resource
R1 instead of R2. Furthermore, since we are able to capture
the whole state-space in the model, we can use different
exploration methodologies to address different requirements.

t

A1
B2

C1

E2
D2

F1

start
proc
end

R2
R1

A1
B2

C1

E2
D2

1

1

1

3 4

1

2

2 5 6

2

F1

2

Fig. 12. Gantt chart and Token Timeline for the execution of scenario
sequence (A1-B2-C1-A1-B2-C1-D2-E2-F1-D2-E2-F1)

VII. CONCLUSIONS

This paper presents a modeling approach using Scenario-
Aware Dataflow to model a full system. We demonstrate that
the binding and scheduling exploration for the modeled system
can be completely captured with this approach without added
constructs to SADF or transformations to another model of
computation. We show how we model the behavior of shared
resources, different bindings and interleaved pipelining by
using persistent token labels across different scenarios graphs.
The final model we propose is an FSM-based SADF graph,
that consists in multiple scenarios to capture the full behavior
of the application, but still allowing for a dynamic control of
the application flow through the FSM. The fact that our model
is representative of the full mapping problem and is as well
an executable model, allows us to decouple modeling from
analysis. Consequently making it possible to apply different
analysis techniques to find scenario sequences that satisfy
different sets of requirements.

ACKNOWLEDGMENTS

This research is supported by the Dutch Technology Foun-
dation STW under the Robust CPS project (12693).

REFERENCES

[1] Ahmad, W., et al. Resource-constrained optimal scheduling of syn-
chronous dataflow graphs via timed automata. Proc, ACSD’14.

[2] Alur, R. et al. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235 (1994).

[3] Bastos, J., et al. Modeling resource sharing using fsm-sadf. Technical
report, Technical University of Eindhoven, ESR-2015-03 (2015).

[4] Geilen, M. et al. Worst-case performance analysis of Synchronous
Dataflow scenarios. Proc, CODES+ISSS’10, (C):125–134 (2010).

[5] Ghamarian, A., et al. Throughput analysis of synchronous data flow
graphs. Proc, ACSD’06, 25–34 (2006).

[6] Lee, E. et al. Static scheduling of synchronous data flow programs for
digital signal processing. IEEE Transactions on Computers (1987).

[7] Stuijk, S., et al. Multiprocessor resource allocation for throughput-
constrained synchronous dataflow graphs. Proc, DAC ’07.

[8] Stuijk, S., et al. Scenario-aware dataflow: Modeling, analysis and
implementation of dynamic applications. Proc, SAMOS’11, 404–411.

[9] Stuijk, S., et al. Throughput-buffering trade-off exploration for cyclo-
static and synchronous dataflow graphs. IEEE Trans on Comp. (2008).

[10] Yang, Y., et al. Iteration-based trade-off analysis of resource-aware
SDF. Proc, DSD’11, 567–574.

[11] Yang, Y., et al. Playing games with scenario- and resource-aware SDF
graphs through policy iteration. Proc. DATE’12, 194–199 (2012).


