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4. Preface 

 

The main objectives of the MNEMEE project are: 

 

• provide a novel solution for mapping applications cost-efficiently to the memory hierarchy of 

any MP-SoC platform without significant optimization of the initial source code.  

• Introducing an innovative supplementary source-to-source optimization design layer for data 

management between the state-of-the-art optimizations at the application functionality and the 

compiler design layer.  

• The efficient data access and memory storage of both dynamically and statically allocated data 

and their assignment on the memory hierarchy.  

• Use and dissemination of the results. 

 

The expected results of the project are: 

 

• 50% reduction in design time 

• 30% reduction in memory footprint and bandwidth requirements 

• 50% improved energy and power efficiency 

 

The technological challenges of the project are: 

 

• Provide a framework for source-to-source optimization methodologies, which targets both 

statically and dynamically allocated data.  

• Introduce a novel source-to-source optimization design layer.  

• Analyze the embedded software applications and highlight the source-to-source optimization 

opportunities.  

• Develop a set of prototype tools.  

• Provide data memory-hierarchy aware assignment and scheduling methodologies.   
 

 

 

The MNEMEE project has started its activities in January 2008 and is planned to be completed by the 

end of December 2010.  It is led by Mr. Stylianos Mamagkakis and Mr. Tom Ashby of IMEC. The 

Project Coordinator is Mr Peter Lemmens. Five contractors (INTRACOM, Thales, ICD, ICCS and 

TUE) participate in the project.  The total budget is 2.950 k€. 
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5. Abstract 

 

Embedded software applications use statically and dynamically allocated data objects for which 

storage space must be allocated. This allocation should take the access pattern to these data objects 

into account in order to minimize the required storage space. This deliverable presents several 

techniques to analyze the access behaviour to statically and dynamically allocated data objects. The 

aim of these analysis techniques is to identify the different scenarios of data usage and to highlight 

optimization opportunities for WP2 and WP3. The deliverable also presents a strategy to model the 

application with the identified scenarios in a dataflow graph. This dataflow model can be used to map 

an application onto a multi-processor platform while providing timing guarantees and minimizing the 

resource usage of the application within each scenario. 
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6. Introduction 

Multimedia applications constitute a huge application space for embedded systems. They underlie 

many common entertainment devices, for example, cell phones, digital set-top boxes and digital 

cameras. Most of these devices deal with the processing of audio and video streams. This processing is 

done by applications that perform functions like object recognition, object detection and image 

enhancement on the streams. Typically, these streams are compressed before they are transmitted from 

the place where they are recorded (sender) to the place where they are played-back (receiver). 

Applications that compress and decompress audio and video streams are therefore among the most 

dominant streaming multimedia applications [51]. The compression of an audio or video stream is 

performed by an encoder. This encoder tries to pack the relevant data in the stream into as few bits as 

possible. The amount of bits that need to be transmitted per second between the sender and receiver is 

called the bit-rate. To reduce the bit-rate, audio and video encoders usually use a lossy encoding 

scheme. In such an encoding scheme, the encoder removes those details from the stream that have the 

smallest impact on the perceived quality of the stream by the user. Typically, encoders allow a trade-

off between the perceived quality and the bit-rate of a stream. The receiver of the stream must use a 

decoder to reconstruct the received audio or video stream. After decoding, the stream can be output to 

the user, or additional processing can be performed on it to improve its quality (e.g., noise filtering), or 

information can be extracted from it (e.g., object detection). There exist a number of different audio 

and video compression standards that are used in many embedded multimedia devices. Popular video 

coding standards are H.263 [36] (e.g., used for video conferencing) and MPEG-2 [34] (e.g., used for 

DVD) and their successors H.264 and MPEG-4 [35][37]. Audio streams are often compressed using 

the MPEG-1 Layer 3 (MP3) standard [32] or the Ogg Vorbis standard [38]. 

 

 

Figure 1 – An interactive 3D game with streaming video based mode [25]. 
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With modern applications, the streams and their encodings can be very dynamic. Smart compression, 

encoding and scalability features make these streams less regular then they used to be. Furthermore, 

these streams are typically part of a larger application. Other parts of such an application may be 

event-driven and interact with the stream components. Consider for example an imaginary game 

application shown in Figure 1, which is taken from [25]. This game includes modes of 3-dimensional 

game play with streaming video based modes. The rendering pipeline, used in the 3D mode, is a 

dynamic streaming application. Characters or objects may enter or leave the scene because of player 

interaction, rendering parameters may be adapted to achieve the required frame rates. Overlay graphics 

(for instance text or scores) may change. This happens under control of the event-driven game control 

logic. At the core of the application, the streaming kernels, a lot of intensive pixel based operations are 

required to perform the various texture mapping or video filtering operations. These operations are 

performed on a stream of data items. At each point in time, only a small number of data items from the 

stream are being processed. The order in which these data items are accessed has typically little 

variation. This makes it possible to optimize the memory access behaviour of the streaming kernels to 

achieve the required performance while minimising the energy consumption. 

 

Future embedded systems are not only characterized by their increasingly dynamic behaviour due to 

different operations modes that may occur at run-time, but also by their dynamism in memory 

requirements. Next generation embedded multimedia systems will have intensive data transfer and 

storage requirements. Partially these requirements will be static, but partially they will also be 

changing at run-time. Therefore, efficient memory management and optimization techniques are 

needed to increase system performance and decreased cost in energy consumption and memory 

footprint due to the larger memory needs of future applications. It is essential that these memory 

management and optimization techniques are supported by design automation tools, because due to the 

very complex nature of the source code, it would be impossible to apply them manually in a 

reasonable time frame. The automation tools should be able to optimize both statically and 

dynamically allocated data, in order to cope with design-time needs and adapt to run-time memory 

needs (scalable multimedia input changing at run-time, unpredictable network traffic, etc.) in the most 

efficient way. A design flow that realizes these objectives will be developed within MNEMEE. An 

overview of the preliminary flow is shown in Figure 2 (The final flow will be presented in D5.3). The 

flow takes as input the source code of an application and optimizes the memory behaviour of the 

application. The source code of the optimized application is the output of this flow. The first step of 

the flow models the source code as a task graph. The output of this step, and all other steps, is a 

combination of source code and models that are transferred to the next step. In this step, the task graph 

is mapped onto the processing elements that are available in the hardware platform. There will be two 

different mapping options available within the MNEMEE flow. The first option, called scenario-

based, takes the dynamic behaviour of the application into account when mapping it onto the platform. 

The second option, called memory-aware, considers the memory hierarchy in the platform. After the 

mapping, the static and dynamic access behaviour of the application is optimized in the steps labelled 

‘parallelization implementation’ and ‘dynamic memory management’. Finally, additional memory 

optimizations are applied on a per processor element basis. These optimizations are based on existing 

single processor scratchpad optimization techniques [49]. 

 

The remainder of this document presents a number of analysis approaches that can be used, within the 

context of the design flow, to identify memory access behaviour and dynamic behaviour in 

applications. Each of these analysis approaches focuses on different sources of dynamism in 

multimedia applications. Section 7 presents techniques to analyze and exploit the dynamically 

changing resource requirements of applications. These analysis techniques are part of the scenario-

based approach that can be used within the ‘task graph to processing element mapping’ step of the 

design flow. The memory-aware approach that can also be used in this step will be developed within 

WP4 and described in D4.2. Section 8 presents techniques to analyze the access behaviour to statically 

allocated data objects. This section discusses the step labelled ‘parallelization implementation’ in the 

design flow of Figure 2. Section 9 focuses on the access behaviour to dynamically allocated data 

objects. This section discusses the details of the step labelled ‘dynamic memory management 

optimizations’. Finally, Section 10 concludes this deliverable. 
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Figure 2 – Preliminary MNEMEE source-to-source optimizations design flow. 
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7. Scenario identification and characterization based on dataflow graphs 

7.1. Overview 

The application domain, as sketched in Chapter 6, is characterized by applications which increasingly 

exhibit a dynamic behaviour. Due to this dynamic behaviour, applications have resource requirements 

that vary over time. The concept of system scenarios has been introduced [29] to exploit these varying 

resource requirements. The idea is to classify the operation modes of an application from a cost 

perspective into several system scenarios, where the cost within a scenario is fairly similar [28][29]. 

At run-time, a set of variables that are used in the program, called scenario parameters, can be 

observed. These scenario parameters can be used to determine in which scenario the application 

operates. The resource reservations for an application running in a system can then be matched to the 

requirements of the scenario that is being executed. This should lead to a resource usage that is on 

average lower than the worst-case resource requirements of the application when no scenarios are 

distinguished. 

 

A heterogeneous multi-processor System-on-Chip (MP-SoC) is often mentioned as the hardware 

platform to be used in domain of streaming multimedia applications. An MP-SoC offers good 

potential for computational efficiency (operations per Joule) for many applications. When a 

predictable resource arbitration strategy is used for the processors, storage elements and interconnect, 

the timing behaviour of all hardware components in the platform can be predicted. To guarantee the 

timing behaviour of applications, it is further required that the timing behaviour and resource usage of 

these application mapped to an MP-SoC platform can be analyzed and predicted. In this way, it 

becomes possible to guarantee that an application can perform its own tasks within strict timing 

deadlines, independent of other applications running on the system. In [44], a predictable design flow 

is presented that maps an application onto a MP-SoC while providing throughput guarantees. This 

design flow requires that the application is modelled as a Synchronous Dataflow (SDF) graph. The 

SDF Model-of-Computation fits well with the characteristics of streaming applications, it can capture 

many mapping decisions, and it allows design-time analysis of timing and resource usage. However, it 

cannot capture the dynamic behaviour of an application as is done with scenarios. The design flow 

assumes that the SDF model of the application captures the worst-case behaviour of the application. 

This results in a mapping in which the resource requirements of the application are larger than when 

scenarios would be taken into account. 

  

Existing scenario identification techniques focus on single-processor systems. Typically, they also 

focus on a single cost dimension (e.g. processor usage).  Future platforms will be heterogeneous multi-

processor systems that contain different types of processing elements and a hierarchy of storage 

elements. A scenario identification technique should take these different resources into account as 

different cost dimensions. Multi-processor platforms inherently contain parallelism that should be 

considered in the scenario identification. This chapter introduces a new scenario identification 

technique that considers multiple cost dimensions and the parallelism offered by multi-processor 

systems. It also presents an extension of the SDF model, called Finite State Machine-based Scenario-

Aware Dataflow (FSM-based SADF), which can model the dynamic behaviour of an application, as 

captured in its scenarios. Finally, a predictable design-flow is sketched that maps an application 

modelled with a FSM-based SADF onto a MP-SoC platform. 

 

The remainder of this chapter is organized as follows. Section 7.2 discusses existing scenario 

identification and exploitation techniques. It also provides an overview of existing application 

characterization and mapping techniques that are based on synchronous dataflow graphs. Section 7.3 

introduces the FSM-based SADF model, which is an extension of the synchronous dataflow model 

that can be used to model scenarios. Existing scenario identification and exploitation techniques focus 

on a single cost dimension. Section 7.4 introduces a new scenario identification technique that can 

take multiple cost dimensions into account (e.g. processor cycles, memory usage). Section 7.5 explains 

how an FSM-based SADF model of an application can be constructed after identifying scenarios using 

the technique presented in Section 7.4. Section 7.6 sketches a design-flow that can map an application, 
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modelled with an FSM-based SADF, onto a multi-processor platform while providing timing 

guarantees on the application. 

 

7.2. Existing scenario identification and characterization techniques 

This section describes the scenario identification and application characterization and mapping 

techniques that have been developed prior to MNEMEE. It introduces the main concepts and it 

provides references to publications on these topics. 

 

7.2.1. Single-processor scenario identification and exploitation 

Applications that are running on embedded multimedia systems are full of dynamism, i.e., their 

execution cost (e.g., number of processor cycles, memory usage, energy) are environment dependent 

(e.g., input data, processor temperature). When such an application is running on a given system 

platform it may encounter different run-time situations. A run-time situation is a piece of system 

execution that is treated as an atomic unit. Each run-time situation has an associated cost (e.g., quality, 

resource usage). The execution of the system is a sequence of run-time situations. The current run-time 

situation is only known at the moment that it occurs. However, a set of so called scenario parameters 

(i.e. variables in the application) can be used to predict the next run-time situation. The knowledge that 

this run-time situation will occur in the near future can be used to adapt the system settings (e.g., 

processor frequency, mapping) to this run-time situation. The number of distinguishable run-time 

situations from a system is exponential in the number of scenario parameters. To avoid that all these 

situations must be handled separately at run-time, several run-time situations should be clustered into a 

single system scenario. This clustering presents a trade-off between the optimization quality and the 

run-time overhead of the scenario exploitation. 

 

A general methodology to identify and exploit scenarios has been described in [29]. Figure 3 gives an 

overview of this methodology in which each step has both a design-time and a run-time phase. The 

scenario methodology starts with identifying the potential scenario parameters and clustering the run-

time situations into scenarios. During this clustering, a trade-off must be made between the cost of 

having more scenarios (e.g., larger code size, more scenario switches) and the cost of grouping run-

time situations in one scenario (e.g., over-dimensioning of the system for certain run-time situations). 

The second step of the scenario methodology is to construct a predictor that at run-time observes the 

scenario parameters and that uses their observed values to select a scenario at run-time. The selected 

scenario is executed at run-time in the exploitation step. At design-time, this exploitation step 

performs an optimization on each scenario individually. During run-time it might be required to switch 

between different scenarios. During this switching, the system settings of the old scenario are changed 

to the settings required for the new scenario (e.g., processor frequency, memory mapping may be 

changed). The switching step selects at design-time an algorithm that is used at run-time to decide 

whether to switch or not. It also decides on how a switch should be performed whenever a switch is 

required. Finally, the calibration step complements all earlier steps. This step gathers at run-time 

information about the scenario parameters and the occurrence and switching frequency of run-time 

situations. Infrequently, it uses this information to recalibrate the scenario detector, scenario 

exploitation and scenario switching mechanism. This calibration mechanism can further exploit run-

time variations in the observed behaviour, in particular when the encountered behaviour deviates from 

the average behaviour considered at design time, and it can correct for imperfections in the design-

time analysis. 
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Figure 3 – System scenario methodology overview [29]. 

 

In [29], a case study is presented in which the concept of system scenarios is applied to an MP3 

decoder. The objective is to discover scenarios that have a different worst-case execution time 

(WCET). This difference in WCET can then be exploited by using dynamic voltage-frequency scaling 

(DVFS) on the processor that is executing the MP3 decoder. Using a scenario identification tool, a 

total of 41 scenario parameters are discovered. Based on these parameters, the tool discovers a total of 

17 different scenarios. The experimental results show that the use of these scenarios leads to an energy 

reduction of 24% for a mixed set of stereo and mono streams. It is also shown that the obtained energy 

improvement represents more then 72% of the maximum theoretically possible improvement. This 

case study shows that system scenarios can successfully be used to exploit similarities in the behaviour 

of an application to reduce its resource requirements (e.g., energy usage).  

 

7.2.2. Application characterization using SDF graphs 

Multimedia applications are typically streaming applications. The class of dataflow Models-of-

Computation (MoCs) fits well with this behaviour. A dataflow program is specified by a directed 

graph where the nodes (called actors) represent computations that communicate with each other by 

sending ordered streams of data-elements (called tokens) over their edges. The execution of an actor is 

called a firing. When an actor fires, it consumes tokens from its input edges, performs a computation 

on these tokens and outputs the result as tokens on its output edges. The Synchronous Dataflow (SDF) 

MoC has recently become a popular MoC to model streaming applications [44]. Actors in an SDF 

graph (SDFG) consume and produce a fixed amount of tokens on each firing. This makes it possible to 

analyze the throughput [23] and latency [27][33][43] of these graphs. An example of an SDFG 

modelling an H.263 encoder is shown in Figure 4.   

 

 

Figure 4 – SDFG of an H.263 encoder. 

 

In the remainder of this section it is explained how the SDFG shown in Figure 4 can be derived from 

the description and source code of the application. First the structure of the SDFG is derived by 
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analyzing the basic operations of the application and the dependencies between these operations. An 

H.263 encoder divides a frame in a set of macro blocks (MBs). A macro block captures all image data 

for a region of 16 by 16 pixels. The image data inside a MB can be subdivided into 6 blocks of 8 by 8 

data elements. Four blocks contain the luminance values of the pixels inside the MB. Two blocks 

contain the chrominance values of the pixels inside the MB. A frame with a resolution of 174 by 144 

pixels (QCIF) contains 99 MBs. These 99 MBs consist, in total, of 594 blocks. The various operations 

that must be performed in a H.263 encoder are modelled as separate actors in the SDFG. The motion 

estimation operation is modelled with the Motion Est. actor. The motion compensation and the 

variable length encoder operations are modelled with the Motion Comp. and VLC actors. The MB 

decoding (MB Dec.) actor models the inverse DCT operation. The DCT and quantization operations 

are modelled together in the MB encoding (MB Enc.) actor. The motion estimation, motion 

compensation and variable length encoding operations are performed on a complete video frame (i.e., 

99 MBs). The other blocks operations work on a single MB at a time. These different processing 

granularities are modelled with the fixed rates in the SDFG of Figure 4. The self-edges on the Motion 

Comp. and VLC actors model that part of the data that is used by these actors during a firing must be 

stored for a subsequent firing. In other words, these self-edges model the global data that is kept 

between executions of the code segments that are modelled with these actors. 

 

The previous paragraph explained how the structure of an SDFG can be derived from the basic 

operations that are performed by the application. Some additional information is needed to create an 

SDFG that models the application in sufficient detail such that this model can be used in a design 

flow. A design flow must allocate resources for the streaming applications that it maps onto a 

platform. To do this, the design flow needs information on the resource requirements of the 

application being mapped. The application is modelled with an SDFG. The actors in an SDFG 

communicate by sending tokens between them. Memory space is needed to store these tokens. The 

amount of tokens that must be stored simultaneously can be determined by the design flow. However, 

the design flow must know how much memory space is needed for a single token. This is determined 

by the number of bytes of the data type that is communicated with the token. This information can 

easily be extracted through a static-code analysis. Some information is also needed on the resource 

requirements of the actors. These actors represent code segments of the application. To execute a code 

segment, processing time is needed as well as memory space to store its internal state. The internal 

state contains all variables that are used during the execution of the code segment but that are not 

preserved between subsequent executions of the code segment. Global data that is used inside a code 

segment is not considered part of the internal state. The SDF MoC requires that global data that is used 

by a code segment is modelled explicitly with a self-edge on the actor that models this code segment 

(see Figure 4 for an example). This self-edge contains one initial token whose size is equal to the size 

of the global data used in the code segment. The maximal size of the internal state is determined by the 

worst-case stack size and the maximal amount of memory allocated.  

 

Telenor Research has made a C-based implementation of an H.263 encoder [47]. The techniques 

presented in [44] can be used to determine the worst-case execution time and worst-case stack-sizes of 

the actors in the H.263 encoder SDF model of Figure 4 when implemented using the implementation 

from [47]. These execution times and stack-sizes, assuming that an ARM7 processor is used, are 

shown in Table 1. The table shows also the size of the tokens communicated on the edges. The worst-

case stack sizes and worst-case execution times have been obtained through semi-automatic code 

analysis of the H.263 encoder. The token sizes are obtained through manual code analysis. 

 

The SDFG shown in Figure 4 combined with the resource requirements shown in Table 1 model an 

H.263 decoder as an SDFG. Because worst-case values are used for the execution times and memory 

requirements, this model can be used to analyze the worst-case timing behaviour of the application. 

This makes the model also suitable for use in a predictable design flow as discussed in the next sub-

section. 
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Table 1 – Worst-case resource requirements for an H.263 encoder running on an ARM7. 

Actor                           Execution time [cycles] Stack size [bytes] 

Motion Est.           382419 316352 

Motion Comp.          11356 2796 

MB Enc.            8409 2216 

MB Dec.         6264 864 

VLC                         26018 1356 

   

Edge                        Token size [bytes]  

VLC self-edge                1024  

Motion Comp. self-edge        38016  

Motion Comp. to Motion Est.    38016  

Others                           384  

 

 

7.2.3. SDF graph-based multi-processor design-flow 

The design of new consumer electronics devices is getting more and more complex as more 

functionality is integrated into these devices. To manage the design complexity, a predictable design 

flow is needed. The result should be a system that guarantees that an application can perform its own 

tasks within strict timing deadlines, independent of other applications running on the system. This 

requires that the timing behaviour of the hardware, the software, as well as their interaction can be 

predicted. A predictable design-flow that meets these requirements has been presented in [44]. It maps 

a time-constrained streaming application, modelled as an SDFG, onto a Network-on-Chip-based MP-

SoC (NoC-based MP-SoC). The objective is to minimize the resource usage (processing, memory, 

communication bandwidth) while offering guarantees on the throughput of the application when 

mapped to the system. The design flow presented in [44] is also shown in Figure 5. The design flow 

consists of thirteen steps which are divided over four phases. This section introduces the various 

phases in the flow. The details of the individual steps and the motivation for the ordering of the steps 

in the flow can be found in [44]. 

 

The design flow takes as input an application that is modelled with an SDFG with accompanying 

throughput constraint. A technique to characterize an application with an SDFG has been discussed in 

Section 7.2.2. This SDFG specifies for every actor the required memory space and execution time for 

all processors on which this actor can be executed. It also gives the size of the tokens communicated 

over the edges. The resources in the NoC-based MP-SoC are described with a platform graph and an 

interconnect graph. The result of the design flow is an MP-SoC configuration which specifies a 

binding of the actors to the processors and memories, a schedule for the actors on the processors and a 

schedule for the token communication over the NoC. 

 

Tokens that are communicated over the edges of an application SDFG must be stored in memory. The 

allocation of storage space for these tokens is dealt with in the memory dimensioning phase. This 

involves the placement of tokens into memories that are outside the tile that execute the actor that uses 

these tokens. Furthermore, storage space must be assigned to the channels of the SDFG. Since the 

assignment of the storage space impacts the throughput of the application, an analysis is made of this 

trade-off space. Based on this analysis, a distribution of storage space over the channels is selected. 

All design decisions that are made in this phase of the design flow are modelled into the SDFG. The 

resulting SDFG is called a memory-aware SDFG. 
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Figure 5 - SDFG-based MP-SoC design flow [44]. 

 

The next phase of the design flow, called constraint refinement, computed latency and bandwidth 

constraints on the channels of the SDFG. These constraints are used to steer the mapping of the SDFG 
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in the tile binding and scheduling phase. This phase binds actors and channels from the resource-aware 

SDFG to the resources in the platform graph. When a resource is shared between different actors or 

applications, a schedule should be constructed that orders the accesses to the resource. The accesses 

from the actors in the resource-aware SDFG to a resource are ordered using a static-order schedule. 

TDMA scheduling is used to provide virtualization of the resources to the application. 

 

The third phase of the design flow does not consider the scheduling of the communication on the NoC. 

This problem is considered in the NoC routing and scheduling phase of the design flow. The actor 

bindings and schedules impose timing-constraints on the communication that must be met when 

constructing a communication schedule. These timing constraints are extracted from the binding-

aware SDFG and subsequently a schedule is constructed for the token communication that satisfies 

these timing constraints while minimizing the resource usage. 

 

The mapping of the streaming application to the NoC-based MP-SoC may fail at various steps of the 

design flow. This may occur due to lack of resources (step 7) or infeasible timing constraints (step 9 

and 12). In those situations, the design flow iterates back to the first or third step of the flow and 

design decisions made in those steps are revised.  

 

Consider as an example the H.263 encoder shown in Figure 4. This application has been mapped, 

using the predictable design flow, onto a multiprocessor platform that consists of two general purpose 

processors and three accelerators. These processing elements are interconnected using a Network-on-

Chip. The resulting MP-SoC configuration is shown in Figure 6. The predictable design flow has been 

implemented in SDF
3
 [45]. It takes this tool 415ms to find a MP-SoC configuration that satisfies the 

throughput constraints of the application, while at the same time it tries to minimize the resource usage 

of the application. 
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Figure 6 – H.263 encoder mapped onto MP-SoC platform. 

7.3. FSM-based SADF 

The SDF Model-of-Computation (MoC) is introduced in Section 7.2.2. That section also shows how 

an application can be modelled with an SDFG. The SDF model of an application assumes worst-case 

rates for the edges and worst-case execution times for the actors. In the situation that an application 

contains a lot of dynamism, the use of worst-case values could lead to over-dimensioning of the 

system for many run-time situations. Therefore, the concept of system scenarios has been introduced 

in [28][29] (see also Section 7.2.1). However, these scenarios cannot be modelled into an SDFG. This 

section introduces an extension to the SDF MoC that can be used to model an application together 

with its scenarios. This new MoC is called the Finite State Machine-based Scenario-Aware Data-Flow 

(FSM-based SADF) MoC. 

 

The FSM-based SADF MoC is a restricted form of the general SADF MoC that has been introduced in 

[48]. These restrictions make analysis of the timing behaviour of a model specified in the FSM-based 

SADF MoC faster than a model specified in the general SADF MoC. However, analysis result may be 

less tight due to the abstractions made in the FSM-based SADF MoC. A formal definition of the FSM-

based SADF MoC and a discussion on the differences between this MoC and the general SADF MoC 

can be found in [46]. Here, we focus on an example. 
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Figure 7 shows the example of an H.263 decoder that is modelled with an FSM-based SADF graph. 

The nodes represent the processes of an application. Two types of processes are distinguished. Kernels 

model the data processing part of a streaming application, whereas the detector represents the part that 

dynamically determines scenarios and controls the behaviour of processes. The Frame Detector (FD) 

represents for example that segment of the actual Variable Length Decoder (VLD) code that is 

responsible for determining the frame type and the number of macro blocks to decode. All other 

processes are kernels. In the FSM-based SADF graph shown in Figure 7, it is assumed that two 

different types of frame exists (I or P type). When a frame of type I is found, a total of 99 macro 

blocks must always be processed. A frame of type P may require the processing of (up to) 0, 30, 40, 

50, 60, 70, 80, or 99 macro blocks. So, in total 9 different scenarios (combinations of frame type and 

number of macro blocks to decoder) exist and must be modelled in the graph. These 9 scenarios 

capture the varying resource requirements of the application. 

 

 

 

Figure 7 – FSM-based SADF graph of an H.263 decoder. 

 

The edges in an FSM-based SADF graph, called channels, denote possible dependencies between 

processes. Two types of channels are distinguished. Control channels (dashed edges) originate from 

the detector and go to a kernel. Data channels (solid edges) originate from a kernel and go to another 

kernel or to the detector. Ordered streams of data items (called tokens) are sent over these channels. 

Similar to the SDF MoC, the FSM-based SADF MoC abstracts from the value of tokens that are 

communicated via a data channel. However, control channels communicate tokens that are valued. 

The value of a token on a control channel indicates the scenario in which the receiving kernel will 

operate. This token value is determined externally by the detector. In the example application, the 

scenario is determined by the frame type and the number of macro blocks. In reality, this scenario is 

determined based on the content of the video stream. However, the FSM-based SADF model abstract 

from such content. It uses a (non-deterministic) FSM which determines the possible scenario 

occurrences. The states in the FSM determine the scenario in which the kernels will operate. The 
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transitions reflect possible next scenarios given the current scenario that the detector is in. Figure 7 

shows part of the FSM for the H.263 decoder. The first scenario that is executed is the scenario in 

which a frame of type I is decoded. This frame (scenario) may be followed by another I frame, or a 

scenario in which one or more P frames with zero macro blocks are executed followed by an I frame, 

or a scenario in which two P frames with 99 macro blocks each are executed followed by an I frame. 

 

7.4. Multi-processor scenario identification and exploitation 

Future embedded multimedia systems will use a MP-SoC that contains different types of processing 

elements and a hierarchy of storage elements. As explained in Section 7.1, a scenario identification 

technique should take these different resources into account as different cost dimensions (e.g. 

processor usage, memory usage).  This section outlines a scenario identification approach that 

considers multiple cost dimensions. 

 

7.4.1. Overview 

Streaming multimedia applications are implemented as a main loop, called the loop of interest, which 

is executed over and over again, reading, processing and writing out individual stream objects. A 

stream object may, for example, be a video frame or an audio sample. Typically, not all stream objects 

within a stream are processed in exactly the same way. A video decoder, for example, may distinguish 

different inter and intra-coded frames, which must be processed differently. As a result, an application 

will have different run-time situations. Each run-time situation has a set of associated costs, like the 

number of processors and the amount of memory that is used. As explained in Section 7.2.1, it is 

impossible to consider every run-time situation in isolation when designing a system. To solve this 

problem, run-time situations must be grouped from a cost perspective into several system scenarios, 

where costs within a scenario are fairly similar.  So, run-time situations of an application that are 

grouped into different scenarios have different costs. These different costs can be exploited at run-time 

with the objective to match the resource usage of a system scenario to its requirements. This should 

lead to a resource usage that is on average lower than the worst-case resource requirements of the 

application when no scenarios are distinguished. Due to the presence of multiple cost dimensions, 

there may be multiple “optimal” solutions for mapping a scenario onto a hardware platform. These 

solutions provide a trade-off between the different resources (e.g. processors, memories) that are 

available in the platform. 

 

The costs that should be taken into account when identifying scenarios depend on the exploitation 

options that are available in the hardware platform. On a platform that offers dynamic voltage-

frequency scaling (DVFS) it is interesting to consider the number of processor cycles (execution time) 

that is needed to process a run-time situation as a cost of this run-time situation. Typically there is a 

timing constraint with the application that specifies bounds on the time that may be spent on 

processing a run-time situation (i.e. latency) and on the time between subsequent run-time situations 

(i.e. throughput). Given these timing constraints and the number of processor cycles needed to execute 

a run-time situation, the optimal DVFS setting can be computed for each scenario. On a platform that 

offers a software controlled memory hierarchy it is interesting to consider the number of accesses to 

different variables as a cost of this run-time situation. Depending on the amount of accesses to the 

variables a different mapping of the variables onto the memory hierarchy can be selected. These 

different mappings should reduce the total time needed for memory accesses within each scenario. 

Potentially it can also reduce the energy consumption of the platform. 
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Figure 8 – Scenario identification technique. 

 

In [28], a scenario identification technique is presented that follows the system scenario methodology 

as shown in Figure 3. This scenario identification technique focuses on discovering scenarios that can 

be exploited on a single-processor system that offers DVFS. The technique uses application profiling 

information to analyze the execution behaviour of applications. In an iterative process, variables are 

added or removed from the set of potential scenario parameters. When the set of potential scenario 
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parameters is modified, the application profiling is repeated. This process is continued till a set of 

scenario parameters is found together with a set of scenarios that minimizes the energy consumption 

of the system. A heuristic is used to select the scenario parameters that best characterize the resource 

requirements of the application under the various scenarios. This scenario identification technique has 

a number of disadvantages. (1) The application must be profiled every time that the set of potential 

scenario parameters is modified. This is very time consuming. (2) The selection of scenario parameters 

is done using a heuristic that uses knowledge about the specific scenario exploitation mechanism that 

is used. Such a heuristic cannot be re-used directly when different (or multiple) cost dimensions are 

considered. To alleviate these problems, a new scenario identification technique is presented in Figure 

8. The steps of this technique will be explained in detail in the next sections. The main advantages of 

this technique are: (1) it allows multiple cost dimensions to be taken into account, (2) no iterative 

profiling is required to identify scenario parameters, and (3) the scenario parameter identification 

algorithm does not depend on a specific scenario exploitation technique.  

 

7.4.2. Source code annotation and application profiling 

The scenario identification technique uses application profiling information to analyze the execution 

behaviour of applications. This profiling information should provide information about all aspects that 

the user considers relevant when determining scenarios. Depending on the available exploitation 

mechanism, the user may for example be interested in the execution time or the memory access pattern 

of an application. The former property can be interesting if the platform offers DVFS capabilities or to 

obtain tighter (conditional) worst-case bounds. The latter property might be interesting when a 

software controlled memory hierarchy is available. 

 

Application profiling requires that the application is executed with one or more input stimuli. During 

this execution, the properties of interest (e.g. execution time, memory accesses) can be observed. 

However, such a monolithic approach has a large disadvantage when the execution time of the 

application must be profiled for a number of different processor types and/or different memory 

hierarchies. In that case, a complete functional simulation of the application with all input stimuli must 

be performed for each platform. To avoid this problem, the application profiling should be split into 

two steps. First, the application should be executed with all input stimuli. During these executions, it is 

traced how often a basic block is executed within a run-time situation. As a next step, the actual 

properties of interest are computed based on the basic block counts contained in the trace (i.e. profiling 

information). By dividing the application profiling into two steps, it is no longer necessary to perform 

a complete functional simulation for each processor type
1
. The scenario identification technique uses 

the idea to split the profiling into two steps. The application profiling step (step 2 in Figure 8) executes 

the application with a set of user-supplied inputs to trace the basic block counts of the application. The 

scenario cost-space construction step (step 3) uses these basic block counts to compute the actual 

properties of interest that should be considered when identifying scenarios. 

 

Before the application profiling can be performed, the application source code must be annotated with 

profiling statements to trace the basic block execution. This source code annotation is performed in the 

first step of the scenario identification technique. This step also adds profiling statements to trace the 

boundary between subsequent run-time situations. Furthermore, profiling statements must be added to 

identify the scenario parameters. Identification of these scenario parameters is one of the main tasks of 

the scenario identification technique. It is in general not possible to determine these scenario 

parameters through static code analysis. They must be determined in combination with the scenarios. 

Therefore, the application profiling information should contain information on when a value is written 

to the variables in the application. The scenario identification technique can then in a later stage 

determine which parameters must be observed at run-time and which combination of parameter values 

describe a scenario. The source code annotation step adds profiling statements to the source code to 

trace the write accesses to potential scenario parameters. Since it is not known which parameters will 

                                                      
1
    This approach requires that the data-dependent pipelining effects inside the processor are ignored. It is similar 

to the approach proposed in [40]. 
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be needed to identify the scenarios, the source code annotation step annotates write accesses to all 

scalar variables and small arrays. 

 

Once the source code is annotated, it is passed on to the application profiling step. This step compiles 

the source code together with a profiling library into an executable simulation model of the 

application. Next, the application is simulated with a set of user-supplied input stimuli. During these 

simulations profiling information is created that contains the basic block execution counts of the 

application and the write accesses to the potential scenario parameters. This information is used in the 

scenario cost-space construction step and in the scenario formation step. 

 

The source code profiling that is explained in this section uses very basic execution profiling functions 

(i.e. basic block counts and tracing of scalar variable values). Chapter 9 on the other hand describes an 

advanced profiling approach that focuses on dynamic data structures. In principle both profiling 

approaches can be integrated in one framework. However, given the different functionality 

implemented in both profiling approaches, it does not seem useful to combine these profiling functions 

into one framework at this point in time. 

 

7.4.3. Scenario cost-space construction and scenario parameter selection 

The profiling information contains data on the number of accesses that occur within a run-time 

situation to every basic block in the application. The scenario cost-space construction step uses this 

information to compute the cost of using a resource (e.g. processor usage, memory usage) in every 

run-time situation. For each cost dimension that is considered, a user supplied resource cost function is 

used to compute the cost of a basic block execution. The resource cost function takes both the access 

count to a basic block and the platform characteristics into account when it computes the cost of the 

basic block accesses that occurred in a run-time situation. Using the profiling information, the cost of 

executing a complete run-time situation can be computed by adding up the costs of the individual 

basic blocks that are executed in this run-time situation. When this procedure is repeated for all 

considered cost dimensions and all run-time situations contained in the profiling information, a cost 

matrix C is obtained. This matrix C is an m x n matrix were each of the m rows gives the values of the 

various costs of the application. The n columns correspond to the processing of one run-time situation. 

The value of the run-time parameters that correspond to the processing of each run-time situation can 

be captured in a parameter matrix P. This matrix P is a p x n matrix were each of the p rows gives the 

values of the run-time parameters of the application. The linear relation between the cost and run-time 

parameters can be captured in a model (i.e. a matrix M), with C = M · P.  The matrices C, M and P 

model the cost-space of the application. 

 

The number of run-time parameters can potentially be large since the source code annotation step has 

selected all scalar variables and small arrays. The scenario parameter selection step should identify a 

subset of the run-time parameters that can still accurately predict the cost of each run-time situation.  

More formally, the objective is to find a set of k < p parameters that can be used to predict (up-to some 

accuracy) the values of all costs of every run-time situation. This problem is a variant of the dimension 

reduction problem [23][30]. Principal Component Analysis (PCA) [41][42] is a commonly used 

technique to reduce a complex data set to a lower dimension to reveal the simplified structure that 

often underlies it. In essence, PCA tries to find the orthogonal linear combinations (the principal 

components) of the original variables with the largest variation. These linear combinations are the 

eigenvectors of the covariance matrix that is computed from the original data set. The eigenvalues that 

can be computed from the same covariance matrix indicate the relative importance of the various 

eigenvectors. The higher the eigenvalue, the larger the contribution of the eigenvector is for describing 

the variation in the data set. The percentage of the total variability that can be explained by each 

principal component can also be computed from the eigenvalues. This makes it possible to determine 

which principal components are needed to achieve a desired accuracy. By applying PCA on the matrix 

M, which models the relation between the scenario-cost and run-time parameters, the most important 

run-time parameters (i.e. the scenario parameters) can be identified.  
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There is however one problem with using PCA to identify scenario parameters. This technique selects 

a set of run-time parameters that can be used to compute the cost. However, it is not guaranteed that 

this is the smallest set of run-time parameters. In fact, PCA may select a set of run-time parameters of 

which part of the set has a linear relation with other run-time parameters that are also selected. 

Keeping track of more scenario parameters at run-time may make the scenario detector more 

computationally expensive. Therefore, the set of scenario parameters should be minimized. This can 

be done by a dimension reduction technique known as feature subset selection [23] on the set of 

scenario parameters found by the PCA. Feature subset selection algorithms are iterative algorithms 

that typically consist of a filter and a wrapper. Starting from one or more initial candidates (e.g. 

subsets of the scenario parameters as identified by the PCA), the filter uses an evaluation criterion to 

decide which candidates are carried over to the next iteration of the algorithm. The wrapper technique 

determines how features (i.e. scenario parameters) are added or removed from the set of candidates. 

For this purpose, the wrapper uses an evaluation criterion to rate and compare different candidates. 

The wrapper can be seen as a filter that selects the most important scenario parameters. To minimize 

the set of scenario parameters, the feature subset algorithm can start with a set of candidates in which 

one scenario parameter is removed from each candidate as compared to the parameters identified by 

the PCA. Next, the algorithm can compute for each candidate a cost matrix C’ (similar to the matrix 

C) that estimates the costs of each run-time situation when the run-time parameters that are selected 

within this candidate are used. The wrapper selects the candidate with the lowest mean squared error 

between the matrices C’ and C. The algorithm is then repeated starting from this new candidate. This 

procedure is continued till no candidate can achieve the required accuracy. The result is a set of 

scenario parameters of which no run-time parameter can be removed without impacting the accuracy 

of the estimated cost of executing a run-time situation. 

 

7.4.4. Scenario formation 

The scenario parameter selection step has identified the run-time parameters that are needed to 

accurately predict the cost of executing a run-time situation. The relation between the value of the run-

time parameters and the cost is captured in the cost-space model that is also generated by the scenario 

parameter selection step. The scenario formation step uses this cost-space model to cluster run-time 

situation with similar costs into a single system scenario. When clustering run-time situations, the cost 

and frequency of scenario switches should be taken into account. For this purpose, the trace 

information and platform characteristics are used in the scenario formation step.  

 

So far, we have not selected a specific clustering algorithm has been selected for this step. However, 

K-means clustering is considered as a promising candidate for this step. This technique has been 

successfully used before to clustering run-time situations [31]. K-means clustering is a technique in 

which the points in a trade-off space are clustered into K disjoint groups. Points are clustered together 

based on a similarity criterion (e.g. Euclidean distance). The two main issues with using K-means 

clustering are (1) to choose the number of clusters (i.e. the number of scenarios) and (2) to select the 

initial points in the space that form the centre of the clusters. A strategy to make these two choices 

might be to look at the histogram of one or more cost dimensions. The number of peaks in the 

histogram determines the value of K. The peaks define the centre of the initial clusters. Furthermore, 

the switching cost between scenarios should also be taken into account in the clustering. This can be 

done by adding the switching cost as an additional dimension to the trade-off space. 

 

Once the scenario formation is completed, a predictor must be created that at run-time predicts the 

scenario that will be active in the foreseeable future. The technique proposed in [28] to construct a 

run-time predictor for detecting a scenario can be used for this purpose. When constructing the 

predictor a trade-off is made between which scenario parameters are actually observed at run-time and 

how quickly a decision can be made on the next scenario that will be active. 
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7.5. Application characterization using FSM-based SADF graphs 

The previous section introduces a technique to identify scenarios in an application. These scenarios 

can be exploited when mapping the application onto a MP-SoC. The use of scenarios should lead to a 

lower resource usage than when no scenarios are exploited. Limiting the resource usage of an 

application is an important objective when designing an embedded multimedia system. Another 

important constraint in the design of these systems is that the timing behaviour of applications running 

on the system can be guaranteed. In Section 7.1 it is explained that this goal can be realized by using a 

predictable design flow. An example of such a flow is discussed in Section 7.2.3. This flow takes an 

application modelled with an SDFG as input. As explained in Section 7.3, this model of computation 

is not suitable for modelling scenarios. Therefore, the FSM-based SADF model has been introduced in 

Section 7.3. This section explains how an FSM-based SADF model of an application can be extracted 

from the application profiling data and the system scenarios that have been identified by the scenario 

identification approach. Besides the information produced by the scenario identification approach, 

some additional information is needed about the structure of the graph. Figure 9 gives an overview of 

the input and output of the model extraction step. The graph structure specifies which kernels are 

present in the model. It must also specify the relation between these kernels and the functions (i.e. 

basic blocks) in the application source code. This information is needed to relate the data in the 

profiling information to the various kernels in the graph. Furthermore, the graph structure must specify 

the data-dependencies between the kernels. Note that the production and consumption rates on these 

edges do not need to be specified. Those rates are extracted within the model extraction step. 

 

 

Figure 9 – Extraction of FSM-based SADF from scenario identification technique. 

The model extraction step starts with determining for each run-time situation within the profiling 

information to which scenario it belongs. This is done by using the run-time predictor and scenario 

parameters to identify the scenario to which the run-time situations belong. By analyzing all run-time 

situations that belong to a scenario, it is possible to find the largest number of invocations of a 

function inside one run-time situation. This value determines the entry of the corresponding kernel in 

the repetition vector of the scenario under consideration. The production and consumption rates of all 

kernels can be derived from this repetition vector. The set of run-time situations that belong to one 

scenario can also be analyzed to find the worst-case execution time of the kernels, using any of the 

described in [50]. This worst-case execution time then becomes the execution time of the kernel 

during the considered scenario. Finally, an FSM can be extracted from the profiling information by 

analyzing the scenario sequences that occur in the profiling information. Each of these sequences is 

represented by a sequence of nodes (states) and transitions in the FSM. 

 

Note that the output of the model extraction step is a model that expresses the parallelism that is 

available in the application. This step does not actually parallelize the source code of the application.  

Parallelization of the source code is not needed to construct an FSM-based SADF model that can be 

used in a predictable design flow as presented in the next section. When required, the source code 

must be parallelized manually by a designer. The MP-SoC parallelization assistant (MPA) [2] can be 

used to support the designer in this effort. Furthermore, the FSM-based SADF model provides the 

designer with information on which tasks (i.e. processes) must be extracted from the application 

source code and about the dependencies between these tasks. 
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7.6. FSM-based SADF-based multi-processor design-flow 

A predictable design flow that maps a time-constrained SDFG onto a NoC-based MP-SoC is outlined 

in Section 7.2.3. This design flow cannot deal with the dynamic behaviour of applications because the 

SDF model-of-computation cannot model scenarios. This section explains how this design flow must 

be modified to exploit the concept of scenarios. 

 

 

Figure 10 – Scenario-aware MP-SoC design flow. 

 

Figure 10 outlines a predictable scenario-aware design-flow. This design flow takes as an input the 

source code of the application together with its timing constraints. The first phase of the design flow, 

called scenario identification/characterization, is responsible for identifying scenarios in the 

application. It also extracts an FSM-based SADF that models the application with its scenarios. This 

phase corresponds to the scenario identification technique as outlined in Sections 7.4 and 7.5. The next 

four phases of the design flow have the same function as the corresponding phases in the SDF-based 

design flow shown in Figure 5. However, instead of selecting a single solution from the design-space, 

each phase generates a potentially different solution for each scenario. A solution should minimize the 

resource usage of the application under its corresponding scenario. When this strategy is applied in the 

tile binding and scheduling phase, it may lead to a different process to processor mapping for different 

scenarios. To implement this mapping, a run-time manager must migrate the code and data of a 

process between different processors in the system. Such a migration might be very costly to perform 

at run-time. Therefore, in the first version of this flow that we will develop in the remainder of this 

project a unified process to processor mapping is targeted for all scenarios. Solutions generated by the 

tile binding and scheduling phase then differ only in their scheduling settings. The result of the design 

flow is a set of MP-SoC configurations and a run-time manager. This run-time manager works in 

combination with the run-time predictor that is created by the scenario identification/characterization 

phase. The run-time predictor is responsible for predicting the scenario that will be executed. The run-

time manager uses this information to select an appropriate MP-SoC configuration at run-time. When 

this involves a switch from one operating configuration to another, the run-time manager also takes 

care of the reconfiguration of the system.  
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The output of the design flow consists of source code for a run-time manager and a run-time predictor 

together with a set of MP-SoC configurations that described the mapping of an FSM-based SADF on a 

MP-SoC. These MP-SoC configurations can be used to generate the actual parallel code that must be 

executed on the MP-SoC. However, as explained in Section 7.5, the automatic parallelization of the 

application source code is considered to be outside of the scope of the design flow. 

 

7.7. Conclusions 

Future embedded multimedia applications have a dynamic behaviour. This dynamism should be taken 

into account when mapping the application to a system, in order to avoid over-allocation of resources 

in the system platform and to reduce the energy consumption of the system. The number of different 

behaviours that an application can exhibit, which are called run-time situations, can be very large. The 

overhead of considering all these run-time situations separately during mapping and run-time will 

often be impossible. Therefore, run-time situations with similar cost (e.g., quality, resource usage) 

should be clustered into so called system scenarios which are considered during mapping and at run-

time. The clustering of run-time situations into scenarios provides a trade-off between the optimization 

quality and the overhead of the scenarios. 

 

This chapter outlines a technique to identify system scenarios in an application. This technique starts 

with profiling an application to find typical run-time situations. This is done by using analysis 

techniques that are based on standard dimension reduction and clustering algorithms. An approach is 

also presented to model the application and its scenarios as a dataflow graph. This makes it possible to 

connect the scenario identification approach to a design-flow that can map the application onto a MP-

SoC while guaranteeing timing constraints. The outline of such a design flow is also discussed in this 

chapter. 

 

Within the first year of the MNEMEE project, the scenario identification technique has been 

developed and implemented using the ICD-C framework from ICD. Furthermore, the FSM-based 

SADF model has been formally defined. As future work, it is planned to develop a semi-automatic 

technique to extract an FSM-based SADF model of an application from the output of the scenario 

identification technique. This extraction technique will be based on the approach outlined in this 

chapter. The final goal is to connect this FSM-based SADF model to a predictable design flow that 

maps the application onto a MP-SoC platform. This design flow will be developed in the remainder of 

the MNEMEE project. 
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8. Statically allocated data storage and data access behaviour analysis 

8.1. Overview 

The goal of this chapter is to analyze the statically allocated data in targeted embedded applications. 

The statically allocated data consists of scalars, multi-dimensional array and variables declared within 

the scope of functions in the source code. The memory space needed for this data is allocated at 

compile-time and the access behaviour is dependent on the control flow of the application. The 

primary aim of the analysis is to identify different scenarios of data usage and accordingly suggest 

static optimization opportunities. 

 

The arrangement of the deliverable is as follow. Section 8.2 gives an overview of the memory 

architecture in MP-SoC system and static data optimisations. Section 8.3 functionally describes the 

MPEG4 encoder application, a representative embedded application that is computationally intensive 

and has scopes of parallelism. Section 8.4 describes chosen application’s data access characteristics 

which are obtained from static data analysis using ATOMIUM analysis tools [1][2]. Section 8.5 

describes in detail data reuse analysis during MPEG4 encoder execution and concludes with a 

summary of the analysis. 

8.2. Introduction to static data optimization in memory 

This section describes potential of compiler optimisations that can be applied to exploit memory 

hierarchy architectures in the context of embedded systems. 

 

In general purpose computing, memory hierarchies are the standard technique to bridge the growing 

gap in performance between the processor and the main memory. The evolution of the access time for 

bulk DRAM memory has not kept up with the clock speed of the processor (7%/year vs. 60%/year  

[3]). The GHz race of the late 90s and early 2000s has resulted in processors needing hundreds to 

thousands of clock cycles for a random off-chip DRAM access. 

 

This performance hurting effect is mitigated by introducing several layers of on-chip SRAM based 

cache memories that exploit the spatial and temporal locality of the memory accesses found in all 

applications in less or greater extent. Dedicated hardware resources on the processor chip try to store 

copies of the most used data as close as possible to the processing unit, in smaller layers of memory, 

costing less time to access. 

 

The existence of the cache architecture is largely abstracted away from the view of the programmer 

who can write portable and reusable source code in a flat memory space heaven. Only the platform 

architects perform a design space exploration using design tools to find a one-size-fits-all solution with 

a good performance versus a low cost in chip area, design complexity and power budget. The marginal 

gain by increasing cache size is also getting lower: doubling the size from 1 to 2 MB of cache memory 

results in more than half of the chip area being used for cache (chip area translates directly to 

manufacturing cost), but only gives a 0-20% performance improvement [4]. Another concern is that 

the required power is reaching the limit of what can be cooled by air flow. It is estimated that around 

100W for general-purpose CPUs can be dissipated using air-cooling. 

 

In realm of embedded systems, there is also a trend of more and more complex tasks like high-quality 

sound, video and 3D graphics (multimedia), resulting in higher demands on the digital processing. 

Dedicated hardware often does not provide the required flexibility which is especially important due to 

the scaled technology costs. As a result, large volume platforms with instruction-set processors (ISPs) 

and embedded software are becoming more established. Different processor low-power micro-

architectures address different needs: RISC based architectures (ARM, MIPS) are often chosen for 

control tasks, where digital signal processors (DSPs) are more suited for bulk data processing. Hybrid 

solutions are popular, combining different processing units (RISC+DSP), with a micro-architecture 
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that has a hybrid feature set: RISC processors with extended media instructions (e.g. XScale) or DSPs 

with an architecture optimized for control tasks (e.g. BlackFin). 

CACHE
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Figure 11 - Power Analysis of a MP-SoC system. 

 

However diverse the processors used in embedded systems, they all need significant amounts of off-

chip memory to store the multimedia data. The typical clock speeds are in a few hundreds of MHz, 

with the 1GHz mark reached by the high-end TI TMS320C64 DSP in 2004. The gap between 

processor and memory is also widening, but the hardware resources available to tackle this problem 

are far more constrained than in general purpose computing. Up to two levels of on-chip cache can be 

present in embedded processors, but they come at a cost. Especially energy consumption is identified 

as the main bottleneck, where more than 50% of the energy of the processor is going to the on-chip 

caches, and that is even without the energy going to off-chip SDRAM. As shown in Figure 11, recent 

studies have shown over 50% of total energy consumption of a MP-SoC system to be spent in the 

system cache [5]. Power analysis of DSP processors such as TI TMS320C64 DSP [6] confirms such 

results. RISC processors such as ARM11 also exhibit similar power analysis [7]. It is clear that a 

substantial part of the energy consumption of an embedded system comes from the memory 

subsystem. 

 

Designers of embedded systems constantly strive to improve performance and reduce energy 

consumption. Low energy systems extend battery life, reduce cooling costs, and decrease weight. 

Improved performance allows cheaper components to be utilized while still meeting all necessary 

deadlines. Shutting down parts of the processor [8], voltage scaling [9], specialized instructions [10], 

feature size reduction [11], and additional cache levels [12], are some of the techniques used to reduce 

energy in embedded systems. 
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Figure 12 - Memory hierarchy in embedded systems. 
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Embedded systems differ from general-purpose systems by executing the same application or class of 

applications repeatedly. Knowledge of an embedded application's profile can be well understood 

through extensive simulations. Applications in multimedia, video processing, speech processing, DSP 

applications and wireless communication require efficient memory design since on chip memory 

occupies more than 50% of the total chip area [13]. This will typically reduce the energy consumption 

of the memory unit, because less area implies reduction in the total switched capacitance. On chip 

caches using static RAM consume power in the range of 25% to 50% of the total chip power [14]. 

Recently, interest has been focused on having on chip scratch pad memory (SPM) to reduce the power 

and improve performance. Figure 12 illustrates the generic architecture of SPM memory architecture. 

Scratchpad memory (SPM), also known as scratchpad or scratchpad RAM, is a high-speed internal 

memory used for temporary storage of calculations, data, and other work in progress. It can be 

considered as similar to an L1 cache in that it is the memory next closest to the ALUs after the internal 

registers, with explicit instructions to move data from and to main memory, often using DMA-based 

data transfer. In contrast with a system that uses caches, a system with scratchpads does commonly not 

contain a copy of data that is also stored in the main memory. 

 

Scratchpads are employed for simplification of caching logic, and to guarantee a unit can work 

without main memory contention in a system employing multiple processors, especially in 

multiprocessor system-on-chip for embedded systems. They are most suited to storing temporary results 

(such as would be found in the CPU stack for example) that typically wouldn't always need 

committing to main memory; however when fed by DMA, they can also be used in place of a cache for 

mirroring the state of slower main memory. They are suited to embedded systems, special-purpose 

processors and games consoles, where chips are often manufactured as MP-SoC, and where software 

is often tuned to one hardware configuration. 

 

Current embedded processors particularly in the area of multimedia applications and graphic 

controllers have on-chip scratch pad memories. In cache memory systems, the mapping of program 

elements is done during runtime, whereas in scratch pad memory systems this is done either by the 

user or automatically by the compiler using a suitable algorithm. As a result, the use of a tool in 

scratchpad memory optimization is highly beneficial.  To reduce power in embedded systems, profile 

knowledge applied to a system with SPM instead of instruction cache, has been shown to be useful 

[15]. Previous results have shown SPM can outperform cache-based run-time memory on almost all 

counts. It has been shown that the area-time product (AT) can be reduced by 46% (average) by 

replacing cache by the scratch pad memory (Figure 13). For most applications and memory 

configurations, the total energy consumption of scratch pad based memory systems is less than that of 

cache-based systems.  

 

 

Figure 13 - Area and Performance benefits of SPM over cache for embedded benchmarks [15]. 

To optimize energy consumption of the memory subsystem, both hardware and software memory 

optimization techniques can be applied. The techniques described in this section exploit the use of 

scratchpad memory (being more energy efficient than caches) by transforming the embedded software 

using design-time exploration and transformation tools. Quite some embedded processors have on-

chip scratchpad memories, which can be used to bridge the memory-processor gap in a more efficient 
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way. The control of data placement and replacement is placed in the hands of the software developer. 

Using application knowledge, a custom policy can be implemented in software, putting often used data 

in scratchpad memory close to the processor and using software-controlled transfers to and from 

further layers to maximize the use of the closest layers (both faster and more energy-efficient). This 

can result in significant gains in performance and energy, because of two reasons: knowledge on the 

future can be exploited and a scratchpad memory of the same size as a cache is faster and cheaper in 

energy. Actually the size of the scratchpad will be smaller than the cache to fit the same data, resulting 

in smaller memories with less static energy. 

 

Scratchpad memory exploitation comes at the cost of the time and effort of the software developer and 

it breaks the programming abstraction of a flat memory space, hurting software platform independence 

and reuse. For embedded application this effort can be acceptable, because only a limited amount of 

software kernels dominate the execution. Still, finding optimal data assignments to (scratchpad) 

memories in terms of performance and energy is not a trivial task as the search space of the 

possibilities of which data to (re)place, where and at what time, is huge. To solve this problem, a 

unified tool framework to optimize the memory architecture of state of the art embedded platforms has 

been advocated. This document gives an overview of such a tool framework that can help a designer 

during static data optimization. It describes design-time techniques assisted by design tools to tackle 

this software controlled placement of data in a multi-layer memory hierarchy. The software developer 

is assisted by design-time software tools. Application source code is automatically analyzed and 

information on the spatial and temporal locality of the data is derived (with data reuse analysis 

described further in this document). Using cost models for performance and energy of the processor, 

the memories and the data transfers a high-level estimation of execution time and energy consumption 

can be made automatically for different possible solutions. In WP3 of the MNEMEE project, the 

methodology and a prototype of this tool would be developed in the scope of MNEMEE. These tools 

would be used by the industrial partners to map their application of interest on MP-SoC platform. 

 

An optimal assignment of data to layers in terms of time or energy can be found in the big search 

space using greedy heuristics. Additionally, the analysis of the locality can provide hints for the 

application data layout to conform to the memory structure [16]. Also on some architecture explicit 

hints like prefetch instructions can be passed to the hardware. In addition scratchpad memories can be 

combined with caches, providing a hybrid solution [17]. This shows that the application domain is 

bigger than scratchpad based memory organizations alone. 

 

In the following sections, we would consider a MP-SoC platform with SPM. The goal of this study is 

to analyze a computationally intensive representative multimedia application and classify the access 

patterns of the statically allocated data, namely the scalars, and the multidimensional arrays. Based on 

the analysis we would suggest optimization methodologies that can be implemented to take advantage 

of these specific data usage scenarios. 

8.3. Application description 

Section 8.2 described potential of static data optimisations for a given application. Next, we will 

describe the characteristics of a representative embedded application that we target for our study. The 

next generation of embedded systems will be dominated by mobile, intelligent devices, which are able 

to deliver communications and rich multimedia content anytime, anywhere. The integration of 

communication and multimedia applications will create extremely complex and dynamic source code 

with huge resource requirements and real time constraints. The key characteristic of these applications 

will be the intensive data transfer and storage and the need for efficient memory management. MPEG-

4 encoding application is a representative of such a computationally intensive embedded systems 

application. This section describes typical characteristics of MPEG-4 encoder, commonly seen in 

multimedia embedded systems.  

8.3.1. Introduction to block-based coding 

The booming of digital video products during the recent years, like in video entertainment with DVD, 

High Definition (HD) TV, Internet video streaming, digital cameras, high end displays (LCD and 
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Plasma), etc., is enabled by compression/decompression (codec) algorithms that make it possible to 

store and transmit digital video. The main goal of video compression is to reduce the vast amount of 

data present in the raw format. The resulting encoded video bitstream uses as few bits as possible 

while maintaining visual quality. The complementary video decoder converts this compressed form 

back into a representation of the original video data. The encoder/decoder pair is often described as a 

codec. 

 

If the decoded video sequence is identical to the original, then the coding process is lossless. As 

typically only a compression ratio of around 3 to 4 is achieved by lossless image compression 

standards, lossy compression is necessary to achieve higher compression factors. Lossy video 

compression is based on the principle of removing subjective redundancy: elements of the image or 

video sequence that can be removed without significantly affecting the user’s perception of visual 

quality. Video codecs are based on the mathematical principles of information theory. As a 

consequence of their complexity, building of practical codec implementations requires making delicate 

trade-offs that approach being an art form. 
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Figure 14 - 4:2:0 macroblock structure. 

 

All standards of the MPEG-x or H.26x families divide a frame of a video sequence into MacroBlocks 

(MB), corresponding to a 16  X 16 pixel region of the frame. For video material in the 4:2:0 format 

(the typical raw input format for these video standards), a macroblock contains 6 blocks of 8 X 8 

pixels (Figure 14): 4 luminance and 2 chrominance blocks. An MPEG-x or H.26x video codec is 

characterized by its block-based processing nature. 

 

8.3.2. A Basic Video Coding Scheme 

The main video coding concepts are well described in Chapter 3 of [18], of which this subsection 

presents a summary. A basic video encoder (Figure 15) consists of three main functional units: a 

temporal model, a spatial model and an entropy encoder. The first processing step, the temporal 

model, receives the new raw video data as a current frame. To reduce the temporal redundancy, its 

Motion Compensation (MC) exploits the similarities between the current frame and reference frames 

(recently coded neighbouring, both previous or future, frames) to predict each (macro)block. The 

Motion Estimation (ME) is the part of the temporal model that searches the closest match in the 

reference frames for each MB in the current frame. This ME is known as the most performance 

intensive function of video compression. The output of the temporal model is a residual/error after MC 

(created by subtracting the prediction from the actual current frame) and a set of model parameters, 

typically a set of motion vectors describing the relative location of the best match in the reference 

frames. 

 



Public  Page 34 of 87 

Temporal
Model

Spatial
Model

Entropy
Encoder

Stored

frames

video
input

bitstream

residual

vectors

coefficients

 

Figure 15 - Video encoder block diagram [18]. 

 

The residual, subdivided into 8 X 8 or smaller blocks, forms the input to the spatial model which 

makes use of similarities between neighbouring samples in this residual frame to reduce spatial 

redundancy. The transform part of it, such as the Discrete Cosine Transform (DCT) or a derivative, 

decorrelates the spatial samples by representing them into the frequency domain as transform 

coefficients. The quantization part reduces these coefficients to perceptually important values only. 

The output of the spatial model is this set of quantized transform coefficients. 

 

The motion vectors (from the temporal model) and the quantized coefficients (from the spatial model) 

are further compressed by the entropy coder. This step exploits the statistical nature of these vectors or 

coefficients to produce the final compact video bit stream ready for storage or transmission. Such a 

compressed sequence also contains header information containing the characteristics of the sequence 

or parameters of the frame. 

 

The process of redundancy removal is reversed in the video decoder that, while parsing the 

compressed bitstream, recovers the coefficients and motion vectors using an entropy decoder. The 

prediction of motion compensation is combined with the decoded residual to reconstruct the original 

video. 

 

A video codec has the choice between 3 modes to compress an individual frame: I, P or B. Intra 

frames (I) are encoded independently: no reference to any other frame is made (i.e. no MC). Inter 

coded frames exploit the temporal correlation. They can be coded as Predicted (P) frames using MC 

with only previous frames as reference (forward prediction) or as bi-directional predicted frames (B) 

frames from both past frames as well as frames slated to appear after the current frame. 

 

8.3.3. Video Coding Standards 

Standardization work in the video coding domain started around 1990. The ITU-T H.26x family has 

grown over 3 generations: H.261, H.263 and H.264. H.261 was targeted for two-way video 

conferencing applications over ISDN networks. The H.263 standard was released for transmission of 

video-telephone signals at low bit rates. 

 

The ISO MPEG-x family, MPEG-1 and MPEG-2, are currently the most widely introduced video 

compression standards. MPEG-1's initial driving application was storage and retrieval of moving 

pictures and audio on digital media such as video CDs, but is widely accepted for distributing video 

over the Internet. MPEG-2 was developed for the compression of digital TV signals and supports both 

progressive and interlaced video. MPEG-4 increased error robustness to support wireless networks, 

included better support for low bit-rate applications and provided additional object-based 

functionalities. MPEG-4 has found application in Internet streaming, wireless video and digital 

consumer video cameras as well as in mobile phones and mobile palm computers. 
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One of the most important developments in video coding in the last years has been the joint definition 

of the H.264/AVC standard by both ITU-T and the ISO/IEC. This most recent video standard, with 

official name MPEG-4 part 10 and ITU-T H.264, covers all application domains of the previous ones, 

while providing superior compression efficiency and additional functionalities over a broad range of 

bit rates and applications. More specifically, H.264/AVC employs: a more precise motion 

compensation prediction, variable size MC blocks, and multiple frames of the past, context-based 

entropy coding, an in-loop deblocking filter and advanced rate-distortion optimization [1]. The joint 

effort resulted in the development of Amendment 3 for MPEG-4 part 10 adding scalability features to 

AVC. This new video standard is known as SVC. 

 

8.3.4. MPEG-4 part 2 Video Coding Scheme 

The MPEG-4 part 2 video codec [19] belongs to the class of lossy hybrid video compression 

algorithms [20]. Figure 15 gives a high-level view of the encoder. A frame of width w and height h is 

divided in macroblocks, each containing 6 blocks of 8x8 pixels: 4 luminance and 2 chrominance 

blocks (Figure 14). 

 

The Motion Estimation (ME) exploits the temporal redundancy by searching for the best match for 

each new input block in the previously reconstructed frame. The motion vectors define this relative 

position. The remaining error information after Motion Compensation (MC) is decorrelated spatially, 

using a DCT transform and is then Quantized (Q). The inverse operations De-quantize and IDCT, and 

the motion compensation reconstruct the frame as generated at the decoder side. The chain of DCT, Q, 

De-Q and IDCT is called the Texture Coding (TC). Finally, the motion vectors and quantized DCT 

coefficients are variable length encoded. Completed with video header information, they are structured 

in packets in the output buffer. A Rate Control (RC) algorithm sets the quantization degree, to achieve 

a specified average bitrate and to avoid overflow or underflow of this buffer. 

 

The Simple Profile of the MPEG-4 part 2 standard is oriented to low-delay, low-complexity coding of 

rectangular video frames [21]. As a result, this profile supports only a small set of MPEG-4 visual 

tools. Its main characteristic is the restriction to P frames as temporal prediction. 
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Figure 16 - MPEG-4 part 2 SP encoder scheme. 

8.4. Static data characteristics of the scenario application 

This section describes the profiling results for sequential MPEG-4 encoder application which is done 

using Atomium Analysis Tools [1]. Profiling described in this section is mainly focused on counting 

array accesses by the application. By this profiling one can identify the parts of application which 

makes heavy memory accesses. These results can help to make a rough decision about load balance 

situation for current application and possible parallelization for the system. 
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As described in previous Section 8.3, MPEG-4 is a collection of compression defining methods can be 

used for audio and video transmission. Atomium Analysis tools are a set of tools that can instrument 

and optimise data-dominated C programs with the purpose of obtaining various kinds of profiling 

information through simulation. Our focus is to analyse memory usage of array data in MPEG-4 

encoder and to identify memory related bottlenecks. 

 

For the static analysis we have used the Atomium toolset on the MPEG-4 encoder application. The 

source code of the application followed the CleanC specifications to ensure a comprehensive analysis 

the toolset. The following two sections give an overview of the tools used in this analysis and on the 

tools that will be used in WP3 of MNEMEE. 

 

8.4.1. CleanC specifications overview 

 

The C language provides much expressiveness to the designer, but as a drawback  this expressiveness 

makes it hard to analyze the C program and map it to a MP-SoC platform.  Clean C gives guidelines  

to the designers  to avoid usage of constructs, that  are not well analyzable.  

Clean C gives a set of rules, which can be divided into two categories as code restrictions and code 

guidelines. Code restrictions are constructs that are not allowed to be present in the input C code, 

while code guidelines describes how code should be written to achieve maximum accuracy from 

mapping tools. 

A code cleaning tool suit will help to identify the relevant parts for clean-up  

While developing new application code, the Clean C rules can be followed immediately. Some of the 

proposed guidelines and restrictions are as under: details can be found in [22]. 

 

Overall code architecture 

• Restriction: Distinguish source files from header files 

• Guideline: Protect header files against recursive inclusion 

• Restriction: Use preprocessor macros only for constants and conditional exclusions 

• Guideline: Don’t use same name for two different things 

• Guideline: Keep variable local 

 

Data Structures 

• Guideline: Use multidimensional indexing of arrays 

• Guideline: Avoid struct and union 

• Guideline: Make sure a pointer should point to only one data set 

 

Functions 

• Guideline: Specialize functions to their context 

• Guideline: Inline function to enable global optimization 

• Guideline: Use a loop for repetition 

• Restriction: Do not use recursive function calls 

• Guideline: Use switch instead of function pointer 

 

8.4.2. Atomium Tool Overview 

The Atomium is a tool set consisting of 3 major components: Atomium/Analysis, Atomium/MH 

(Memory Hierarchy), Atomium/MPA (Multi-processor Parallelization Assistant), for which details are 

described below. In this document, for our analysis we have used the following two parts of the tool, 

namely Atomium/Analysis and Atomium/MH. 

 

Atomium/Analysis (ANL) 

Atomium/analysis is a tool to analyse memory usage of array data in data dominated applications, to 

identify the memory related bottlenecks in such applications, and to assist its user with optimising the 

application with respect to these memory related aspects. 
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The Atomium/Analysis version included in Atomium provides following features: 

 

Memory bottleneck identification based on C code instrumentation and simulation. Application code 

that has been instrumented by Atomium/analysis will, next to performing its normal functions, 

generate a data file about the number of times that each array present in the code is accessed and from 

where this happens. From this data file, the Atomium report generator can then generate hyperlinked 

access count reports in HTML format. 

 

Atomium/Analysis tool would instrument an application for kernel profiling. The user would 

introduce timing callback functions in the application source code. This modified code would 

generate a file containing kernel timing information, next to normal application output after 

execution. This timing information can then be used by other tools in the Atomium suite to 

steer their optimizations. 
 

Atomium/Analysis supports a substantial subset of ANSI C as its input language. 

 

Atomium/MH  
 

Atomium/MH is a tool that optimises the hierearchical memory architecture, both in terms of cycle 

cost and energy cost, by introducing copies and assigning the data structures and copies to the various 

memory layers. The tool is primarily intended for optimising multimedia applications, as these often 

manipulate very large amounts of (multi-dimensional) data such as images and video.   

The Atomium/MH tool provides the following features: 

 

• Given an application, the tool automatically analyses the code structure (primarily 

nested loops) and array accesses and identifies potential intermediate partial array 

copies, known as copy candidates, and the matching (block) data transfers that are 

needed to keep the arrays and copies in sync. 

 

• Next, given a user-defined high-level model of the targeted implementation platform 

(mainly describing the memory hierarchy), the sets of copy candidates, and profiling 

data, the tool automatically inspects valid selections to the various memory layers. 

The most promising solutions in terms of energy cost and cycle cost are presented to 

the designer. 

 

• Finally, the designer can select solutions for further investigation and/or 

implementation. For every solution, the tool can visualize the selected copy 

candidates, the memory layer assignment, and a detailed life-time analysis of the 

arrays and copies, together with detailed estimates of the energy consumption and 

cycle cost.  

 

• The tool assumes a memory architecture containing SPM memory and DMA. This 

basic constraints need to be met for the tool to analyse the application efficiently. 

 

The tool can automatically transform the application code such that the selected copy candidates and 

the necessary block transfers are explicitly expressed in the code. The assignment and the transformed 

code for every selected solution can also be saved to files, which can be used as input for subsequent 

tools in the Atomium tool chain, most notably Atomium/MPA. 

 

Atomium/MH supports a substantial subset of ANSI C as its input language. The formal analysis and 

optimisation functionality is limited, however, and can only be used to its full potential on C code that 

is largely linear. 
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Atomium/MPA  
 

Atomium/MPA is a tool that is able to parallelize a single-threaded application, steered by user 

directives provided through a separate file. 

 

The licensed Atomium/MPA version provides the following features: 

 

• Given an application, the tool automatically analysis the dataflow dependencies. 

 

• Next, the tool reads a file containing a specification of the parallel sections and an 

assignment of functionality in the code to different threads. This specification is based on 

labels that have to be inserted in the code by the user. In this specification, the user can 

also specify which variables have to be treated as shared variables. Moreover, the user can 

impose synchronizations constraints between loops in different threads in order to protect 

accesses to the shared variables. The tool will then analyse the dataflow dependencies and 

derive where it needs to insert FIFO communication channels between the threads in order 

to guarantee correct execution of the application. 

 

• Finally, the tool will transform the code into a multi-threaded application, with calls to the 

multi-processor parallelization support library (mps), implementing the thread 

management, the FIFO communication, and the loop synchronization. 

 

Atomium/MPA supports a substantial subset of ANSI C as its input language. The effectiveness of 

the parallelization, however, largely depends on the nature of the application. In particular, 

applications that heavily rely on accessing data through pointers may lead to conservative 

parallelization implementations. 

 

Pre and Post MNEMEE contributions 

At its current state, the MH tool is capable of optimizing the memory architecture for a single 

processor platform. During the MNEMEE development it will be extended to support a multi-

processor platform. In MNEMEE the MH tool will be linked to MPA for multiprocessor 

architectures, allowing exploration of memory hierarchies and parallelization for an application. 
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8.4.3. Profiling steps 

Profiling the application involves following a well-defined methodology assisted by Atomium 

Analysis tools [1]. As shown in Figure 17 profiling an application using Atomium Analysis tools 

involves following steps: 

 

(a) Preparing the program for ATOMIUM 
First, the application should follow the CLEANC guidelines.  

 

(b) Instrumenting the program using ATOMIUM 
Instrumenting will be done by invoking the appropriate ANL command. The user  will instruct the tool 

to instrument the .c files for detailed local access statistics and putting the instrumented code in the 

output directory. 

 

(c) Compiling and Linking the Instrumented program 
The instrumentation process will result in instrumented code dumped in output directory. This 

directory will contain ANL header files and the source directory contains the instrumented code. 

Atomium tool takes C code as input and output instrumented is in C++ format.  For compilation, we 

will use C++ compiler and link it with ATOMIUM runtime library. 

After successful compilation and linking, executable file for application will be created. Running this 

executable will generate access statistics beside its normal output (Figure 17). Besides producing 

normal output, a new file will be generated named ato.data by default. 

 

(d) Generating an Access count report 
The Atomium data file can generate a variety of reports. The generated report can be in form of 

HTML, TABLE or TREE format. The HTML format gives better navigability but requires a lot of 

hard disk space. The report may include array access count, peak memory usage and function & block 

activation. 

 

 

Figure 17 - Profiling Steps for Analysis. 
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(e) Interpreting results 
The report generated by the Atomium tool will guide the designer to optimize memory access 

behaviour of an embedded platform. The designer can reduce his exploration space for optimization by 

using selection criteria. An example of selection criteria may be optimizing the performance of the 

functions that generates majority of the static data access.  

 

8.4.4. Profiling results for selected functions 

In this current document, we performed an analysis on the MPEG-4 encoder application. The ANL 

tool generated an access count report for the static data structure of the application. 

 

The reports generated for the MPEG4-Enct application is huge containing 145 functions/blocks 

accessing 73 arrays. Therefore, we need some selection criteria to reduce the exploration space. We 

can either define the criteria as the arrays being accessed most or functions whose execution time is 

longer. For the first criteria, we can identify arrays but tracking location inside application for these 

accesses is not straightforward.. For the second criteria, if we take function execution time as starting 

point, we can easily identify arrays being accessed by these functions. We can also notice that 

function’s execution time is higher because of heavy array accesses or intense functional processing. 

By identifying such functions, we can analyze the program behaviour and can investigate 

parallelization possibilities. 

 

The hierarchical view of execution time shows that mainly execution is done by frameprocessing and 

its sub-functions. The time shown for each function is sum of its own execution time and its sub-

function’s execution time. We further explore in hierarchical depth to find functions mainly 

contributing in execution time e.g. MotionEstimateMB_fpme having execution time as 874 

microseconds but its sub-function FullPelMotionEstimation takes 858 microseconds, so parent 

function take very less time for self execution. 

 

After identifying these functionalities, we will go in detail for arrays being accessed by these selected 

functionalities and how much accesses are being covered inside this small group of functionalities 

compared to total accesses by application. 

 

Figure 18 - Execution time usage by functions (micro seconds). 
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(b) Array Access 

Figure 19 - Array size and accesses for selected functionalities. 

On basis of execution time and local accesses, 12 functions out of 145 were short-listed to analyse the 

array accesses. These accesses amount to 80% of the total memory accesses performed while running 

the application.  

 

For each function, there are six different statistical numbers which can be classified in three classes: 

•••• Total Accesses & Local Accesses: Total accesses means accesses done by this function and its 

sub-functions for this specific array. Local Accesses means accesses done to this specific array 

inside this function. 
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•••• Total Writes & Local Writes: same explanation for total and local as for accesses. 

•••• Total Reads & Local Reads: same explanation for total and local as for accesses. 

 

Figure 19 shows array size and local array accesses done by selected functionalities. Figure 19(a) 

shows the largest arrays in the MPEG-4 application. The remaining arrays (“rest”) are so small that 

they will most likely fit in the scratchpad memory, and thus do not need re-use buffers. 

One important point to notice here is how much memory accesses we are covering within these 

selected functions, which are in numbers 8% of total functionalities. The application profiling gives us 

a deep insight into application behaviour, simulation cycle distribution and memory accesses 

distribution. This information is very crucial to for deciding parallelization opportunities available for 

target application and can be helpful for adding more possibilities to previous parallelization 

proposals. 

 

Conclusions from the profiling results 
By viewing the complete profiling results, one can conclude that 12 functions out of 145 are utilizing 

more than 80% array accesses and also that these all functions lie under frameProcessing. 

Furthermore, a set of functions under frameProcessing share these accesses and execution times as 

described in the charts. The primary conclusion from this analysis is that parallelization of this 

application should start from frameProcessing and the sub-functions sharing execution times should 

run in parallel.  

8.5. Data-reuse analysis 

 

8.5.1. Introduction 

The purpose of this analysis is to identify and exploit the available data locality and re-use potential in 

an application. In particular, an MPEG-4 video encoder is used to illustrate various phases in the 

analysis.  

 

Rationale 
For multimedia applications, access patterns are often quite predictable. Therefore, compile-time 

analysis can be used to improve the utilization of hierarchical memory architectures, resulting in a 

much better performance and a considerable reduction of the energy consumption. This is illustrated 

by Figure 20. 

 

At the left side of the picture, a simple memory architecture with just one background memory layer is 

depicted. If, as in the picture, the processor accesses the large data structures in the background 

memory directly, both the energy consumption (E1) and the cycle cost (C1) due to memory accesses 

will be high because large memories are typically energy-hungry and slow.  

 

Multimedia applications often process data in nested loops and they typically access only part of the 

data heavily in the inner loops. If we can copy these smaller parts to memories that are smaller and 

closer to the processor before the execution of the inner loops, memory accesses in the inner loops will 

be concentrated to the smaller memories, which are faster and more energy-efficient than the 

background memories. Accesses to the background memories then mainly consist of (block) transfers 

to the local memories (and possibly back), at a much slower rate than the accesses in the inner loops.  

 

This is illustrated at the right side of the picture: accesses by the processor are now concentrated on the 

local memory (indicated by the wide arrow) and transfers between the two memories are heavily 

reduced (indicated by the narrow arrow). The result is that the energy consumption (E2a) and cycle 

cost (C2a) for the background memory are much lower (because there are fewer accesses), while there 

is an additional energy consumption (E2b) and cycle cost (C2b) due to the local memory. However, 

since this memory is much smaller than the background memory, accesses to it are faster and consume 

less energy. Hence, this implementation is more efficient than the one on the left if: 

E1 >> E2a + E2b and/or C1 >> C2a + C2b 
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For multimedia application this is often the case, provided that the application can be analyzed and 

optimized sufficiently at compile time. Moreover, the cycle cost for the solution on the right can 

become even less than the sum of C2a and C2b if the block transfers between the two memories can 

be handed over to a DMA controller, which can operate in parallel with the processor. 

 

This is, in effect, the same principle as the one behind hardware caches, except that hardware caches 

cannot exploit application knowledge, and energy consumption in caches is typically much higher than 

for a simple local memory. By using software controlled local memories and application knowledge, 

hardware caches can be beaten both in terms of performance and in terms of energy consumption. 

 

 

Figure 20 - Exploiting the memory hierarchy. 

 

Work flow 

The proposed work flow for identifying the available re-use in an application and for assessing 

the potential to exploit this re-use is depicted in  

Figure 21. 

The coloured blocks suggest different tools used in particular stages. The details of the tools used in 

this workflow have been discussed in Section 8.4.  

 

First, the application, specified in C source code, is profiled both for array accesses and cycle counts. 

The application source code was produced maintaining CleanC specifications. The Atomium toolset is 

used for the profiling. The information is stored in a database, from which reports can be generated. 

This allows the designer to identify the most important data-structures and the most important code 

sections. The profiling information is further used to quantify the potential gains in the platform-

specific part of the flow. 

 

The re-use analysis identifies potential re-use buffers. These so-called copy-candidates can be depicted 

in a graph for inspection by the designer. The information is also passed on to the next stage, where 

the most profitable set of copy-candidates is selected for a specific platform. This trade-off between 

different solutions is made based on the copy-candidate information, profiling data and the platform 

description. For each solution the cost in terms of cycle counts and power consumption can be 

estimated. Moreover, a schedule of the data-transfers and data-life-times can be constructed. The MH 

tool is used for this analysis. 

Finally, once a solution has been selected, the source code can be transformed to include the re-use 

buffers and data-transfers. 
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Figure 21 - Work flow overview. 

 

8.5.2. Identifying data re-use  

 

In the re-use analysis step, the code is analysed for potential re-use opportunities. The goal is to find 

places where it is possible to introduce temporary copies (re-use buffers) of parts of the original data 

structures. This can be done by static analysis of the source code, and is independent of the target 

platform. 

 

First the basic concepts of re-use buffers and re-use graphs are introduced. Thereafter, some example 

results of the re-use analysis of the MPEG-4 encoder application are shown, and more complex re-use 

opportunities are highlighted. 

 

Re-use buffers 
Typically, loop boundaries are good candidates for introducing copies. For instance, if a (nested) loop 

heavily accesses a small part of a large array, it may be beneficial to copy that part to a more local 

memory, operate on that copy, and write the results back after the loop, if necessary.  
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Figure 22 - Data re-use at different loop-levels. 

 

For example, consider Figure 22. The graph shows the access pattern of array A. The colour-coded 

rectangles in the graph represent the static data that is accessed in the corresponding colour coded 

loops in the sample code. For example, the inner rectangle with 15 data points represent the part of 

array A that has been accessed within the for loop with iterator k. The green rectangle similarly 

represent the data points accessed during the execution of the loop with iterator i. Iterators i and k are 

part of the (affine) index expression of array A, and therefore it is possible to insert a re-use buffer at 

those loop-levels. At the lower loop-level k, the size of the re-use buffer will be smaller (5 elements), 

but the re-use factor is only 3. At the higher loop-level i, the size is 15 elements and the re-use factor 

6.  

 

Another, less obvious, place where copies can make sense is at condition boundaries, especially if that 

condition is in between nested loops. If may be beneficial to provide a copy for use inside the loops 

enclosed by the condition. However, if that copy is made before the condition, it may not be used at all 

because of the condition. So, if the condition evaluates to false most of the time, it is probably better to 

postpone the copy till the condition has been entered, to avoid too many unnecessary transfers. On the 

other hand, if the condition has several branches and each of the branches accesses (almost) the same 

data, making the copy before the condition is evaluated, is usually better because there is more 

freedom to schedule the transfer in that case. 

 

These are the kind of trade-offs that must be made during the optimization phase. However, before 

these trade-offs can be made, all potential copies must be known. We refer to these potential copies as 

copy candidates. 

 

Note that the re-use analysis only considers rectangular copy candidates: the parts of the data that can 

be reused may have arbitrary shapes, but they are always approximated by rectangular bounding 

boxes. The reason is twofold: on the one hand, the analysis is greatly simplified when bounding boxes 

can be used, and on the other hand, arbitrary shapes would introduce a prohibitive amount of overhead 

in real-life implementations. 

 

 

Re-use graphs 
For every relevant place in the code, copy candidates can be derived 0. The hierarchical relations 

between the different copy candidates can be depicted in a re-use graph. The edges between the copy-

candidates define the relation: a copy candidate at a deeper level is always a sub-set of a copy 
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candidate at a higher level to which it is connected. This is also reflected by the sizes: a child node is 

never larger than a parent node. 

 

In Figure 23, two example re-use graphs are shown. The rectangles represent copy-candidates. At the 

top of the graph, we see the original data structures A and B. At the bottom the array references 

R1(A), R2(A) and R(B) are shown. The other rectangles, A1’ etc., represent the copy candidates. They 

are connected in a hierarchical way. Each node is also associated with a certain construct in the code, 

depicted by the location of the node in the graph, for example, a condition branch or a loop.  

 

 

Figure 23 - Example re-use graph. 

 

The copy candidates in the re-use graph can be annotated with the numbers of loads and stores. The 

number of loads equals the estimated number of words that have to be transferred from the parent copy 

candidate, taking into account the size of the copy candidate and the number of times that it must be 

filled. The number of stores is similar, except that it describes the number of words that have to be 

written back to the parent copy candidate. 

 

Single-memory re-use 
 

Even in a single memory, location re-use can be enhanced in two ways: 

• by re-using memory locations as much as possible inside each data structure; 

• by re-using memory locations as much as possible between different data structures. 

The former is referred to as intra-data memory re-use, while the latter is referred to as inter-data 

memory re-use. Both of them require global life-time analysis. A complete explanation of these 

techniques can be found in [60], [61] and [62]. 

 

In case of the MPEG-4 encoder, for example, intra in-place mapping can be done on the motion-vector 

array and the quantization coefficient arrays, because the life-time of each of the array elements is 

limited to only a few iterations of the macro-block processing loop. 

 

Figure 24 shows a partial re-use graph of the motion-vector array. The original array, on the left, has 

no connection with the top copy candidate. This means that all accesses to the original array are also 

covered by this copy candidate. However, the size of this copy candidate is much smaller than the 

original array. In the optimization phase it will always be preferred over the original array, even if it is 

assigned to the highest memory layer. 
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Figure 24 - (Pruned) re-use graph of the motion-vector array. 

 

In the original application, the array is accessed directly, so one would expect that the contents of the 

copy candidates would eventually have to be written back to the original array. However, every 

transfer should be checked whether it is really needed. In this case, there is no need to load data from 

the original array into copy candidate @1C or to store the contents of @1C back into the original array 

because those data are never written before the copy candidate becomes alive and they are never read 

afterward. So these transfers are redundant and hence can be pruned. But this also means that the 

original array has become completely redundant.  

 

This can easily be understood by looking at the original application: inside the macro-block row loop, 

only two consecutive lines of the motion-vector array are accessed: it is filled with data computed by 

the motion-estimation which uses the current and previous line for the motion-vector prediction. So 

every line is processed only once, and the data of that line are only used in the current and next macro-

block row. Hence, it is not necessary to store the line in the original output frame. It suffices to use a 

buffer that can hold only two lines at a time, i.e., the original array can be replaced by this smaller 

buffer.  

 

Actually, this is a form of intra-data in-place mapping similar to what a tool like Memory Compaction 

[60] would achieve.  

 

So, to summarize, whenever the original array becomes disconnected from the rest of the copy 

candidates graphs, this means that redundant transfers have been removed, and the array is entirely 

redundant because it be replaced by the root copy candidate. 
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Memory hierarchy re-use 
 

In addition to the copy candidates identified at branches and loops, more copy candidates can be 

generated by two techniques: 

• considering both loop-carried and non-loop-carried versions of a copy candidate at loop 

boundaries, 

� considering different combinations of copy-candidates from different branches as a new copy-

candidate (“XOR” algorithm). 

These techniques are explained by examples from the MPEG-4 encoder application. 

 

In a re-use graph, the direction of the arrows between copy candidates indicates the direction in which 

data transfers between them have to occur. For example, consider Figure 25. The bi-directional arrow 

between @1 and @4 indicates that @4 has to be initialized with data from @1 first, and after it has 

been accessed, the contents of @4 has to be written back to @1, i.e., it has both loads and stores. The 

arrow between @1 and @5, on the other hand, is uni-directional, meaning that @5 only has to load 

data from @1, but nothing has to be written back (because @5 is only read, not written, by accesses in 

the application). 

 

With the simple reuse algorithm, a copy candidate at a higher level always covers all the copy 

candidates at the levels below it. So, in the example, only @12C would be extracted at the “loop v” 

level. In reality, it is not always true that such a copy candidate covering all of its children represents 

the best solution. Sometimes, it can be better to leave out certain children. In this case, the tool has 

analyzed that there is a possibly better solution at that level that doesn’t cover the write accesses, 

namely @14C. This is what the more complex algorithm does: it does not only consider copy 

candidates that are covering all of their children, but also partial combinations. 
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Figure 25 - (Pruned) re-use graph of the reconstructed Y-frame demonstrating the results of the 

XOR re-use identification algorithm. 

 

The graph is also no longer a simple tree; it contains re-convergent paths. The later is a sign that the 

complex reuse analysis algorithm has been at work (the “XOR” algorithm). For instance, @14C does 

not have just a single parent, as one could expect, but two parents. 

 

Next, consider Figure 26. It shows a part of the re-use graph of the Y-frame. Only the accesses in the 

motion-estimation are considered and the XOR generated copy candidates have been omitted. Yet 

there are still multiple copy candidates for each level in the syntax tree. This is caused by loop-carried 

copy-candidates, which have a C postfix in their name. 
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Figure 26 - (Pruned) re-use graph of the reconstructed Y-frame for the MPEG-4 motion-

estimation function demonstrating loop-carried copy candidates. 

 

The difference between a plain copy candidate and a loop-carried copy candidate is the fact that the 

former is refreshed completely every time the corresponding loop is executed, whereas the latter is 

updated incrementally. Copy candidate @259 of the reconstructed Y-frame, for instance, corresponds 

to a sub-word parallel access of 4 consecutive 8-bit pixels. For every execution of the x loop, the copy 
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has to be refreshed completely, because there is no overlap with the previous sub-word. Therefore, this 

copy is not loop-carried. 

 

In contrast, @50C of the reconstructed Y-frame corresponds to the search area for the motion-

estimation. For every iteration of the h loop, this search area shifts one macro-block to the right. 

Copying the complete mask every time is an option (this is what @79 corresponds to), but it is also 

possible to reuse the pixels that overlap. The larger part of the copy can be reused and only a block 

with the width of a macro-block and the height of the search area has to be updated for every iteration. 

Since the reused pixels must be kept alive between different executions of the h loop, we say that the 

copy candidate is loop-carried. 

 

In both cases, the choice between a loop-carried version and a non-carried version of the copy 

candidate can be made. Loop-carried copy candidates have the advantage that they generally require 

fewer transfers. However, because their life-time is generally larger (it exceeds the duration of the loop 

body), storing such copy candidates can increase the pressure on the memory partitions in which they 

are stored, which may prevent the selection of other copy candidates because there is not enough 

storage space left. This is again one of the trade-offs that the designer must make. This trade-off is 

even more critical for larger copy candidates, like @14C and @30, which correspond to a row of 

search areas, in loop-carried and non-loop carried version, respectively.  

 

An important consequence of the fact that we reuse part of the data for loop-carried copy candidates is 

that they must be implemented as (multi-dimensional) circular buffers. Otherwise, an excessive 

amount of storage space would be required, most of which is unused during most of the time. 

 

8.5.3. Exploiting data re-use 

This section will highlight opportunities to exploit the identified re-use in an application. This is 

dependent on the target platform. Therefore, the required information about the target platform is 

listed first. Secondly, the trade-offs for the copy selection are discussed. Finally, the different 

possibilities for scheduling the data transfers are explained. 

 

Platform specification 
There is no need for a detailed platform description; a high-level model of the most relevant 

components is sufficient. These components and their most important properties are described in the 

following paragraphs. 

 

Memory partitions 

Memory partitions represent a set of memories (possibly only one) that have the same memory type, 

that have the same bit-width and comparable sizes, and that can be seen as a logical group of 

memories (e.g., a set of equally sized local on-chip memories of a processor). The memories in a 

partition are also assumed to be located at comparable distances from the processor. The exact number 

of memories in such a partition is not relevant; only some of the memory partition characteristics are 

important, such as: 

 

• Number of ports (read/write) of the memory. 

• Bit-width of the memory. 

• Page-size, i.e. the number of words in a memory page. 

o Read cycles, i.e. the number of cycles needed for a read access. Three different access 

modes can be distinguished, each of which can have different properties: 

o random access, 

o page mode access, 

o burst mode access. 

• Write cycles, i.e. the number of cycles needed for a write access. Similarly to a read access, 

three different access modes can be distinguished. 
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• Read energy: the (average) energy needed for a read access. As for cycles, each access mode 

can have a different figure. 

• Write energy: the (average) energy needed for a write access. This is similar to the energy 

needed for a read access. 

• Static power consumption of a single memory module. 

• Maximum size of a memory module. If a memory partition of this type has a larger word 

depth, it is must consist of multiple modules. 

 

Processor partitions 

A processor partition represents a set of processors (possibly only one) with similar characteristics and 

that share their connections to the memory partitions. 

 

DMA controllers 

The transfers of data between different memory layers (i.e., the loading and storing of copies), can 

often be handled very efficiently by a direct memory access (DMA) controller. A DMA controller can 

typically perform transfers independently, while the processor is processing other data. Data re-use can 

be better exploited such DMA controllers is present in a platform. Only a high-level model of the 

controllers is needed. Its specification should include the following properties: 

 

• Possible source and destination memory partitions for transfers  

• Maximum number of transfers that can be handled in parallel by the unit.  

• Cycle cost of a DMA transfer. The cost can be derived from 4 parameters:  

o Processor overhead: the number of cycles it takes for the processor to set up a DMA 

transfer, and during which it cannot perform other processing. 

o DMA overhead: the number of cycles it takes for the DMA unit to prepare a whole 

transfer, after it has received the necessary parameters from the processor. 

o Line setup: the number of cycles it takes for the DMA unit to prepare the transfer of a 

line of data. A line of data consists of a set of elements that can be transferred at once. 

Usually, they are stored in adjacent addresses, but they could be separated by a certain 

stride. 

o Line gap: the number of cycles it takes for the DMA unit to switch to another line. 

 

Connections 

To optimize the allocation and assignment of copy candidates to memory partitions, it should be 

known, which transfers the architecture allows. For instance, it needs to be known whether there is a 

connection between memory partitions that the DMA controller can use to transfer data. Also, the 

memory partitions which are directly accessible by the processor partition need to be known. It is 

possible that all accesses to a background memory must pass via an on-chip local memory, for 

instance, because the processor has no direct access to the background memory. 

 

Copy selection and assignment 

In the assignment phase, a set of copy-candidates is selected and assigned to the memory layers such 

that an optimal solution is obtained. 



Public  Page 53 of 87 

 

 

 

Figure 27 - Assignment of copies (cf. Figure 23) to memory layers. 

 

Two cost factors should be taken into account: the cycle cost and the energy due to memory accesses. 

Since this is a multiple-objective optimization problem, there may be several ``optimal'' solutions, i.e. 

there may be solutions that are optimal in cycles but that require more energy, or vice versa. These 

solutions can be connected through a Pareto curve. For each point on the curve, there exists no 

solution that is better both in terms of energy cost and in terms of cycle cost. 

 

Copy selection starts by calculating the potential gain, in terms of energy, processing cycles or a 

combination of these, for each copy-candidate if it was assigned to the SPM. This calculation takes 

into account the scheduling possibilities, e.g. to which extent the transfer can be executed in parallel 

with computation, and resulting transfer cost, and memory access cost. The copy-candidates with the 

highest gains can then be selected for assignment to the SPM. 

 

Note that because the assignment of one copy-candidate can influence the potential gains of the other 

copy-candidates, the gains of affected copy-candidates have to be re-calculated to decide on the next 

most promising copy-candidate. Original arrays can be treated in the same way as copy-candidates, i.e. 

also an original array can for its whole life-time be assigned to the SPM. 

 

Also note that in case the platform is not fully connected, i.e. when the processor cannot access all 

levels of the memory hierarchy directly, a copy must be selected for all accesses, even if the cost of 

such copy is high due to little re-use opportunities or a high DMA overhead.  

 

Figure 28 shows a possible assignment of copies for the reconstructed Y-frame in the MPEG-4 

encoder application, selected from the re-use graphs of Figure 25 - (Pruned) re-use graph of the 

reconstructed Y-frame demonstrating the results of the XOR re-use identification algorithm Figure 25 

and Figure 26, to a two-layer platform. 



Public  Page 54 of 87 

Figure 28 - Possible (partial) selection of copies of the reconstructed Y-frame. 

 

Transfer scheduling 

 

When a DMA unit performs a transfer, it can do this independently from the processor (except for the 

initial setup of the transfer), i.e. transfers can occur in parallel with processing. In order to minimise 

processor stalls, transfers should be issued as soon as possible and synchronized them as late as 

possible, allowing a DMA unit to execute the transfer in parallel with the processing and/or accesses 

by the processors (pre-fetching, see Figure 29). 

 

Figure 29 - Example of pre-fetching. 

 

Of course, this can extend the life-span of the copy buffers, and hence there may be a trade-off 

between buffer size and cycle cost. Pre-fetching not only improves performance, it can also reduce the 

average and peak bandwidth requirements. The same concept can also be applied for storing data 

(post-storing). 

 

However, to make informed decisions about transfer scheduling, the execution time of kernels needs 

to be known, such that the pre-fetching opportunities can be analyzed. Moreover, it requires some 

for (i=0; i<10; i++) 

 for (j=0; j<2; j++) 

  for (k=0; k<3; k++) { 

 

   DMAissue(1, B -> B’’);   

 

   for (l=0; l<3; l++) 

    for (m=0; m<5; m++) 

     … = A[m]; 

 

   DMAsync(1);  

 

   for (i=0; i<4; i++) 

    … = B’’[i];  

 

  } 
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information about the platform, especially the capabilities of the DMA controller, as discussed in a 

previous section. 

 

At least four scheduling possibilities could be considered: 

• Synchronous: stall during DMA transfer. This is always possible, but does not exploit any pre-

fetching opportunities. As a variation, the CPU could execute the transfer to avoid the 

overhead of DMA setup. It can be used when dependencies or (DMA) resource constraints 

prevent pre-fetching, or when there is no pre-fetching potential. 

• Asynchronous (time-extended): issue the transfer as soon as possible and synchronize as late 

as possible. The transfer is executed by a DMA controller in parallel with processing, at the 

expense of an extended life-time of the copy-buffer. 

• Pipelined: similar to asynchronous, but also considers pre-fetching across loop-boundaries 

(“double-buffering”). The size of copy-buffer will increase. 

• Parallel: similar to pipelined, but, if pipelining is not possible due to dependencies on the 

transferred data, also considers extending the copy buffers to break dependencies, allowing 

simultaneous accesses to different instances of the copy buffers for subsequent executions of a 

loop (pre-fetch and post-store) 

 

8.5.4. Results and conclusion 

Experiments applying the described re-use analysis techniques on an MPEG-4 encoder application 

show substantial re-use opportunities 0. Thousands of copy-candidates were found, asserting the need 

for an automated analysis and selection process. 

 

The platform used in the study has the representative configuration of a state of the art embedded 

platform. It contains a 16 kilobyte scratchpad memory, a DMA controller and a processor optimized 

for multi-media applications. After the reuse analysis step, 24 copies were selected, resulting in 42 

DMA transfers. A transfer schedule could be constructed which was able to execute 80% of the 

transfer time in parallel with CPU processing, effectively hiding the transfer latency. Only 11 arrays 

are assigned to the L2 background memory, 4 of them are frame data, 4 are coefficient data, the 

motion-vector array and two others. All other arrays could be placed in the scratchpad memory 

together with the selected copies, thanks to the in-place mapping. The platform parameters are 

summarized in Table 2. Note that the platform did not allow direct L2 accesses from the CPU. 

Table 2 - Platform summary. 

Scratchpad memory (SPM)  

Size 16 kilobyte 

Ports 2 

Read cycles 2 

Write cycles 4 

Background memory (L2)  

Size 2 megabyte 

Ports 2 

Read cycles 6 

Write cycles 6 

DMA controller  

Channels 2 

DMA overhead 13 cycles 

CPU overhead 8 cycles 

Connections  

 CPU ↔ SPM 

 SPM ↔ L2 

 



Public  Page 56 of 87 

The results show that the analysis and design flow can handle realistic, industry-relevant applications 

such as the MPEG-4 encoder. 

 

We have analyzed the statically allocated data in MPEG-4 encoder application, a representative of 

computationally intensive embedded applications targeted in the MNEMEE project. The analysis is 

performed using the Atomium analysis tool. The statically allocated data consists of scalars, multi-

dimensional array and variables declared within the scope of functions in the source code. The 

memory space needed for this data is allocated at compile-time and the access behaviour is dependent 

on the control flow of the application. The analysis identified different scenarios of data usage and 

accordingly suggested static optimization opportunities. Specifically, we have used the analysis tool 

framework to identify and exploit the available data locality and re-use potential in the MPEG-4 

encoder application. 
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9. Dynamically allocated data storage and data access behaviour analysis 

9.1. Overview 

This section describes the dynamically allocated data in targeted applications. Dynamically allocated 

data consist of dynamic arrays or linked structures like lists and trees that have an unknown size at 

compile time. As the application executes, memory is dynamically allocated to serve the needs of 

these data structures. As both memory allocation and data access patterns are unpredictable, the goal is 

to analyze the application’s behaviour in that terms and identify potential optimizations. 

 

This chapter is organized as follows. Section 9.3 and 9.4  introduces dynamic data and storage 

optimizations and explains when and why they are used. The importance of dynamic data and storage 

optimization is stated along with the major issues during this process. Section 9.5 describes the cost 

factors used to evaluate the success of the dynamic data access and storage optimization methodology. 

Sections 9.6 and 9.7 deal with the innovations achieved within the MNEMEE context, while Section 

9.8 presents the targeted application. The main characteristics of the application are depicted and the 

reason of its choice is also stated.  

 

9.2. Introduction 

Embedded systems are designed to perform one or more specialized functions and are more cost 

sensitive than their general purpose counterparts. Today, technology scaling has given them 

considerable storage and computing power, which is used to improve the experience and usability or 

provide new functionality for hundreds of millions of consumer products, such as mobile phones, 

portable media players, etc. There is a trend towards highly mobile devices, which are able to 

communicate with each other, access the Internet and deliver rich multimedia content on demand. 

Embedded systems play a dominant role in this digital vision of ubiquitous computing and are 

responsible for processing, transferring and storing the heavy data load of all these wireless network 

and multimedia applications. A resulting major bottleneck is the energy consumption, which affects 

the operating time, weight and size of the final system (i.e., through the battery), as well as satisfying 

efficiently the memory storage and access requests of the various embedded software applications that 

co-exist on the same hardware platform. Until recently the problem of storing and transferring data to 

the physical memories was limited to the management of stack and global data statically at design 

time. Nowadays, increased user control (e.g., playing a 3D game) and interaction with the 

environment (e.g., switching access points in a wireless network) have increased the unpredictability 

of the data management needs of each software application (and in the future this unpredictability will 

only increase). This is a turning point for the data transfer and storage exploration of these 

applications, because the allocation and de-allocation of data is done mostly during the run-time phase 

through the use of heap data (in addition to stack and global data). Dynamic data structures (e.g., 

linked lists) are triggering the allocation, access and freeing of their data elements in quantities and at 

time intervals, which cannot be known at design-time and become manifest only at run-time. 

 

The dynamic management of the allocation and de-allocation of each memory block, which is 

associated with each data element, is performed by the system software called the Dynamic Memory 

Manager (DMM). Traditionally, the DMM has been either integrated in the source code of the 

software application, linked as a separate software library or integrated in the (Real-Time) Operating 

System. In every case, the DMM is responsible for the allocation and de-allocation of memory blocks. 

In this context, allocation is the mechanism that searches at run-time inside a pool of free memory 

blocks (also known as the heap) for a block big enough to satisfy the request of a given application. 

De-allocation is the mechanism that returns this block back to the pool of memory blocks, when it is 

no longer needed. The blocks are requested and returned in any order, thus creating ‘holes’ among 

used blocks. These holes are known as memory fragmentation, which forms an important criterion that 

determines the global quality of the DMM, because there is a possibility that the system runs out of 

memory, and thus crashes, if fragmentation levels rise too high. Besides memory fragmentation there 
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are other criterions regarding the DMM cost efficiency, which are related to energy consumption, 

memory footprint, memory accesses and performance. 

 

9.3. Motivating dynamic data access optimization 

In dynamic applications, data is stored in entities called data structures, dynamic data types (DDT) or 

simply containers, like arrays, lists or trees, which can adapt dynamically to its needs. These 

containers are realized at the software architecture level [53] and are responsible for keeping and 

organizing the data in the memory and also servicing the application’s requests at run-time. The latter 

include abstract data type operators for storing, retrieving or altering any data value, which is not tied 

to a specific container implementation and shares a common interface (as in STL [54]). The 

implementation of these operators depends on the chosen container and each one of them can favour 

specific data access and storage patterns.  

 

In modern application, we run onto three basic DDT, namely: 

 

 
 

Arrays dominate the static data field, as the designer is aware of the total needed size and allocated 

space accordingly. This leads to both optimized random access to all elements and also optimized 

allocation space. However, targeted applications tend to dynamically allocate elements, so that the 

designer has no knowledge of the maximum required memory size. This leads to the use of dynamic 

arrays that expand at run-time. Although, this is a good solution to keep fast random element access, 

as we expand the array, much of the allocated space is wasted. We should also keep in mind that if the 

application deletes an element from the array, the memory is not freed. 

 

Lists on the other hand, allocate space only when a new element is inserted. Moreover, when an 

element is deleted, all the memory it occupied is returned to the memory manager. This makes lists 

ideal for keeping low memory usage. However, in order to get to a certain element that is required by 

the application, one needs to traverse through the list until he reaches the desired element. In case of 

consecutive random access calls, lists waste many memory accesses searching for the requested data. 

 

Trees being also a linked structure do not waste memory space. Memory is allocated when needed by 

a new element. Trees also provide a quicker way to search through elements as they are sorted inside 

the structure. This makes trees ideal for applications that require a lot of data searching. However, this 

convenience comes at the cost of extra operations and subsequently memory accesses during the 

insertion of an object. 

 

Each DDT in a certain application can be implemented as array, list or tree independently. This widens 

the pool of possible solutions and all of them need to be tested separately, in search for the optimum 
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combination of DDT implementations. Therefore, a designer should plan carefully, before choosing 

the particular implementation for the targeted application’s DDT, which is not always the case.  

 

Usually software developers are running to finish the code, so they are based on already available 

solutions in DDT implementations. In other words, a software developer will not choose to right his 

own implementation of a list, but rather use one that is already implemented and tested. The C++ 

Standard Template Library is built around this exact purpose. It consists of a set of DDT 

implementations like dynamic arrays (vectors) and lists that can be used out of the box, quickly and 

bug free.  

 

Although using available DDT implementations can boost development time, the designer looses the 

opportunity to utilize certain characteristics of the application and make more efficient DDT 

implementations. Some examples shall clarify this point. 

 

• Example 1: Figure 30 and Figure 31 present a singly (SLL) and doubly (DLL) linked list 

respectively. Let’s assume that the application requests object number 4 to retrieve. In a SLL 

the list must start from the head and move through elements 1, 2, 3 before reaching the 4
th
 

element. However, in a DLL list, the traversal can begin backwards starting from the tail, so 

that we have to go through element 5 only. This comes at the cost of allocating extra space for 

an additional pointer (the one pointing to the previous element) for each and every element. In 

the case that the application requests only the first or the last element, a SLL is enough and 

can save much wasted space. Nevertheless, the designer is not able to identify such behavior 

and his choice is not always optimal. 

1 2 3 4 5

Head Tail

 

Figure 30 - A singly linked list (SLL) 

1 2 3 4 5

Head Tail

 

Figure 31 - A doubly linked list (DLL) 

 

• Example 2: Figure 32 again presents a singly linked list, but this time the list accommodates 

an extra pointer, which points to the last accessed element. Assuming that the applications 

requests objects 1, 2, 3 and 4 consecutively (this access pattern is called sequential), a classic 

implementation would start from head every time and go through all intermediate elements to 

reach the desired one. The roving pointer stores the last accessed position, so in a sequential 

access pattern, the list starts from the roving pointer and moves forward. That said, if element 
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4 is requested, the traversal can start from the roving pointer and move up just one element, 

instead of starting from the head of the list and moving up four elements. As such optimized 

implementations are not available in common libraries, the designer can miss the chance to 

optimize a specific DDT for sequential access. 

 

1 2 3 4 5

Roving 

Pointer
Head Tail

 

Figure 32 - A singly linked list with a roving pointer storing the last accessed element. 

 

Therefore, it should be clear that certain access patterns dictate certain DDT implementations. A 

designer should take into account the dynamic data access behavior of the application’s DDTs and 

choose the optimal implementation for each DDT, in order to optimize the embedded system. 

 

9.4. Motivating dynamic data storage optimization 

 The memory manager is responsible for the management of the system’s memory and to provide a 

valid memory address in order to satisfy the requests of the software application. Therefore, the 

memory manager constitutes an intermediate design abstraction layer between the software application 

and the hardware memory of the embedded system. The way that the data will be allocated and 

assigned to the individual memories of the memory hierarchy will have a significant impact on the 

performance, energy consumption, use of the interconnect bandwidth and the size of the memories 

needed. More specifically, the moment that the software application will ask memory from the system 

(in order to store its data) is not known beforehand by the embedded system designer (who is also the 

designer of the memory manager). This happens because modern multimedia and network applications 

exhibit a high degree of interaction with the user of the application, whose decisions cannot be fully 

anticipated at design-time and thus vary the needs of the application for memory space. For example, 

the user selects at an arbitrary moment to send an email or to browse a webpage. It is obvious that 

these two different user actions, which are considered as input for the embedded system, can be made 

in any order and in any time instance. Nevertheless, the user expects from the software application, 

and thus from the dynamic memory manager, to react and satisfy immediately his requests.  

 

Additionally, other sources of uncertainty (besides the user actions) are the great abilities of modern 

software applications to adapt to their environment. We define as environment anything that is not 

decided by the user or the software application itself. For example, a network might become 

congested, thus forcing the wireless network application to delay the transmission of data and storing 

it for a longer time period in the memory. In this situation, the dynamic memory manager does not 

know beforehand the moment that the application will be able to send the data and thus will not 

require storing them any longer, which in turn will enable the dynamic memory manager to free the 

memory where the data was stored. Finally, the characteristics of user decisions or the situation of the 

environment affect the size of memory that the software application requests each time from the 

dynamic memory manager. A typical example is the difference between the memory requested during 

loading a webpage with rich multimedia effects and during loading a webpage with just text. It is 

obvious that the software application that loads the webpage will request much more memory in the 

first case because it will have to deal with bigger quantities of data. Nevertheless, the memory 
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manager does not know beforehand which page will be selected by the user and thus the needs of the 

software application, which will request the memory. 

 

 

Figure 33 - Static memory management solutions fit for static data storage needs and dynamic 

memory management solutions fit for dynamic data storage needs. 

 

To sum up, the requests for memory are performed at unknown time instances and for unknown 

memory sizes. Additionally, it is unknown for how much time the memory will be reserved until the 

data is de-allocated. Therefore, the designer of the memory manager does not have the fixed 

specifications at design-time, which would enable the straightforward solution of the memory 

management problem. The solution of the memory management problem should be dynamic rather 

than static in order to be able to adjust according to needs for memory as they materialize during the 

execution of the software application, as can be seen in Figure 33. 

 

9.4.1. Shortcomings of static solutions 

Static memory management solutions are worst case solutions for embedded software applications, 

which demonstrate dynamic access and storage behavior. More specifically, we define as static the 

solutions that allocate some memory, when one application starts its execution, and de-allocate it only 

when the application is terminated. The static memory manager contrasts sharply with the dynamic 

memory manager which adjusts the allocated memory size according to the run-time needs of the 

executing application. 

 

In the case of the static memory manager, the worst use case scenario must be evaluated (ie, the 

scenario that the software application needs to store the maximum amount of data).  After this worst 

case scenario is calculated, the static memory manager will allocate the maximum amount of memory 

at the beginning of the execution without de-allocating it later. Therefore, the static memory 

management solutions confront the following four very serious problems: 

 

1. Every time that data needs to be stored, the worst case size is assumed for every data storage 

request. This problem takes big proportions in software applications (eg, like network 

applications) that make thousands of variable-sized data storage requests during a limited time 

period. 
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2. The memory blocks, which store data that is no longer used, cannot be de-allocated at the 

execution time of the software application. Therefore, these memory blocks cannot be used to 

satisfy data storage requests of the same or another application running concurrently on the 

same embedded system. Especially for multimedia applications, which do not store data for an 

extended time period rather they do it in phases, the aforementioned restriction is very 

unfavorable for the embedded system design. 

 

3. It is very difficult (even impossible sometimes) to calculate the worst case resource usage 

scenario. In the case that the ’real worst case scenario’ is better than the ’calculated worst case 

scenario’, then memory resources are wasted. In the opposite case, the software application 

will request memory to store its data, which was not estimated during the design, and thus the 

system will crash. 

 

4. The source code of the software application must be rewritten in order to transform all the 

dynamic data storage requests of dynamic data structures (e.g., like linked lists) to worst case 

data storage requests of static arrays, so that the use of a dynamic memory manager is 

avoided. The source-to-source transformations needed for modern multimedia and network 

applications are very time consuming since they consist of thousands of lines of complex 

source code, which is full of algorithmic interdependencies between the various subroutines. 

 

To sum up, the static memory management solutions are not used in modern multimedia and wireless 

applications, mostly due to the first two problems that have a significant negative impact on the use of 

system resources. Therefore, at least partially, dynamic memory management solutions must be 

evaluated and implemented for these new dynamic software applications. 

 

9.5. Metrics and cost factors for dynamic data access and storage optimization 

Optimization is especially important in embedded systems in order to decrease cost, to increase the 

satisfaction of user experience and, most importantly, to meet very tight design constraints in energy 

consumption, memory footprint and interconnect bandwidth usage. The quality of the dynamic data 

access and storage (DDAS) optimization is characterized by a set of metrics and cost factors. The 

metrics are related to the efficiency of the DMM and DDTs functionality (ie, how accurately the data 

storage requests are served or how fast a certain element is returned to the application). The cost 

factors relate with the positive or negative contributions of the dynamic memory subsystem to the cost 

of each device that hosts it. In the next subsections it will become obvious that an optimized DDT 

implementation design can increase the efficiency of the DMM and decrease any negative impact of to 

the cost of the embedded system. 

 

9.5.1. Memory fragmentation (mostly DMM related) 

The most important metric representing the efficiency of a DMM is the memory fragmentation. The 

fragmentation refers to the system memory, which the DMM has under its control but cannot use to 

satisfy data storage requests. The total memory fragmentation is split into internal and external 

memory fragmentation (see Figure 34). 

 

When the software application asks for memory, then the DMM returns a specific memory address 

where it can write the data that it needs to store. More specifically, in the address that is returned 

resides a free memory block, which can be used for as long as the application needs to store its data 

there. During the period that the data is useful to the application (ie, it is accessed), the memory 
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blocked remains allocated and the DMM cannot use it to satisfy another memory request of the 

application. When the data is not useful anymore, then the memory block is de-allocated and the 

DMM can reuse it in order to satisfy the next data storage request. 

 

When memory is allocated, it is said that the DMM returns a block of memory to the application. 

When memory is de-allocated, it is said that the DMM frees the memory block that was allocated. As 

mentioned before, the requests of the software application for allocation and de-allocation of memory 

can happen for any size, at any time and in any order. This means that after some time of DMM 

operations, the memory consists of free and used memory blocks of various sizes. 

 

 

Figure 34 - Internal (A) and external (B) memory fragmentation. 

 

Internal fragmentation happens when the DMM allocates a block of memory, which is bigger than the 

size of the data storage request of the software application. While the memory block remains allocated, 

its extra memory space which is not used to a store data remains also allocated and cannot be used to 

store other data. 

 

External fragmentation happens when one big data storage request cannot be satisfied while there are 

enough smaller free memory blocks, which could be coalesced to satisfy the request. This failure is 

attributed either to the fact that these smaller blocks do not lie in consecutive memory addresses or 

that there are no efficient coalescing algorithms inside the DMM. Therefore, the DMM cannot use the 

memory space of some blocks (which lie between allocated blocks or are simply too small) besides the 

fact that they themselves are free. 

 

The total memory fragmentation is the sum of external and internal fragmentation and is defined as the 

memory that is managed by the DMM to the data size that is requested by the application minus one. 

The designer of the embedded system has to design a DMM in such a way that the total memory 
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fragmentation is minimized. Only minimal fragmentation ensures the correct and efficient operation of 

the system. 

 

9.5.2. Memory footprint 

We define as memory footprint the total memory size that needs to be managed by a DMM in order to 

fulfill the data storage needs of a certain application with a given input. The memory footprint is 

directly correlated to the memory fragmentation and can be defined as the sum of: (i) the internal 

fragmentation, (ii) the external fragmentation, (iii) the memory needed to accommodate the internal 

data structures of the DM manager and (iv) the data size that the application needs to store. 

 

While the data size storage request cannot be controlled by the designer, an optimization of DDT 

implementations can minimize the storage requirements and subsequently the internal and external 

fragmentation. Also, the minimization of the memory footprint that is managed by a DMM can 

minimize the physical memory needed to be integrated in the platform of the embedded system. 

 

The minimization of the physical memory of the embedded system is very important because it 

influences directly the cost of the device (ie, smaller memories are cheaper). Especially in the case of 

embedded systems that realize multimedia and network applications (which are mass consumer 

electronics in reality), one small reduction in memory cost is multiplied by the millions of units that 

are manufactured. Additionally, decreasing the physical memory size can have positive effects on the 

chip size, since memories take up most of the surface on a chip. Minimizing the surface allows either 

the shrinking of the final device (ie, making it more attractive for the consumer) or the integration of 

more functionality in a device with the same size. 

 

9.5.3. Memory accesses 

We define as memory accesses the sum of: (i) the number of accesses that is needed by the DMM to 

allocate and de-allocate memory and (ii) the number of memory accesses needed by the DDTs to read 

and write on the stored data. There are applications on the one hand that store data only a couple of 

times and then access them heavily during execution time and there are applications on the other hand 

that store data millions of times and rarely access it afterwards. Depending on the ratio of storing 

versus accessing the data, design optimizations on the DMM, on the DDTs or on both are needed in 

order to decrease the memory accesses in the embedded system. 

 

An optimized design of memory manager and the application’s data types can decrease dramatically 

the number of memory accesses, which enables the minimization of the bandwidth needed and thus 

the on-chip interconnect can be used more efficiently. The bandwidth needs is an important factor of 

the embedded system performance since it commonly becomes a bottleneck especially in the case 

where multiple software applications are executed concurrently. Additionally, the on-chip interconnect 

takes up a considerable amount of chip surface, which can be subsequently minimized indirectly with 

the memory access minimization. 

 

9.5.4. Performance 

We define as performance the time needed by one multimedia or network application to handle a 

particular workload and to store and access its data dynamically via a selected DMM and a selected 

DDT. Because multimedia and network applications have an especially intensive data access and 

storage profile, the speed of the DMM and of the DDT is very important and affects significantly the 

performance of the whole application (ie, it is as important as, if not more important than, 

computation). The design of a DM manager and a DDT can be improved in order to speed up its 

internal algorithms and perform the same functionality in a reduced time frame. The memory 

assignment performed by the DMM plays a very significant part in the performance of the software 

application because it determines how close the data is to the processor and thus the latency of a 

memory access.  
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Improving the performance of the DMM and the DDTs can decrease the cost of an embedded system 

by decreasing the needs for higher speed microprocessors and other hardware components, while still 

meeting the deadlines and the design specifications. A system without these optimizations would 

require a higher performance, more expensive microprocessor in order to be able to handle the same 

workload in the same time frame. In the case that is decided to use another system architecture, despite 

the DM manager and DDT optimizations, then the same hardware resources can be used to provide 

higher Quality of Service (QoS) or higher Quality of Experience (QoE). Alternatively, the resources 

freed by the optimizations can be sued to provide additional functionality in the existing applications 

or enable the embedded system designer to integrate more applications. 

 

9.5.5. Energy consumption 

We define as energy consumption the energy that is consumed by the physical memories and is 

attributed to the activity of the DMM or the DDTs. The energy consumption is affected by three 

factors: (i) the memory footprint of each physical memory controlled by the DMM (for a given 

technology node), (ii) the accesses to each physical memory and (iii) assignment of the data in the 

memory hierarchy. As already mentioned all these factors are responsibilities of the DMM. 

 

More specifically, each access in the memory consumes energy. Accesses to the memory blocks that 

are assigned to on-chip memories consume far less memory than the accesses to memory blocks that 

are assigned to off-chip memories. Additionally, bigger physical memory size means memories with 

bigger silicon footprint, which consume more energy per access compared to smaller memories  

 

9.6. Pre-MNEMEE dynamic data access and storage optimization techniques 

9.6.1. Dynamic data access optimization 

Important research work has been started already through the optimization of dynamic data storage for 

embedded systems [56]. 

 

Regarding DDT refinement, the Standard Template C++ Library (STL) 0 or other proposed template 

libraries 0 provide many basic data structures to help designers develop new algorithms without being 

worried about complex DDT implementation issues. However, these libraries usually provide 

interfaces to simple DDT implementations and the construction of complex ones is a responsibility of 

the developer. Furthermore, these libraries focus exclusively on performance. They can be considered 

as acceptable general-purpose solutions, but are not suitable for new generation embedded devices, 

where performance, energy consumption and memory footprint must be optimized together. 

 

In addition, extending the set of available DDTs with new implementations of multi-layered (complex) 

DDTs often proves to be programming intensive [57]. Even when standardized languages offer 

considerable support, the developer still has to define the access pattern on a case-by-case basis. Thus, 

the overall optimization of DDT implementations constitutes one of the most difficult design 

challenges when mapping state-of-the-art dynamic multimedia applications on low-power and high-

speed processors. These target platforms are often not equipped with extensive hardware and system 

support for dynamic memory 

 

For embedded software, suitable access methods, power-aware DDT transformations and pruning 

strategies based on heuristics have been proposed for multimedia systems 0. However, these 

approaches require the development of efficient pruning cost functions and fully manual 

optimizations. Otherwise, they are not able to capture the evaluation of inter-dependencies of multiple 

DDTs implementations operating together, as the proposed methodology using evolutionary 

computation achieves.  

 

Also, several transformations have been proposed that optimize local loops in embedded programs at 

compile time 0. Nevertheless, they are not suitable for exploration of complex DDTs employed in 
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modern multimedia applications, because they handle only very simple data structures (e.g., arrays or 

pointer arrays), and mostly focus on performance.  

 

In addition, according to the characteristics of certain parts of multimedia applications, several 

transformations for DDTs and design methodologies 0,0 have been proposed for static data profiling 

and optimization considering static memory access patterns to physical memories. In this context, the 

use of GA-based optimization has been applied to solve linear and non-linear problems by exploring 

all regions of the state space in parallel 0. Thus, it is possible to perform optimizations in non-convex 

regular functions, and also to select the order of algorithmic transformations in concrete types of 

source codes 00,0. However, such techniques are not applicable in DDT implementations, due to the 

initially unpredictable nature of the data to be stored at compile-time. 

 

9.6.2. Dynamic storage optimization 

Until now the research activities, which had the most interesting results for DMM design, were 

focused in the Operating Systems (OS) and Real Time Operating Systems (RTOS) domains. 

Traditionally, these two domains use DMM in order to handle the data storage requests of a big variety 

of software applications without specializing in any kind of application domain. The DMM is 

embedded as a system library 0, which is compiled each time with the source code of the applications 

running on the OS. Thus, the design of those DM managers is linked to the OS that they support. 

 

The most successful OS-based DMMs are the Linux DMM and the Windows XP DMM 0. On the one 

hand, the Linux DMM is the most balanced targeting concurrently on low memory footprint and high 

performance, while demonstrating the lowest fragmentation levels 0. On the other hand, the Windows 

XP DMM is not as balanced, but has the highest performance 0. It is worth mentioning that both of 

these commercial DMM have academic roots. More specifically, the Linux DMM is wholly based on 

the DMM designed by Doug Lea 0. Respectively, the Windows XP DMM is based on the DMM 

designed by Chris Kingsley 0 (as described in BSD Unix 4.2). The aforementioned DMMs are 

increasingly ported to embedded systems, even though they were originally designed for general 

purpose x86 architectures. One example, of this trend is the DMM of Embedded Windows XP 0. 

 

Additionally, even more memory managers are developed for Real Time Operating Systems, which 

are employed only in embedded systems. The most popular memory manager belongs surely to the 

VxWorks RTOS from Windriver (which is the most popular RTOS) 0, which is not dynamic (ie, it is 

static). Other commercial or academic memory managers are LynxOS 0, Chimera 0, OS-9 0, Maruti 0 

and Real-Time Mach 0. The main reason for the lack of DMM support is that these RTOSs mostly 

target embedded systems that can be fully predicted at design-time (to ensure that real time 

requirements are met) and thus there is limited use of data storage at runtime. 

 

Nevertheless, there are many RTOSs that support DMM. Most of them are found on RTOSs for 

mobile phones. The most popular RTOS DMMs are the ones for Symbian 0 and Enea OSE 0. Both 

DMMs target high performance and ignore potential fragmentation problems, thus they have very big 

memory footprint. Both Symbian and Enea OSE DMMs are based on the design of DMM from Chris 

Kingsley. 

 

The same design basis is used also by the DMM of the Windows CE RTOS 0, which is quite fast 

without sacrificing considerable amount of memory footprint like the similarly designed Windows 

XP-based DMM. On the other hand, the DMM of the uClinux RTOS 0, which has good performance 

but really high levels of internal fragmentation and thus high memory footprint. The uClinux-based 

DMM has practically the same design as the academic Buddy Allocator 0. Finally, the RTOSs eCos of 

Red Hat 0, RTEMS of OAR 0 and RTXC of Quadros 0 support also DMM, with a simplistic and very 

inefficient design. Finally, in 00 some very interesting DMM solutions are presented in the form of 

Garbage collection. 
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The problem with the aforementioned DMMs is that they are developed in order to satisfy a wide 

range of run-time data storage needs of various applications. They propose one-size-fits-all solutions 

without focusing and using application specific information. Additionally, these off-the-shelf DMMs 

do not use any platform specific information either, thus failing to exploit any useful information 

about the memory hierarchy of an embedded system. In most of the cases (as is the case for DMMs of 

general purpose systems), one single flat memory hierarchy is assumed. The result is that while these 

general designs serve a wide range of software application demands equally good, they fail to satisfy 

the special needs of specific multimedia and network applications mapped on specific memory 

hierarchies of an embedded system.  

 

As a result, the performance of all those DMMs is very low, on the one hand, and the memory 

footprint, the memory accesses and especially the energy consumption are unacceptably high, on the 

other hand. 

 

9.7. MNEMEE extensions to current approaches 

9.7.1. Dynamic data access optimization 

Most of the work done until now, regards the behavioural analysis of target applications. As stated in 

detail in section 9.3, the designer needs an accurate view of the DDT behavior in order to make a 

successful choice in DDT implementations. Thus, we have developed a methodology that provides a 

higher level view of the DDTs and exposes their particular behavioural characteristics. The 

methodology is explained in detail in D2.1 “Profiling framework and dynamic data access 

optimization methodology” of the MNEMEE project. Here, we present only the relevant part to 

dynamic data access optimization, which is the set metadata needed for the behavioural analysis of 

DDTs. In detail we have: 
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Figure 35 - Software metadata required for behavioural analysis of DDTs. 

 

This set of metadata is required to provide the designer with an inner look to the behavior of each 

DDT in the target application. Thus the designer can see how the DDT expands over time or how 

much wasted space there is, therefore shifting its decision to the optimal implementation choice. 

 

In order to be able to collect this high level of information regarding the dynamic data types, we build 

a profiling/analyzing framework that can integrate with the application and automatically extract the 

required information. This framework is also described in detail in D2.1. 

 

To summarize the developed tools and methodology in the context of the MNEMEE project will 

answer the following issues: 
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1. Problem 1: Increased complexity of the applications makes it difficult for the designer to 

analyze the behavior of the application. 

Solution: In the context of the MNEMEE project, a special framework was developed to 

provide a complete analysis of the dynamic data type behavior. The framework is described in 

D2.1 

 

2. Problem 2: Fast development times provide very narrow space for DDT exploration. 

Developers tend to use already available (and therefore tested/reliable) DDT implementations 

than create their own. This leads to sub-optimal solutions. 

Solution: In the context of the MNEMEE project, a methodology for the optimization of the 

dynamic data accesses was developed. The methodology provides an automated way to take 

optimal decisions regarding DDT implementations. The methodology is described in detail in 

D2.1. 

In section 9.10 we can see the usage of this set of metadata in DDT behavioral analysis. 

 

9.7.2. Dynamic storage optimization 

As already discussed in the previous sections, static solutions are not well suited for dynamic 

multimedia and wireless network applications. Additionally, existing one-size-fits-all DMM solutions 

are suboptimal because they do not provide specialized solutions to the individual memory storage and 

resource needs of the software applications and the available memory resources of the underlying 

memory hierarchy. Finally, more customizable DMM designs lack the systematic methodology linked 

with automation tools that will enable fast and efficient optimizations targeted on embedded system 

relevant metrics (e.g., energy consumption). Below, we summarize the set of problems, the solutions 

that we introduce and the result of our solutions: 

 

1.  Problem: Increased design complexity of DMM and interdependencies between design decisions. 

Solution: Split the more complex, monolithic design problem into smaller sub problems of design 

choices, classify them and analyze their interdependencies. 

Result: The embedded system designer can design much customized DMMs. 

 

It is important to note that the DMM design is a very complicated task combining policies, 

mechanisms and architecture design decisions. 

 

It would be impossible to calculate the impact of every one of the possible millions DMM designs on 

the cost factors and metrics of an embedded system. Therefore, we split the design issue in smaller 

design choices, which have less complexity and their impact can be studied individually. Then, we 

manage to extrapolate our conclusions on the design of the whole DMM by calculating the 

interdependencies of the smaller design choices and thus their combination in a complete DMM 

design. Finally, by using multiple levels of abstractions we manage to customize the DMM design at 

various levels of granularity, thus achieving a reasonable trade-off between design-time needed to 

explore the design space and the efficiency of the optimizations. 

 

2.  Problem: Constraint of available hardware resources due to cost, physical size and performance     

limitations. 

Solution: Optimization of DMM design via customization according to specific software 

applications and underlying memory hierarchies. 

Result: Reduced cost of the embedded system and design within the desired specifications. 

 

The solution to the second problem is built on top of the solution of the first problem. Namely, after 

enabling customization of the DMM design we can customize the DMM according to the specific 

storage and access needs of each individual software application and according to the available 
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memory resources of each memory hierarchy that meets the specifications of the embedded system. 

These customizations lead to optimizations targeting individual metrics and cost factors or the 

achievement of tradeoffs amongst them. 

 

3.  Problem: Short time-to-market of the embedded system.  

Solution: MATISSE tool for automatic exploration of the optimal combination of DMM design 

choices and implementation using a library of modules. 

Result: Exploration of trade-offs and customized DMM designs with minimal design-time 

overhead. 

 

Fine-tuning the DMM design according to the characteristic needs of each software application can be 

very complex and time consuming for the embedded system designer. We extract the relevant 

characteristics automatically with the use of our profiling tools and then provide it as input to the 

exploration tools which explore the different desired combination of DMM design decisions 

automatically. Namely, the design decisions are implemented as modules in a C++ library and are 

combined in a single DMM design, which is simulated and evaluated versus the desired optimizations. 

9.8. Application description 

In this section, we will describe the characteristics of a representative dynamic application that we 

target for our study.  

 

In future technologies of embedded systems an increasing amount of applications (e.g. 3D games, 

video-players) coming from the general-purpose domain, having large run-time memory management 

requirements, need to be mapped onto an extremely compact device. However, embedded systems 

struggle to execute these complex applications because they come from desktop systems, holding very 

different restrictions regarding memory usage features, and more concretely not concerned with an 

efficient use of the dynamic memory. In fact, a desktop computer typically includes today between 

512 and 1024 MB of RAM memory at least, as opposed to the 32 or 64 MB present in modern 

embedded systems. Therefore, one of the main tasks of the porting process of multimedia applications 

onto embedded multimedia systems is the optimization of the dynamic memory subsystem. 

 

The targeted application comes from the multimedia domain and is a full 3D game called Vdrift [58]. 

It was chosen because of its complexity and partially because it makes heavy use of the STL template 

library, making it easy to integrate with our tools. 

 

Vdrift is an open source racing simulator that uses STL vector DDT to handle its dynamic behaviour. 

The application uses very realistic physics to simulate the car’s behaviour and also includes a full 3D 

environment for interaction. Vdrift uses 37 dynamic DDTs to hold its dynamic data that are all 

sequences. The objects put inside the containers vary from wheel objects to float numbers required by 

the game’s physics. During the game, some containers get accessed sequentially, while others exhibit 

a random access pattern. This means that the applications requests regard objects, which are not 

successive in the list structure, requiring complex data structures to cope with this access pattern. This 

exactly is what provides a great optimization opportunity as we will show later. 

 

9.9. Logging dynamic data 

Traditionally, there are several ways of obtaining the profiling information. The two main ways of 

obtaining profiling information are: automated approaches, for instance through binary-code 

interpretation; and manual approaches, through source code instrumentation. Both approaches have 

advantages and disadvantages, as they are presented in Table 3.  
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Table 3 - Comparison of different profiling approaches. 

Approach Advantages Disadvantage 

Automated 
Does not require modification 

of the source code. 

Does not give information that can be 

easily related to the existent variables and 

dynamic data types existing in the 

application. 

Manual 
Provides information that can 

be related to the source code. 
Requires modification of the source code. 

 

For our methodology of obtaining metadata, we have opted for a manual approach to profile 

information regarding the behaviour of the dynamic data types, as well as the allocation and de-

allocation and access patterns to these data types. An overview of the profiling methodology can be 

seen in Figure 36. Unlike ad-hoc manual approaches where every memory access needs to be 

annotated, our approach is type-based. In this approach, first illustrated in, we do not annotate all the 

accesses in the source code, instead we annotate the types of the variables that we are interested in and 

let the compiler automatically annotate all the accesses for us. Besides the advantage that this incurs a 

lot less manual effort to annotate the source code, it also gives us a guarantee that no access is 

overlooked: the compiler checks this for us. Given a front-end compiler and a type-checker, the 

propagation of this type-change to all functions that are passed to this type could even be automated.  

 

 

Figure 36 - Methodological Flow for Profiling Dynamic Applications. 

 

In C++  this type annotation is done through the use of templates, to wrap types and give them a new 

type, and operator-overloading, to catch all the accesses to the wrapped variables. Templates are 

compile-time constructs that describe the general behaviour of a class or function without having to 

specify the underlying type within the class. The description of the class or function is parameterized 

with one or more types to define a family of functions or classes. When the class template is then used, 
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it is instantiated with the desired type, and the compiler will generate the correct instructions to deal 

with that type. 

 

Using the basic idea of templates, our profiling library consists of several class templates that log 

different information. Each of these class templates is built to be as little obtrusive as possible, thereby 

removing the need for manually changing a significant part of the original source code of the 

considered application. Additionally, the class templates are designed to be orthogonal as well as 

composable. Specifically, we employ the following class templates:  

 

scope This class template allows for control-flow logging.  

 

allocated This class template serves for sending allocations and deallocation requests from operators 

new and delete to a custom memory allocator. Typically, this memory allocator will be a logging 

allocator that uses the system allocator and logs this information to the logger.  

 

var This class template keeps track of all the memory accesses to the wrapped variable. Additionally, 

it derives from the allocated template, thereby also giving allocation and deallocation logging of the 

wrapped variable.  

 
vector This class template behaves just like the vector implementation of STL, however it will log all 

the accesses to the operations being used, therefore giving a high-level profiling view of how dynamic 

data types, specifically sequences, are being utilized in the application. 

 

All of these templates are directly or indirectly parameterized over the logger, such that in the case this 

needs to be integrated with another framework, it is easy to plug in a different logging object. 

Additionally, the last three templates are parameterized over a unique identifier which can then be 

tracked in the profiling information and thus the profiling information can easily be linked to the 

original source-code. It goes without saying that the var and vector templates are also parameterized 

over the type of the variable and the type of the elements, respectively.  

 

9.9.1. Analysis 

Every logged element is kept inside a log file during the run of the application. The log file contains 

the logpackets in the order that these logpackets were generated. From that file we create a database 

that holds all logpacket related info. The database is created using MySQL. The flow of our profiling 

tools is shown in Figure 37. 

 

Original 

Application

Profiling Analyzer

MySQL

XML

Binary File

 

Figure 37 - Flow of profiling and analysis tools. 

 

Some of the information stored in the database can be seen in Table 4. 
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Table 4 - Profiling information stored by our tools. 

At the memory level At the interface level 

Logging of any read/write access to  

• all data elements of c++ (build and user created types) 

• Certain scopes within a c++ code 

• Complete logging of all sequence-

DDT operations 

• Complete logging of iterator 

operations 

• Log sequential/random access to 

sequence-DDTs 

Logging of memory footprint 

• List of all used block sizes 

• Number of allocations/deallocations for each block size 

• Maximum number of concurrent instances for each 

block size in memory 

DDT logging 

• Total accesses for each DDT 

• Total memory footprint for each DDT 

• Number of max concurrent instances 

• Max Number of objects hosted in each DDT 

 

Due to the format of the profiling output (database, xml) we can relate every variable with each other 

in a graph, giving the designer a set of views of the applications dynamic data behaviour. 

 

9.10. Case study dynamic data analysis 

In this section, we perform an analysis of the dynamic data types of the targeted application, to 

evaluate the data access behaviour and data storage needs. The aim of the analysis is to highlight 

optimization opportunities for WP2. 

 

The first step in a behavioural analysis of the targeted application is identifying the active and data 

intensive DDTs. We define as data intensive that DDT, which exhibits a lot of data accesses. For that 

reason we extracted the following graph using our profiling tools. 

 

 

Figure 38 - Total data accesses for each DDT. 

 

Figure 38 shows that we have 16 active DDTs from the set of 37. The exclusion of inactive DDTs 

from the optimization effort is the first major point in the behavioural analysis of the application. The 

current state of the code and the certain set of inputs that were used to stimulate the application lead to 

these active/inactive sets of DDTs. The designer does not need to spend any optimization effort in the 

other DDTs. Furthermore, from the graph we can also see that there are 4 DDTs (namely DDT 19, 20, 
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21, and 34) that dominate the data accesses. These data intensive DDTs need to be optimized in the 

first place. 

 

Another important point to know is the number of instances that each DDT is being replicated. This is 

important since, for every instance, the DDT has to be constructed again. Usually this happens during 

copy construction and designers should take care of unwanted intermediate instances during parameter 

passing in C++ functions.  

 

 

Figure 39 - Maximum Instances for each DDT. 

 

As we can see in Figure 39, most of the DDTs have a single or very small amount of instances. 

However, DDT 34 is a special case. This DDT exhibits a unique behaviour as it is created 25000 times 

approximately. DDT 34 is part of an M-way tree that represents collision points inside the game track. 

Every tree node holds a list (DDT 34) of other tree nodes. This is the reason for the vast amount of 

instances.  

 

Here we can note another point of interest in the developed automatic profiling framework. The 

designer does not need to know the functionality of the application. The profiling results can guide 

him to pay attention only where is needed.  

 

All DDTs that have many instances should have lightweight constructors in order to minimize the 

overhead. Lists have simpler constructors over vectors. The latter needs extra accesses to initialize the 

pre-allocated space. 

 

Furthermore, the number of maximum objects stored into the data type is also important. A large 

number of objects translates into large memory requirements and longer search times. The latter has to 

be combined with the discerning of the access pattern into sequential and random. A random access 

pattern combined with a large number of objects requires an array implementation to perform well, as 

a linked list implementation would require a lot of accesses to traverse through the list elements. 
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Figure 40 - Maximum number of objects hosted in each DDT. 

 

Although the maximum number of objects is mostly related to a DDT instance and not the group of 

DDT instances under a certain DDT ID, Figure 39 presents the maximum number of objects between 

all instances of a certain DDT ID. DDTs 14, 19 and of course DDT 34 require special attention due to 

the high number of object they contain. Especially DDT 34 hosts some thousands of objects 

concurrently and so requires a lot of memory space. In the case that DDT 34 was being accesses 

randomly the developer would have no choice but to use arrays to speed up the search functions. 

However, as we see in Figure 41 this is not the case. 

 

 

Figure 41 - Iterator access versus operator[] access to elements in a DDT. 

 

Figure 41 shows that DDT 34 makes exclusive use of iterators to access its elements. Thus a linked list 

structure can be used to implement it, confining the memory space to only the minimum. 

 

All DDTs that access their elements through iterators give the designer the freedom to choose between 

array and linked list implementations. The decision can be based on the other criteria. However, DDTs 
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that use operator[] to access the elements require special care, since we need to discern between 

sequential and random access. 

 

In order to indentify which DDTs use operator[] with a sequential or random pattern, we introduced a 

new algorithm as described in D2.1. Figure 42 shows the access patterns of all used DDTs in our 

target application. Using the newly introduced algorithm we are able to identify, which access pattern 

each DDT uses most. 

 

 

Figure 42: Sequential/Random access pattern for each DDT 

 

Figure 42 shows us that most DDTs use operator[] with a sequential access patterns to reach their data. 

Combining this figure with Figure 41, we are able to propose implementation candidates to replace the 

default implementation (vector). For example, DDT 26 is exclusively accessed using operator[]. 

Without Figure 42, the designer cannot be aware of the exact access pattern. After the analysis we see 

that DDT 26 is heavily accessed sequentially, hence a linked structure implementation can be 

considered safely. 

 

Another interesting point about the behaviour of DDTs is that they almost never utilize much of the 

allocated space in the case that a vector is used to implement them. As we have already discussed, 

vector is a dynamic array that expands as required, offering fast random access. However, as we can 

see in Figure 43, it may not be the best choice. Figure 43 shows the allocated space of a vector and the 

utilized space, meaning the percentage of array elements actually hosting the application’s data. 
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Figure 43 - Utilization of the allocated memory space by the DDT. 

 

When both red and blue lines are at 50%, it means that nearly all memory space is utilized. When the 

red lines take more than 50%, memory space is wasted. 

 

Finally, regarding the dynamic storage optimization, our target is to identify which block sizes are 

more often requested by the application, so that the dynamic allocator can take focus on providing 

these blocks fast and energy efficiently.  

 

These blocks of memory are used to host the dynamic data types along with their elements. Therefore, 

the block sizes are dependent of the kind of DDT used. In other words, after we have optimized the 

DDTs of the target application, we should profile it and see what block sizes it requires. 

 

Here, we present the case where vector is used for each DDT. Using our profiling tools, we extracted 

the following table.  

 

Table 5 - Memory blocks requested by the application. 

blockSize mallocs frees maxLive 

64 25768 25768 24512 

128 1318 1292 663 

144 32 16 22 

176 1 1 1 

352 3 3 1 

512 321 315 163 

1024 160 155 90 

1152 1 1 1 

2048 74 72 41 

8192 16 8 13 

16384 7 5 5 

32768 3 3 2 

65536 1 1 1 
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Table 5 presents the set of memory block sizes that were requested by the application to serve the 

DDT allocation needs. We can see not all sizes are used the same. If we notice the maxLive column, 

which basically refers to the maximum concurrent instances of a certain block size, we can clearly see 

that block sizes 64, 128 and 512 are the ones requested more often. This information can be utilized by 

the dynamic memory manager to have pools dedicated to this particular block sizes. That way the 

application storage requests can be served immediately, without searching for an available block in 

memory. 
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10. Conclusions 

Future multimedia applications are characterized by intensive data transfer and storage requirements. 

Partially these requirements will be static, but to a large extent they will also be changing at run-time. 

Therefore, efficient memory management and optimization techniques are needed to increase system 

performance and decreased cost in energy consumption and memory footprint due to the larger 

memory needs of future applications. Chapter 7 presents an analysis technique to identify run-time 

situations within an application that have different resource requirements. It also explains how these 

different run-time situations can be exploited in a design flow that maps an application onto a 

multiprocessor platform while minimizing resource usage and providing timing guarantees. These 

results will be used to develop a design space exploration technique in WP4. In Chapter 8 and Chapter 

9, an extensive analysis of the statically (e.g. arrays) and dynamically (e.g. linked lists) allocated data 

items in future embedded multimedia applications is presented. The result of this analysis is used to 

define the storage and access behaviour of these applications and to pinpoint possible optimization 

opportunities available for tasks within WP 2, WP 3 and WP 4.  
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12. Glossary 

 

ANL Atomium analysis 

DDAS Dynamic data access and storage 

DDTR Dynamic data-type refinement 

DLL Double linked list 

DMA Direct memory access 

DMM Dynamic memory manager 

DMMR Dynamic memory-management refinement 

DVFS Dynamic voltage-frequency scaling 

FSM Finite state machine 

MACC Memory architecture-aware compiler framework 

MoC Model-of-computation 

MNEMEE Memory management technology for adaptive and efficient design of embedded systems 

MH Memory hierarchy 

MPA Memory parallelization assistant 

MP-MH Multi-processor memory hierarchy 

MP-SoC Multi-processor system-on-chip 

NoC Network-on-chip 

PCA Principal component analysis 

RTOS Real-time operating system 

SADF Scenario-aware dataflow 

SADFG Scenario-aware dataflow graph 

SDF Synchronous dataflow 

SDFG Synchronous dataflow graph 

SLL Single linked list 

SPM Sratchpad memory 

STL Standard template library 

QoE Quality of experience 

QoS Quality of service 

WCET Worst-case execution time 

 


